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To settle the issue of balance between two objectives, i.e., photovoltaic (PV) power station
output power maximization and frequency regulation (FR) signals response, a novel PV
reconfiguration strategy is proposed in this work, which maximizes the output power
through PV reconfiguration, and meanwhile utilizes the energy storage system (ESS) to
decrease the PV plant generated power’ deviation from FR signals. Above all, a model of
PV-storage power station reconfiguration is designed to minimize the power bias of both
rated power and FR signals. Then, themulti-objective Harris hawks optimization (MHHO) is
used to obtain the Pareto front which can optimize the above two objectives due to its high
optimization efficiency and speed. Subsequently, the optimal compromise solution is
selected by the decision-making method of VIseKriterijumska Optimizacija I Kompromisno
Resenje (VIKOR). Aiming to substantiate the efficacy of the proposed technique, the case
studies are carried out under partial shading condition (PSC) with constant and time-
varying FR signals. The simulation results show that, compared with the situation without
optimization, the power deviations of the two objectives are reduced by 25.11 and 75.76%
under constant FR signals and 23.27 and 55.81% under time-varying FR signals by
proposed method, respectively.

Keywords: PV array reconfiguration, energy storage system, frequency regulation response, multiobjective harris
hawks optimization, photovoltaic

INTRODUCTION

Nowadays, major countries in the world are committed to developing the application technology of
renewable energy resources to tackle the incoming traditional energy crisis. With respect to its
abundant reserves and environmentally-friendly quality, solar energy has become the most
widespread energy resource (Gan et al., 2019; Mahidin et al., 2021). In general, photovoltaic
(PV) arrays operate at the maximum power point by maximum power point tracking (MPPT)
(Salam et al., 2013; Yang et al., 2016) technique to maximize the outputs of PV station. However, in
the field application of large-scale PV power generation system, the bypass diodes of PV panel will be
activated under partial shading condition (PSC), resulting in inconformity of output characteristic
between various PV array rows (Sai Krishna and Moger, 2019; Zhang et al., 2021a). And further
consequence of multi-peak with power-voltage (P-V) curve is caused which can prominently
decrease PV plant power generation and make it more difficult for MPPT. Besides, PSC could
lead to hot spot phenomenon which may break PV panels and even cause a fire. In addition, PSC is
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mostly attributed to clouds, building shadows, dust, birds’ feces,
manufacturing defect and non-uniform aging of PV components
(Yang et al., 2018a; Laudani et al., 2018).

For the purpose of mitigating the effects of PSC as well as
enhancing the power generation of PV station, altering the
topological structure of PV components is employed, which
could equivalently disperse the originally-centralized shadow
on the array surface to the whole array. In recent years,
researchers have developed multiple methods of PV arrays
reconfiguration, which are classified mainly into static
reconfiguration techniques and dynamic techniques (Kaushika
and Gautam, 2003; Yang et al., 2021).

Three different topological structures of PV arrays,
i.e., series–parallel (SP), bridge linked (BL), and total-cross-tied
(TCT), are studied and compared under PSC in literature
(Kaushika and Gautam, 2003; Ajmal et al., 2020), of which the
performance of TCT is ascertained the best topological
configuration theoretically for its robustness. But TCT has
higher wiring losses for its longer cable. Literature (Rani et al.,
2013) reconfigures the PV components based on Sudoku
patterns, and a variant of sudoku-based arrangement
(Horoufiany and Ghandehari, 2018) is proposed to tackle with
mutual shadows (Horoufiany and Ghandehari, 2017; Yang et al.,
2020a). By introducing mixed integer quadratic programming,
literature (Shams el-Dein et al., 2013) utilizes the mathematical
formulation to dissipate the shadow of PV array. TomTom puzzle
divides the PV array into irregular pieces with particular
calculation rule assigned for each piece, and then accomplishes
the reconfiguration of PV array (Tatabhatla et al., 2019; Yang
et al., 2019). The essential characteristic of static reconfiguration
is that only the physical location of the PV module but not the
electrical connection will change. Moreover, as a one-time
reconstruction technique, static method is not able to
automatically alter reconfiguration schema to meet various
shadow pattern. Therefore, the PV system with static method
must artificially constructs a new configuration when a new
shadow appears. In practice, shadow patterns frequently
change, hence static method is not universally applicable, nor
is it suitable for real-time scenarios.

Dynamic PV array reconfiguration techniques come into
being in response to the aforementioned drawback of static
techniques. Different from static methods, dynamic methods
can dynamically change the electrical connection of PV
modules in real time by switching matrix according to the
shadow change (La Manna et al., 2014; Yang et al., 2018b).
Literature (Vicente et al., 2015) applies rough set theory to PV
array reconfiguration. Literature (Sanseverino et al., 2015) builds
a control system embedded with Munkres algorithm to alter the
switches layout. Feed forward artificial neural network is utilized
to alter the switch matrix by training irradiance data and short-
circuit currents (Karakose et al., 2014). Nowadays, meta-heuristic
algorithms has become a prevailing tendency in applicating to PV
array reconfiguration, such as genetic algorithm (GA) (Deshkar
et al., 2015), flow regime algorithm (FRA) (Babu et al., 2020),
particle swarm optimization (PSO) (Babu et al., 2018),
grasshopper optimization algorithm (GOA) (Fathy, 2018),
butterfly optimization algorithm (BOA) (Fathy, 2020), artificial

ecosystem-based optimization (AEO) (Yousri et al., 2020) and
so forth.

However, existing researches take little account of the
combination of PV array reconfiguration and power grid
frequency regulation (FR) (Xi et al., 2018), nor do they take
the power fluctuation balance of energy storage system (ESS) (Jin
et al., 2017; Zhou et al., 2021) into consideration. Hence, this work
proposes a novel technique of PV array associating power grid
FR, to promote the dynamic-response performance of the entire
regional power grid.

Given the confliction between power outputs maximization
and minimizing FR signals’ deviation from the output power, this
work employs the efficient multi-objective Harris hawks
optimization (MHHO) to obtain the Pareto front promptly,
then Visekriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) strategy is adopted to determine the optimum
compromising solution based on aforementioned Pareto front.

MATHEMATICAL MODEL OF PV-STORAGE
POWER STATION RECONFIGURATION

Modeling of PV Array
Each PV module is formed by multiple of PV cell strings
connected in parallel, while PV array is comprised of several
PV modules connected in series and parallel. Accordingly,
multiple PV arrays make up a PV system. The most
frequently employed model is the single diode PV cell model
(Jacob et al., 2015; Humada et al., 2016; Yang et al., 2020b),
illustrated as Figure 1A.

FIGURE 1 | (A) Equivalent circuit of single diode PV cell and (B)
equivalent circuit of a PV component with Ns × Np modules.
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Calculated by Kirchhoff’s Current Law (KCL), the operation
current of PV cell Icell is given below:

Icell � ILight − Id − Ish (1)

where ILight denotes the photo-generated current; Id is the current
of diode; Ish represents the current of shunt resistor.

By replacing the Id and Ish, the Eq. 1 can be rewritten as
Eq. (2).

Icell � ILight − Io[exp(qVcell + IcellRs

BσTc
− 1)] − Vcell + IcellRs

Rsh
(2)

where Io and q denote the leakage current and electronic charge
of the diode, respectively; Tc, Vcell, Rsh, Rs, σ and B are the
operation temperature and voltage, shunt and series resistance of
PV cells, ideality factor and Boltzmann’s constant.

The output current Im of one PV module comprised of ns PV
cells in series can be calculated as follows:

Im � ILight − Io[exp(qVm + ImRS

nsbσTc
− 1)] − Vm + ImRS

RSH
(3)

where Im denotes the PV module current output; Vm represents
the operation voltage of PV module; RSH and RS separately refer
to the parallel and series resistor of PV module.

Moreover, ILight represents the photo-generated current of PV
module which is caused by photoelectric effect, and its formula is
given below:

ILight � G

G0
[Istc + Ksc(Tc − T0)] (4)

where G and G0, Istc, Tc and T0, Ksc represent the actual and
reference irradiance, the photo-generated current under standard
environment condition, the operating and standard temperature,
and the short-circuit current factor, respectively.

Thus, as demonstrated in Figure 1B, it can be further deduced
the output current Ia of the PV component formed by Ns×Np PV
modules can be described as:

Ia � NpIL −NpIo⎡⎢⎢⎣exp⎛⎝q
Va + Ns

Np
IaRS

NsnsbσTc
− 1⎞⎠⎤⎥⎥⎦ − Va + Ns

Np
IaRS

Ns
Np
RSH

(5)

where Va and Ia respectively refer to the operation current and
operation voltage of PV components.

Modeling of PV Array in TCT Structure
Because of the better stability of TCT topology under PSC, it
is widely applied to the theoretical research of PV
reconfiguration (Bingöl and Özkaya, 2018). As depicted in
Figure 2, the 9 × 9 PV array is connected in TCT
configuration, the output voltage and current of which can
be calculated by:

VS � ∑9

i�1 Vai (6)

IS � ∑9

j�0(Iij − I(i+1)j) � 0, i � 0, 1, 2, . . . , 8 (7)

where VS represents the entire voltage of PV system; Vai

represents the row voltage at the i th row; IS represents the
entire current; and Iij is the flowing current at the i th row and the
j th column.

Optimization Objective
This work features two sets of assignments: one is to reduce the
power deviation y1 of real PV power generation average value
from the rated PV power; while the other aims to minimize
average value y2 of the power difference between the outputs of
PV station and FR signals. Meanwhile, the peak-to-valley
deviation of the power curve is taken into consideration to
control its fluctuation. In consequence the proposed objective
function can be computed as follows:

minf1 � Prate
pv − 1

T
∑

t∈T
Ppv(t)

minf2 � 1
T
∑

t∈T

∣∣∣∣PFR(t) − [Ppv(t) − PESS(t)]∣∣∣∣
+max

t∈T
[Ppv(t) − PESS(t)] −min

t∈T
[Ppv(t) − PESS(t)]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where Prate
pv represents the rated output power of PV plant; T

denotes the duration of FR; Ppv(t), PESS(t), PFR(t) respectively
denote the generated power of the PV station with ESS, the charging
power of ESS, and the FR signals in the t th control time period.

Constraint Condition
Each PVmodule can only switch to other row in the same column
to reconfigure PV system via switching matrix, which is called
constraint condition of the electrical switch states.

FIGURE 2 | One 9 × 9 TCT array in a PV station.
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The power and capability constraints should be satisfied in the
ESS, shown as follows:

Pmin
ESS ≤PESS(t)≤Pmax

ESS , t ∈ T (9)

SOCmin
ESS ≤ SOCESS(t)≤ SOCmax

ESS , t ∈ T (10)

SOCESS(t) � { SOCESS(t − 1) + PESS(t) · Δt · ηch/EESS, if PESS(t)≥ 0
SOCESS(t − 1) + PESS(t) · Δt/(ηdis · EESS), otherwise

(11)

where Pmax
ESS , Pmin

ESS , SOCmax
ESS , SOCmin

ESS severally represent the
maximum and minimum charging power, and the maximum,
minimum state of charge (SOC) of ESS; ηch and ηdis are the
charging and discharging efficiency; Δt denotes the control
period; and EEss denotes the rated capacity of ESS.

OPTIMIZATION FOR PV-STORAGE
STATION RECONFIGURATION BASED ON
MHHO AND VIKOR
Design of MHHO
MHHO simulates the cooperation mechanism and pounce style
in the hunting of Harris hawk’s predation. The purpose of this
research is to integrate the non-dominated rank sorting with
MHHO, evolving into a multi-objective optimization algorithm.

Exploration Stage of MHHO
In MHHO, the Harris hawks can be seen as the candidate
solution, and in each iteration process the optimal solution is
considered as the prey. Harris hawks apply two types of
inhabitation tactics with equally mathematical probability, the
specific model of which is demonstrated as follows:

X(t + 1) � Xrand(t) − r1|Xrand(t) − 2r2X(t) | q≥ 0.5
(Xprey(t) −Xm(t))r3(Xrandt) − r3Ub − Lb) q< 0.5{

(12)

where X(t + 1) and X(t) respectively denote the hawk’s position
vector in the next iteration and in the present; Xprey(t) is the
position vector of the prey; r1, r2, r3, q are random numbers
between 0 and 1; Ub and Lb represent search bounds; Xrand(t)
denotes the stochastic individual in the present population; and
Xm(t) denotes the population’s average position vector.

Exploitation Stage of MHHO
The flock of hawks round up the prey softly or strongly from all
directions by tracing the left escape energy of prey. MHHO
algorithm introduces the parameter of E: the flock performs
soft besiegement based on Eq. 13, 14 if |E| < 0.5, otherwise
the hard encirclement would be executed based on Eq. 15.

X(t + 1) � ΔX(t) − E × ∣∣∣∣JXprey(t) −X(t)∣∣∣∣ (13)

ΔX(t) � Xprey(t) −X(t) (14)

where J � 2(1 − r5), and J represents the prey’s leaping distance
when they act on escaping; and r5 is a digit randomly generated
by the computer between 0 and 1.

X(t + 1) � Xprey(t) − E
∣∣∣∣ΔX(t)∣∣∣∣ (15)

Multi-Objective Non-dominated Sorting and Archive
Management
MHHO selects an optimal Pareto front via non-dominated rank
sorting, then introduces archive management to control Pareto
solutions.

When a new solution is created, it is to be compared with the
ones in the archive. Were it dominated by those, the new solution
would not be collected into archive; Were a few individuals in the
archive dominated by new solution, those would be replaced by
the new one; if it is none of the above, this new solution would
also be collected. Additionally, when the quantity of solutions
exceeds the archive’ capacity, the roulette shall roll out the more
crowded solutions.

Fitness Function
On the basis of the penalty function technique, the fitness
function of MHHO is calculated by Eqs 16, 17.

⎧⎪⎨⎪⎩ g1 � f1 +∑
t∈T

Pe(t)
g2 � f2 +∑

t∈T
Pe(t) (16)

Pe(t) � {ϕ, if violated
0, otherwise

(17)

TABLE 1 | The procedure pseudocode of MHHO for PV station array
reconfiguration.

1: Input: Condition of the real-time weather forecast
2: Initialize the parameters of MHHO and VIKOR
3: Initialize the population (Npop) of MHHO
4: Set i � 1
5: For i ≤ Maxitera
6: Calculate the fitness of all individuals via Eqs. 1-8, 16, 17
7: Sort all the solutions by non-dominated way, and calculate crowding degree
8: Update Pareto solutions in the archive
9: Update the position of the solutions based on Eqs 12–15
10: Update the solutions of all agents
11: Set i � i+1
12: End
13: Output: the optimal Pareto front
14: Select the optimal compromise solution via VIKOR decision-making method
given in Eqs 18–25
15: Re-execute step 1–14 above in the next control period

TABLE 2 | Specific parameter settings of PV modules.

Settings Values

Amount of parallel PV module strings 10
Amount of series PV modules for each string 5
Amount of the PV cells of a single PV module 60
Maximum power of a single PV module 200.039 W
Open circuit voltage of a single PV module 36 V
Short circuit current of a single PV module 7.75 A
Voltage of single PV module at maximum power point 28.7 V
Current of single PV module at maximum power point 6.97 A
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where Pe(t) denotes the penalty part of the restraint conditions in
Eq. 10 in the t th dispatching period of FR signals; and ϕ denotes
the penalty factor that usually employs a large positive number.

Design of VIKOR
The optimal compromise solution can be impersonally chosen by
VIKOR (Lin et al., 2021) decision-making approach from the

A

B

C

FIGURE 3 | Irradiance distribution of PV array before and after reconfiguration: (A) shadow distribution for every sub-system of PV station with ESS, (B) optimal
shadow distribution under constant FR signals obtained by MHHO and (C) optimal shadow distribution under time-varying FR signals obtained by MHHO.
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Pareto front solutions obtained by MHHO, the design process of
which is elaborated below:

Step 1: Define the plus-minus ideal solutions on the basis of
the obtained Pareto front, as given:

{ v+ � {v+1 , v+2 }
v− � {v−1 , v−2 } (18)

⎧⎪⎨⎪⎩
v+j � min

i�1,2,...,n
vij, j � 1, 2;

v−j � max
i�1,2,...,n

vij, j � 1, 2;
(19)

where vij is the corresponding i th Pareto numerical solution of
the j th objective function; and v+ and v− respectively represent
the plus and minus perfect solutions.

Step 2: Calculate the values of the cluster effect and single
regret:

Ui � ∑
j�1,2 φj

v+j − vij
v+j − v−j

, i � 1, 2, . . . , n (20)

Ri � max
j�1,2(φj

v+j − vij
v+j − v−j

), i � 1, 2, . . . , n (21)

where φj is the weighting factor of the j th objective function; and
Ui, Ri denote the cluster effect value and single regret value
corresponding to i th Pareto front solution, separately.

Step 3: Determine the integrated valuation of all the Pareto
front solutions:

Qi � c · Ui − U+

U− − U+ + (1 − c) · Ri − R+

R− − R+, i � 1, 2, . . . , n (22)

⎧⎨⎩ U+ � min
i�1,2,...,n

Ui

U− � max
i�1,2,...,n

Ui
(23)

⎧⎨⎩ R+ � min
i�1,2,...,n

Ri

R− � max
i�1,2,...,n

Ri
(24)

where c means the weighting factor of the cluster effect value; Qi

denotes the integrated valuation value of the i th Pareto front
solution; U+, U− denote the minimum and maximum values of
cluster effect; and R+, R− represent the minimum and maximum
values of single regret.

Step 4: Find the optimal eclectic solution on the basis of
integrated valuation value, as follows:

xopti � arg min
i�1,2,...,n

Qi(xpi ) (25)

where xpi represents the i th Pareto solution; xopti is the optimal
eclectic solution.

Procedure Steps
With regard to the PV station array reconfiguration, the procedure
that MHHO executes is demonstrated in the following Table 1.

TABLE 3 | Main parameters of ESS.

Pmin
ESS (MW) Pmax

ESS (MW) EESS (MW·h) SOCESS(t= 0) SOCmin
ESS SOCmax

ESS ηch ηdis

−5 5 15 50% 20% 90% 0.95 0.95

FIGURE 4 | The optimal solution and the comparison between the
optimized results and original ones for constant FR signals test: (A) Pareto
front obtained by MHHO and optimal compromise solution by VIKOR, (B)
output results responding to FR signals, (C) power output curve of PV
power station before and after optimization and (d) comparison of optimized
power deviation with those of the original.
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CASE STUDIES

The simulation experiment conducted herein designs a
40 MW PV power plant comprised of 50 identical 9 × 9 sub-
systems, to test the MHHO performance in the experiment of PV

power plant’ response to FR signals. The parameters of the sub-
systems are derived from literature (Zhang et al., 2021b), and the
specific parameter settings of PVmodule are tabulated in Table 2.
This work supposes all PV arrays’ operation temperature to be at
25°C, and the shadow distribution of each sub-system to be
consistent. Figure 3A illustrates sub-system’s shadow
distribution in 10 min, while Table 3 gives the main
parameters of ESS.

The number of agents (Npop) is 200. Meanwhile the
termination number of iterations (Maxitera) is set as 100.
Moreover, all of the weighting factor in VIKOR are set as:
φj � 0.5. All simulation tests are conducted on Matlab R2019b.

Constant FR Signals
To testify the effectiveness of the proposed algorithm under the
constant FR signals, the constant FR signals are designed as
follows:

PFR(t) � 35MW (26)

The shadow distribution of PV array after reconfiguration
under constant FR signals is depicted in Figure 3B. Obviously,
MHHO commendably disperse the originally-centralized shadow
to the whole array. Meanwhile, the optimal compromise and
eclectic solution obtained by VIKOR exhibits more balance
among two objectives than other Pareto front solutions, as it
is shown in Figure 4A. In particular, the results of optimal eclectic
solution are: the power deviation between the average generated
power of PV array and the rated value is 9.128MW; the average
power deviation between the output power of PV-storage station
and constant FR signals is 2.903MW.

Figure 4B illustrates the output power with optimization
under constant FR signals of PV array, PV power plant, and
ESS. With the help of ESS, the output power of PV plant is higher
than that without optimization and gets closer to FR signal. The
power outputs of PV power plant before and after optimization
are given in Figure 4C and Figure 4D. After optimization by the
proposed method, the objective f1 drops sharply by 25.11%, while
the objective f2 drops by 75.76%. In addition, the output power
with optimization experiences less power fluctuation.

Time-Varying FR Signals
The time-varying FR signals are designed to testify the effect of
the proposed approach under the condition of it, as follows:

PFR(t) �
⎧⎪⎨⎪⎩

36, 0min≤ t< 3min
32, 4min≤ t< 7min
35, 7min≤ t< 10min

(27)

Figure 3C shows the irradiation distribution of PV array after
reconfiguration under time-varying FR signals, of which the
shadow distribution is more uniform compared to that
without optimization. In the meantime, the compromise
solution obtained by VIKOR shows better equilibrium among
multiple targets than other Pareto front solutions, as
demonstrated in Figure 5A. Particularly, the results of optimal
compromise solution are: the power deviation between the
average generated power of PV array and the rated value is

FIGURE 5 | The optimal solution and the comparison between the
optimized results and original ones for time-varying FR signals test: (a) Pareto
front obtained by MHHO and optimal compromise solution by VIKOR, (b)
output results responding to FR signals, (c) power output curve of PV
power station before and after optimization and (d) comparison of optimized
power deviation with those of the original.
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9.353MW; the average power deviation between the output power
of PV-storage station and constant FR signals is 4.708MW.

Figure 5B depicts the output power with optimization of PV
array, PV power plant, and ESS. It can be deduced that due to the
coordination of ESS, the output power of PV plant gets closer to
FR signal. Figures 5C, D gives the results of PV power plant’s
power output before and after optimization. After optimization
by the proposed method, the general deviation between the
output power of PV plant and FR signals drops sharply by
55.81%, while the power deviation between the PV plant
output power and rated power drops by 23.27%. Compared
with constant FR signals, the optimization effect of objective f2
slightly drops while that of objective f1 is close. And the possible
reason is that time-varying FR signals are more complicated.
Also, the output power with optimization experiences less power
fluctuation.

CONCLUSIONS AND PERSPECTIVES

Founded on PV array reconfiguration, a new technique of PV
station participating grid FR is presented in this work. The
proposed technique contributes to effective power response
of PV plant to FR signals, and is consequently conducive
to improving the frequency stability of the regional grid.
The main contributions of this work are summed up as
follows:

1) Not only can the proposed MHHO algorithm optimize two
conflicted objectives simultaneously, but reconfigure PV array
for FR expeditiously. Moreover, MHHO can find a series of
solutions that fit simultaneously two objectives to meet the
different dispatch needs;

2) To entail the balance of each objective function, VIKOR
decision-making technique is adopted to select the optimal
eclectic solution, which gives a guarantee of the balance
between PV power station’s economical operation and its
security;

3) By virtue of the proposed method of PV array reconfiguration
coordinated with ESS, the PV station is able to track the
maximum power point as possible under any irradiance
distribution, reducing the abandoned solar energy. In the
meanwhile, the proposed method increases both economic
benefit and security of the PV station.

However, it needs many independent runs to find the optimal
solution due to the high randomness and local convergence of
MHHO. Moreover, the implementation of ESS increase the cost
of FR response. In addition, the proposed strategy cannot work in
the condition of no shadow. Besides, The future work will focus
on the following perspectives:

• Except for simulation test, hardware-in-the-loop (HIL)
experiments should be performed to examine the
practical effect of proposed method;

• More studies on larger scales of PV array are urgent to
testify the universal applicability of proposed approach.

• Weighting parameters are difficult to adjust which
significantly affect the convergence speed of meta-
heuristic algorithms and the spatial distribution of the
optimal solution and hence deserve deeper research;

• In addition to meta-heuristic algorithms, hybrid algorithm
and AI algorithm should be applied in this field of PV array
reconfiguration participating grid FR;

• In addition to VIKOR, more attention should be paid to
other decision-making technique to find more reasonable
compromise solution.
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