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As one of the main components in biomass, lignin plays a vital role in the biorefinery
industry. Its unique structural feature increases the dose of cellulases during
enzymatic deconstruction and is an attractive resource for many high valued
products. The inhibition of lignin on cellulases is proposed to occur in several
ways, with the most studied being nonproductive enzyme binding, which is
attributed to hydrogen bonding, hydrophobic and/or electrostatic interactions. This
review provides a comprehensive review of how lignin is transformed during various
pretreatment methods as well as how these changes impact the cellulases inhibition.
Future pretreatment directions for decreased cellulases inhibition are also proposed.
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1 INTRODUCTION

Due to the depletion of fossil fuels, environmental and energy security concerns, alternative
renewable energy from biomass has attracted intensive attention worldwide (Ragauskas et al.,
2014; Cole-Hamilton, 2020). Cellulose, hemicellulose, and lignin are the three main
components in biomass (Wörmeyer et al., 2011). Cellulose and hemicellulose can be
hydrolyzed to glucose or xylose which can be subsequently fermented by yeast or bacteria
to yield various types of liquid fuel (e.g., ethanol and butanol). Lignin, a polymer comprised of
cross-linked phenylpropane units, contributes to several biomass features, including
hydrophobicity, structural rigidity, and microbial resistance to plant cell walls (Saini et al.,
2016). Typically, biofuels production from lignocellulosics mainly consists of three key
steps: namely biomass pretreatment, enzymatic hydrolysis/saccharification, and fermentation.

However, it has been found that lignin adversely impacts enzymatic hydrolysis, resulting in
an increased dose of cellulases, which accounts for almost half of bioethanol cost (Luterbacher
et al., 2014). It was suggested that ideal pretreatments should maximize lignin removal and
minimize polysaccharide modification (Ding et al., 2012). Therefore, how to decrease the
inhibitory effect of lignin on cellulases becomes one of the major challenges in biofuels
production for assorted bioresources. To mitigate the adverse effects of lignin and
fundamentally decrease the overall cost of biofuel, how lignin impacts cellulases
performance during enzymatic hydrolysis needs to be understood and has been extensively
explored.
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1.1 Structural Features of Lignin
Lignin is a heterogeneous macromolecular polymer composed of
guaiacyl (G), syringyl (S), and/or p-hydroxyphenyl (H), which are
connected by carbon-carbon and aryl ether interunit linkages.
Depending on the plant species, the contents of lignin and its G, S,
and H units vary significantly. As shown in Table 1, softwoods,
such as pine, contain ∼28% lignin, which mainly consists of G
units. Lignin from hardwoods (i.e., poplar and eucalyptus)
comprises both of G and S units and accounts for 21–32% of
the plant cell wall. Besides G and S units, lignin from herbaceous
species (i.e., miscanthus, switchgrass, and corn stover) also
contains small amounts of H units. This latter bioresource
contains the least amount of lignin, typically less than 20%.

The common interunit linkages in lignin include β-O-4, β-5,
β-β′, β-1, and 5-5′/4-O-β′, as depicted in Figure 1. As shown by
earlier researchers, the β-O-4 linkage is the dominant interunit
linkage in lignin and its presence in “natural levels” indicates the
intactness of native lignin. The remaining key interunit linkages
include phenylcoumaran (β-5), resinols (β-β′), and
dibenzodioxocin (5-5′/4-O-β′) and spirodienone (β-1).

1.2 Cellulases-Lignin Interactions During
Enzymatic Hydrolysis Process
The interaction between lignin and cellulases is very complicated.
The most focused research area is lignin-derived inhibition,

which has been proposed to occur in three ways: (I) physical
barrier, (II) nonproductive binding, and (III) deactivation of
enzymes by lignin fragments of small molecular weight, as
shown in Figure 2.

1.2.1 Lignin’s Physical Barrier Properties
Lignin can block the access of enzymes to cellulose as a physical
barrier, which is one of the main reasons for the low glucose yield
from the enzymatic hydrolysis of native biomass. Earlier studies
supported the hypothesis that lignin extraction and deposition
during hydrothermal pretreatment might decreased the
enzymatic hydrolysis rate over time (Selig et al., 2007;
Donohoe et al., 2008; Hansen et al., 2011). In a series of
studies, Lai et al. demonstrated that these solvent extractable
lignin droplets from ethanol organosolv pretreatment could also
have positive effect on enzymatic hydrolysis (Lai et al., 2018b). A
micro-spectroscopic approach combining stimulated Raman
scattering microscopy and fluorescence lifetime imaging
microscopy was employed to understand the roles lignin play
in biomass recalcitrance after maleic acid pretreatment (Zeng
et al., 2015). Results showed that both dense lignin droplets and
loosely packed lignin droplets were formed (Figure 3). Li and his
coworkers found that lignin droplets relocated onto the Avicel
surface after hydrothermal pretreatment of a mixture of Avicel
cellulose and poplar wood as a lignin source, significantly
inhibited cellulose hydrolysis (Li et al., 2014). Similarly,
researchers also found that after liquid hot water pretreatment,
spherical droplets appeared on the surface and in the corners of
the disrupted cell walls, which might act as a physical barrier
inhibiting the access of enzymes to the inner region of cell walls
(Donohoe et al., 2008; Ko et al., 2015b; Wang et al., 2015b). The
removal of droplets by 1, 4-dioxane extraction was shown to
increase the glucose yield from cellulases treatment from 16.3 to
23.0% (He et al., 2020a). Recently, THF-water co-solvent system
with dilute sulfuric acid was applied to solubilize redeposited
lignin and overcome the limitations of traditional dilute sulfuric
acid pretreatment. It was suggested that this co-solvent could

TABLE 1 | Typical biomass constituents for select plant resources (Ragauskas
et al., 2014).

Plant resource Cellulose % Hemicellulose % Lignin %

Miscanthus 45–52 24–33 9–13
Switchgrass 37–42 26–33 17–18
Corn stover 37 31 18
Poplar 42–48 16–22 21–27
Eucalyptus 39–46 24–28 29–32
Pine 46 23 28

FIGURE 1 | Typical hardwood lignin structure (Li M. et al., 2016).
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prevent lignin redeposition onto the biomass surface and prolong
cellulases activity (Patri et al., 2021).

Microscopic analysis showed that after autohydrolysis
pretreatment, lignin from Eucalyptus globulus migrates out of
the cell wall and redeposits in certain regions of the fibers to form
droplet-like structures. The authors reported that the regions of
the cell wall adjacent to the coalesced lignin appear to open and
improved the accessibility of cellulose to enzymes (Araya et al.,
2015). Another study using a lime pretreatment showed that tiny

droplets were formed on the sweet sorghum bagasse surface,
which could increase cellulose conversion rate and at the same
time reduce carbohydrates loss by forming a complex with lignin
and calcium ions (Yan et al., 2015). The inconsistency of the
obtained results indicated that the fundamentals behind the
impact of lignin droplets on cellulose accessibility are still not
fully understood, and more studies are needed to clarify the
mechanisms.

1.2.2 Nonproductive Binding of Lignin to Cellulases
The nonproductive binding of cellulases to lignin has attracted
much attention recently. This binding effect has been attributed
to hydrophobic interactions, electrostatic forces, and/or hydrogen
bonding. Hydrophobic interactions were reported to be the
dominant driving force in cellulases binding to lignin, which
was revealed by atomic force microscopy between specialized tips
with hydrophobic, -OH, and -COOH groups, and immobilized
cellulases (Qin et al., 2014). Lignin is more hydrophobic than any
other major component in biomass (Hodgson and Berg, 1988). It
was found that proteins could be adsorbed at the hydrophobic
surfaces of lignin (Saini et al., 2016). A study on cellulases
adsorption to different lignin preparations correlated
carboxylic acid groups in lignin and cellulases adsorption.
They suggested that the carboxylic acid content could impact
the hydrophilicity of the lignin, which in turn affects the
nonproductive binding of the cellulases to lignin (Pareek et al.,
2013). By investigating the association of aspen lignins after
hydrothermal pretreatment at various pretreatment severities
with cellulases binding, Sun and his coworkers found that the
condensed aromatic rings enhanced the hydrophobic interactions
between lignin and cellulases, which are mainly responsible for

FIGURE 2 | Inhibition of cellulases by lignin. (A) Nonproductive adsorption of cellulases onto lignin, (B) Physical blockage of cellulases progress on lignocellulose
chain, (C) enzyme inhibition due to soluble lignin-derived compounds cellulases (Saini et al., 2016).

FIGURE 3 | Formation of dense lignin droplets and loosely packed lignin
droplets during maleic acid pretreatment (Zeng et al., 2015).
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the inhibitory effect of lignin on cellulases (Sun et al., 2016). Other
studies also obtained similar results (Yu et al., 2014; Ko et al.,
2015a; Yao et al., 2018a).

Previous studies found that hydrogen bonding was another
major driving force for cellulases adsorption onto lignin. These
studies indicated that hydroxyl groups in lignin, especially
phenolic OH, played an essential role in cellulases-lignin
interaction (Pan, 2008). Many other researchers later
confirmed this hypothesis (Yu et al., 2014; Sun et al., 2016;
Yao et al., 2017). It was found that hydroxypropylation of
phenolic OH could reduce the negative inhibitory effect of
lignin on cellulases (Yang and Pan, 2016). Similarly, pretreated
biomass with decreased phenolic OH contributed to an increased
digestibility of biomass (Mou and Wu, 2017). All these results
support the hypothesis that hydrogen bonding plays a vital role in
the nonproductive binding of cellulases to lignin.

The isoelectric point (pI) is a unique feature to each
enzyme which is defined as the pH at which the overall net
charge is zero. When the solution pH is above the pI, the
overall charge of the enzyme is negative, and vice versa.
Cellulases and lignin will bind together if they possess
opposite charges by electrostatic interactions. At pH 4.8,
which is the typical optimum pH of cellulases, lignin
showed a negative zeta potential, and cellulases (such as
Cel6A and Cel5A) were positively charged (Saini et al.,
2016; Yang et al., 2020) while others (such as Cel7A and
Cel7B) were negatively charged (Lai et al., 2018b). Thus,
depends on the pH and the types of enzymes, there could
be either attractive or repulsive forces between cellulase and
lignin substrates. A study on the Trichoderma reesei cellulases
cocktail and lignin showed that electrostatic interactions
contributed to cellulases adsorption, and their effect was
most pronounced for β-glucosidase from T. reesei (Ko
et al., 2015a). An elevated pH in the cellulases hydrolysis
process could significantly reduce the nonspecific binding of
cellulases to lignin residues after various pretreatment (Lou
et al., 2013). However, some studies in the literature report
that electrostatic interactions were not significantly involved
in the cellulases lignin interactions (Lou et al., 2013; Yang
et al., 2020) which suggests further investigations are needed
on this aspect.

1.2.3 Deactivation of Cellulases by Lignin-Derived
Phenolic Compounds
As pretreatment is a necessary step to reduce the recalcitrance
of biomass, lignin-derived phenolic compounds formed
during pretreatment are nearly universal in the hydrolysate
of pretreated lignocellulosic biomass. These soluble lignin
derivatives could influence the performances of cellulases
enzymes and fermentation yeast. The impacts of phenolics
on yeast include damage to internal proteins structures, a
decrease in cell growth, and changes in cell morphology
(Fitzgerald et al., 2004). Studies showed that the properties
of generated phenolics were significantly affected by the
applied pretreatment technologies.

It has been confirmed that the phenols could inhibit cellulose
hydrolysis. The rate of cellulose hydrolysis reduces by 50% by

adding 8 mg vanillin per FPU (Ximenes et al., 2010). Toxic and
inhibitory compounds vary with applied pretreatment. Phenolics
were identified as the most inhibitory components, which
decreased the rate and extent of cellulose hydrolysis by half
due to both inhibition and precipitation of the enzymes (Kim
et al., 2011). The different influence of various phenolic
compounds on cellulases and yeast might be due to the
incorporation of amide group in phenolics which are formed
during AFEX pretreatment process (Chen et al., 2020). Inhibition
of different phenolics compounds on cellulases has been studied
by Qin and his coauthors (Qin et al., 2016). It was found that
phenolics compounds with aldehyde and ketone group exhibited
a more inhibitory effect on cellulases than those with phenol and
carboxyl group. In addition, the carbonyl group and methoxy
group in phenolics also exhibited inhibition toward enzyme
activity, as shown in Figure 4 (Qin et al., 2016). The effects of
three phenolic acids on the structure of cellulases were also
investigated. It was indicated that the addition of the phenolic
acids (i.e., ferulic acid, p-coumaric acid, and salicylic acid)
significantly changed the secondary structure of cellulases by
decreasing α-helix content, increasing β-sheet and random coil
contents (Tian et al., 2013), which accounted for the decreased
enzyme activity. Although lignin-derived phenolic compounds
play negative effect on cellulases, as the hydrolysates have been
separated from pretreated substrates, it may not affect the
enzymatic hydrolysis process in some cases.

Most research studies have focused on the three lignin-enzyme
interactions mentioned above, but not all three interactions were
included in each enzyme adsorption mechanism study, as
summarized in Table 2. In recent years, intriguing studies
have shown that pretreated lignin from certain plant cell wall
locations or with certain physicochemical properties could have a
positive effect on the enzymatic hydrolysis process. For example,
hardwood organosolv lignin was reported to enhance the
enzymatic hydrolysis, while softwood organosolv lignin played
a traditional negative role (Lai et al., 2014). Similarly, solvent
extractable lignin and the residual bulk lignin also demonstrated
distinct roles (Lai et al., 2015). Enhanced sugar release during
hydrolysis was also reported by incorporating sulfonate groups
(Wang et al., 2013a; Wang et al., 2013b; Zhou et al., 2013) and
acid groups (Wu et al., 2011) onto the lignin during the biomass
pretreatment step. Finally, Huang et al. concluded that the exact
effect of lignin on enzymatic hydrolysis is a function of both
inhibitive hydrophobic interactions and the stimulative
electrostatic repulsions, which are controlled by lignin
hydrophobicity and surface charges, respectively (Huang et al.,
2017).

Although years of research on lignin-enzyme adsorption study
has focused on using lignin model compound or modifying lignin
structure in order to build the “structure-function” relationship,
the relative contribution of each individual factors on lignin-
enzyme interaction is still unknow. This is mainly due to the
difficulty of differentiating each driving forces and the lack of
analytical techniques that could be used to directly measure these
factors (Li and Zheng, 2017). For example, phenolic OH group
from lignin has been proposed to contribute significantly to the
hydrophobic interactions; however, these OH groups also affect
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FIGURE 4 | Apparent inhibitions of different phenolic compounds on cellulases (Qin et al., 2016) Note: names and structures with the same number refer to the
same phenolic compounds.

TABLE 2 | Mechanisms of nonproductive cellulases adsorption to lignin.

Cellulases Lignin Adsorption conditions Concluded mechanism References

Celluclast 1.5 L,
Novozyme 188

alkali lignin, hydrolytic lignin, organosolv lignin,
lignosulphonate acid sodium salt

pH 4.8, at temperatures of 4°C
and 45°C

hydrophobic interactions Pareek et al.
(2013)

Cellulase C2730 Isolated from hot water hydrothermal pretreated
aspen

2% (w/w) lignin at 4°C and 150 rpm
for 2 h

Hydrophobic interactions,
hydrogen bonding

Sun et al. (2016)

T. reesei β-glucosidase liquid hot water pretreated mixed hardwood
chips

pH 4.8, at 25°C for 1.5 h Electrostatic interactions Ko et al. (2015a)

Cellobiohydrolase I,
endocellulase E1, eno-1,4--
xylanase

Extracted from switchgrass pretreated by methyl
isobutyl ketone, ethanol, water (16/34/50 w/w/
w), 0.1 M sulfuric acid at 160°C

1 mg/ml of lignin, flowing enzyme
solution at 0.1 ml/min

Hydrophobic interactions,
electrostatic interactions

Sammond et al.
(2014)

Trichoderma reesei, ATCC
26921

water-soluble, low sulfonate kraft lignin (MW �
10,000)

0.10 mg/ml Celluclast at room
temperature in pH 4.8

hydrophobic interaction Qin et al. (2014)

Cellic CTec2, CellulaseC2730 Ethanol organosolv lignin isolated from
organosolv pretreatment of cottonwood, black
willow, aspen, eucalyptus, and loblolly pine

2% (w/v) EOL lignins in 0.05 M
citrate buffer (pH 4.8), at 4°C and
150 rpm for 3 h

Hydrophobic interactions
and electrostatic interactions

Huang et al.
(2017)

Trichoderma longibrachiatum
cellobiohydrolase

lignin isolated from dilute acid pretreated
Broussonetia papyrifera

lignins (2%, w/v) in acetate buffer
(50 mM, pH 4.8) at 50°C for 4 h

hydrogen bonding Yao et al. (2017)

Trichoderma longibrachiatum
cellobiohydrolase

lignin isolated from dilute acid pretreated poplar lignin samples (2%, w/v), pH
4.8 at 50°C

hydrophobic interactions Yao et al.
(2018a)

Celluclast 1.5 L and
β-glucosidase

enzymatic residual lignin treated with dilute
sulfuric acid at different severities

lignin (1%, w/v), at 4°C for 1 h hydrophobic interactions Wang et al.
(2020a)

Celluclast 1.5 L and
β-glucosidase

enzymatic residual lignin treated with sodium
hydroxide at different severities

lignin (1%, w/v) at pH 5.0 and 50°C Hydrophobic interactions
and electrostatic interactions

Wang et al.
(2020b)

(Continued on following page)

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 8040865

Yao et al. Role of Lignin in Biorefining

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


lignin’s hydrogen bonding ability which is difficult to measure
directly. Additional work is much needed to resolve these
challenges.

2 FACTORS INFLUENCING
LIGNIN-CELLULASES INTERACTIONS
FROM A LIGNIN PERSPECTIVE

2.1 Lignin Transformation During
Pretreatment and Its Effect on Cellulases
Interaction
2.1.1 Dilute Acid Pretreatment
Dilute acid pretreatment is a widely studied pretreatment
method which typically exhibits limited delignification.
Studies showed that the inhibitory effect of lignin from DA
pretreated biomass was more significant than the untreated one
(Xu et al., 2020). It is well known that both polymerization
and depolymerization can happen during acid-catalyzed
pretreatment (Schutyser et al., 2018; Yang et al., 2020).
During DA pretreatment, lignin has been reported to be

significantly depolymerized by acid catalyzed hydrolysis of
β-O-4 linkages as reported in several earlier studies
(Lundquist et al., 1972; Karlsson et al., 1988). Usually, the
molecular weight of lignin after DA pretreatment was
decreased (Yang et al., 2020), and the lower molecular weight
favored CBH (Cellobiohydrolase I) adsorption to lignin (Yao
et al., 2018a). Poplar lignin was only partially degraded after DA
pretreatment at 170°C for 8 min using 0.5% H2SO4 as catalyst
(Hu et al., 2013). Structural analysis of milled wood lignin from
switchgrass after DA pretreatment showed that the β-O-4, β–β,
β-5 linkages, and syringyl units were all decreased (Samuel et al.,
2010). By comparing four different pretreatment methods
(including dilute sulfuric acid, sodium hydroxide, ethanol,
hot liquid water) on the structural features of residual lignin
and their impact on cellulases, the results indicated that dilute
sulfuric acid pretreated lignin showed the maximum adsorption
capacity to cellulases (Xu et al., 2020). The reason might due to
the lowest negative zeta potential of residual lignin after dilute
sulfuric acid pretreatment.

The condensation reaction is another important lignin
transformation during DA pretreatment (Samuel et al., 2010;
Imai et al., 2011; Cao et al., 2012; Moxley et al., 2012; Pu et al.,

FIGURE 5 | Acid-catalyzed lignin chemistry (Schutyser et al., 2018).

TABLE 2 | (Continued) Mechanisms of nonproductive cellulases adsorption to lignin.

Cellulases Lignin Adsorption conditions Concluded mechanism References

CBH and BGL from Penicillium
oxalicum JU-A10-T

Milled wood lignin from untreated and LHW
pretreated corn stover

50 mM acetate buffer (pH 4.8) at
50°C for 48 h under 50 rpm

Hydrophobic interactions Lu et al. (2016)

EG and xylanase from
Penicillium oxalicum JU-A10-T

Milled wood lignin from untreated and LHW
pretreated corn stover

50 mM acetate buffer (pH 4.8) at
50 °C for 48 h under 50 rpm

electrostatic interactions Lu et al. (2016)

Cellic CTec2 lignin extracted from corn stover at room temperature for 60 min at
pH 4.8

hydrophobic and
electrostatic interactions

Yarbrough et al.
(2015)
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2013; Deuss et al., 2015; Sun et al., 2015; Ko et al., 2015b), which
could cause increased cellulases adsorption to lignin (Yao et al.,
2018a). The formation of condensed lignin process is depicted in
Figure 5. Depending on the applied acid, the formation of a
benzylic carbonium ion could be transformed into two enol ether
structures. Subsequent hydrolysis products of the acid-labile enol
ethers could participate in a complex network of
repolymerization reactions, resulting in a condensed lignin
polymer. It was found that the addition of formaldehyde
during pretreatment can partly prevent lignin condensation.
The resulting stable 1,3-dioxane structure with the 1,3-diols on
lignin side-chains could enhance the amount of uncondensed
lignin by blocking the formation of benzylic cations after
pretreatment (Shuai et al., 2016a), which was later verified by
other researchers (Zhang et al., 2021). Furthermore, 2-naphthol
and 2-naphthol-7-sulfonate additives were employed during DA
pretreatment to block lignin bridging reactions and consequently,
improved cellulases hydrolysis yield by 47.8% (Lai et al., 2018a).

Another impact of DA pretreatment on cellulases was caused
by the formation of pseudo-lignin (Wan et al., 2019), which was
shown to be more detrimental to enzymatic hydrolysis of
cellulose than residual lignin (Hu et al., 2012; He et al., 2018;
Wang and Jönsson, 2018). Several studies demonstrated that the
pseudo-lignin was a polyaromatic (i.e., lignin-like) structural
substances derived from carbohydrate degradation products
(Sannigrahi et al., 2011) which increased the Klason lignin
content after DA (Shinde et al., 2018; Wang and Jönsson,
2018). A recent study revealed that soluble lignin model
compounds could participate in pseudo-lignin’s formation
during acid pretreatment by assembling a platform of
spherical droplets (He et al., 2020b). As pseudo-lignin is

typically formed at high pretreatment severity, thus, severe
conditions should be avoided during DA pretreatment.

2.1.2 Alkaline Pretreatment
A review of the alkaline (AL) pretreatment literature indicates
that different bases (e.g., NaOH and lime) could be used in AL
pretreatment for lignin solubilization (Yang and Pan, 2016).
These kinds of AL based pretreatments are usually carried out
at lower temperature and pressure when compared with
hydrothermal pretreatments (Fang et al., 2018). NaOH-based
pretreatment could reduce biomass recalcitrance by rupturing the
linkages between lignin and polysaccharides (mainly
hemicellulose), degrading β-O-4 linkages, cleaving ester bonds,
as well as disrupting the lignin structure (Xiao et al., 2014; Yan
et al., 2015; Yang et al., 2016). Base-catalyzed cleavage of the β-O-
4 bonds in non-phenolic units has been postulated to produce an
epoxide intermediate and a phenolic unit that could be
transformed into quinone methides (Figure 6). The quinone
methide can repolymerize via the formation of a carbon-carbon
bond (Schutyser et al., 2018). Alternatively, the removal of the
terminal γ-CH2OH group could form an alkali-stable enol ether
motif and formaldehyde.

In addition to NaOH-based techniques, ammonia fiber
explosion/expansion (AFEX) is another well-known alkaline
pretreatment (Bouxin et al., 2015). Cleavage of LCC and ester
linkages during the pretreatment process could result in partial
solubilization of lignin, which is mainly composed of oligomeric
fragments, and β-O-4 bonds are typically well preserved during
the ammonia based pretreatment (Chundawat et al., 2011).

Our previous research indicated that lignin could be easily
dissolved during AL pretreatment, and the recovered lignin

FIGURE 6 | Base-catalyzed lignin chemistry (Schutyser et al., 2018).
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termed as alkaline lignin showed the least effect on cellulases
performance when compared withmilled wood lignin and Klason
lignin (Yao et al., 2012). Hydrophilic sulfonated lignin and
hydrophobic kraft lignin were compared of their effects on the
enzymatic digestibility of various pretreated biomass. The impact
of lignin addition on the enzymatic digestibility varied with both
added lignin type and the applied pretreatment methods (Wang
et al., 2015a). It was implied that the influence of lignin addition
on the enzymatic digestibility of pretreated biomass was
dependent not only on the properties of introduced lignin, but
on the residual lignin in pretreated biomass as well. By comparing
alkali lignins with different molecular weights on enzymatic
hydrolysis of lignocellulose, it was showed that the addition of
alkali lignins improved the cellulases hydrolysis, and it was
increased with increasing molecular weights of alkali lignins
(Li Y. et al., 2016). Due to the adsorption of cellulases on
alkali lignins, the filter paper activity could be enhanced.
Another study demonstrated that when kraft pine lignin was
precipitated on the surface of cellulose, a detrimental effect on the
hydrolysis performance of enzymes was noted (LiW. et al., 2018).
Kraft pine lignin with different molecular weights showed that
lignin of lower molecular weight might form a complex with
cellulases, and lignin of higher molecular weight resulted in steric
repulsions by lignin deposition on cellulose (LiW. et al., 2018). By
comparing residual lignins in acid pretreated and kraft pulped
bamboo, their extents of nonproductive enzyme adsorption were
investigated. It was found that the maximum adsorption capacity
and the inhibitory effect on enzymatic hydrolysis efficiency was
more obvious in acid pretreated lignin than kraft pulped bamboo
lignin (Huang et al., 2016), due to more hydrophobicity, phenolic
hydroxyl group, and the degree of condensation of residual lignin
after dilute acid pretreatment.

2.1.3 Organosolv Pretreatment
Organosolv (OS) pretreatment is a well-known delignification
method employing various organic solvents including acetone,
methanol, ethanol, diol, THF, and γ-Valerolactone (GVL). Lignin
could be substantially removed due to the acid catalyzed cleavage
of β-aryl ether bonds (Kangas et al., 2015) resulting in a cellulose-
rich solid residual with enhanced reactivity toward enzymes
(Zhang et al., 2016; Dong et al., 2019; Meng et al., 2020). The
advantage of OS pretreatment includes the enhanced digestibility
of pretreated biomass and the high potential valorization ability
of the obtained organosolv lignin (García et al., 2017; Sadeghifar
et al., 2017; Yao et al., 2020).

Ethanol is the most studied green solvent applied in
organosolv pretreatment. Structural analysis of lignin from
Populus after auto-catalyzed ethanol organosolv pretreatment
indicated that part of the β-O-4′ linkages were cleaved
whereas, β-β′ and β-5′ units were intact. Stilbene units were
also formed during this process (Guo et al., 2015). It was also
observed that ethanol organosolv resulted in an increase in the
S/G ratio, cleavage of part of β-O-4′ and β-5’ (Sannigrahi et al.,
2009; Hallac et al., 2010; Wen et al., 2013; Zhu et al., 2015;
Rinaldi et al., 2016; Yao et al., 2018b). Furthermore, organic
solvents such as ethanol and methanol have been reported to
quench the benzyl carbonation intermediate by forming ether
linkages at the α position of lignin (Mateo et al., 2020), which
could hinder lignin repolymerization and condensation
(Huang et al., 2015).

A modified organosolv pretreatment employing 1,4-butanediol
(1,4-BDO) was developed by Dong and his coworkers (Dong et al.,
2019). The results showed that lignin deposition was not formed
compared with conventional organosolv pretreatment using
ethanol, and a relatively higher amount of β-O-4’ interunit
linkages was retained in residual lignin by forming α-etherified
lignin with hydroxyl tail and protecting the β-O-4 substructure
from degradation and condensation, shown in Figure 7 (Dong
et al., 2019). In another study, by applying ethanol (EtOH), THF,
and γ-Valerolactone (GVL), it was found that the total content of
condensed S and G units was significantly higher in EtOH lignin
than that in THF and GVL lignins. Furthermore, more β-O-4
linkage was preserved in GVL lignin, making it suitable for
producing mono-aromatic lignin compounds (Shuai et al.,
2016b; Meng et al., 2020). Similar to GVL, cyrene, a cellulose-
derived aprotic dipolar organic solvent, also has high potential as a
green pretreatment solvent in terms of lignin fractionation/
recovery and sugar release in the follow-up enzymatic
hydrolysis (Meng et al., 2020b).

Various co-solvent pretreatments have demonstrated
advantages relative to aqueous-only methods by enhancing
lignin removal, among which tetrahydrofuran (THF) has been
identified as a highly effective co-solvent for solubilizing and
extracting lignin from biomass by adopting extended coil
configurations (Smith et al., 2016). Not only enhanced
solubilization of cellulose and high yields of fermentable sugars
can be achieved by the THF-water co-solvent system (Mostofian
et al., 2016), but also facilities lignin transformation into valuable
chemical precursors (Patri et al., 2019).

Lai and her coauthors found positive effects of extractable
lignin (EL) on enzymatic hydrolysis of ethanol organosolv-
pretreated wood sawdust by blocking nonproductive enzyme
binding sites on the milled wood lignin (Lai et al., 2019).
Subsequent research found that different organosolv lignin
showed disparate effects on cellulases. It was indicated that
organosolv lignin with PB units enhanced MCC digestibility
(Huang Y. et al., 2020). The reason is because the partial
negative charges on the carbonyl groups in PB units result in
lower cellulases binding on lignin. Acid-catalyzed glycerol (AG)
pretreatment of sugarcane bagasse was investigated and it was
found that glycerol had modified the bagasse lignin through
α-etherification of β-aryl ethers and γ-esterification of

FIGURE 7 | α-esterification of lignin during alcohol pretreatment, R
represents different tail with applied alcohol (Dong et al., 2019).
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hydroxycinnamic acids. The obtained lignin was highly
hydrophilic, and it did not inhibit the enzymatic hydrolysis of
pretreated bagasse (Hassanpour et al., 2020). By comparing
liquid-hot-water (LHW) pretreatment with acid-free ethanol-
water (EW) pretreatment, it was found that the non-
productive adsorption between EW pretreatment-induced
lignin and cellulases was significantly weakened due to the
advantages of suppressing the deposition of lignin condensates
(Shi et al., 2018).

2.1.4 Other Promising Pretreatments
As new and rapid emerging green solvents, deep eutectic solvents
(DESs) have gained much attention lately, which are composed of
a hydrogen-bond acceptor (HBA) and a hydrogen-bond donor
(HBD) component. In addition, DESs are biocompatible, non-
toxic, and have been shown to be recycled for at least 5 rounds in
pretreatment with the same digestibility improvement (Kim et al.,
2018; Li A-L. et al., 2018; Guo et al., 2019; Kim et al., 2019; Kim
et al., 2019; Sai and Lee, 2019; Song et al., 2019; Lin et al., 2020;
Huang et al., 2021; Ji et al., 2021). Compared with dilute acid and
alkaline pretreatment, DES pretreatment led to significantly
higher lignin removal (Li A-L. et al., 2018; Li W-X. et al.,
2021; Tan et al., 2019; Guo et al., 2018; Hansen et al., 2021;
Fernandes et al., 2021). The central lignin transformation during
DES pretreatment of wood lignin was the cleavage of β-O-4
linkages, resulting in decreased molecular weight and increased
hydroxyl groups (Das et al., 2018; Kim et al., 2019; Wang J. et al.,
2020; Wang Y. et al., 2020; Wang Y. et al., 2021). Similar research
also proved that acidic DESs could degrade a small portion of C-C
bonds in lignin (Li A-L. et al., 2018; Ma et al., 2021). In addition to
depolymerization, repolymerization of lignin fractions can also
occur during acidic DES pretreatment via acid-catalyzed
recondensation (Liu et al., 2021). Alkaline DES pretreatment
disrupts lignin-carbohydrate compounds and breaks ether
linkages in lignin (Ho et al., 2019). Studies indicated that acidic
DESs showed higher lignin solubility than alkaline DESs, and
lignin from bamboo dissolved in DES was mainly syringyl
lignin (Li C. et al., 2021). DES-extracted lignin from willow and
corn stover showed an inhibitory effect on cellulases by
hydrophobic interactions and hydrogen bonds (Song et al., 2020).

Acid hydrotropic fractionation (AHF) was another promising
method developed by Zhu’s group to improve lignin valorization
by reducing lignin condensation (Chen et al., 2017). AHF refers to
fractionate lignocelluloses using a group of acids with hydrotropic
properties (Cai et al., 2020). It was suggested that acid hydrotrope
could aggregate around extracted lignin to prevent lignin from
aggregation (Ji and Lv, 2020). The impact of the hydrotropy on
ether and/or ester bonds cleavage can promote the removal of
lignin from the plant cell wall. Results indicated that lignin
carboxylation during pretreatment could improve glucose yield
during the saccharification process by reducing nonproductive
cellulases adsorption to lignin (Cai et al., 2020). Furthermore,
maleic acid pretreated switchgrass showed improved enzymatic
digestiblity by carboxylated lignin and cellulose in the
fractionated cellulosic water-insoluble solids (Su et al., 2021).

Due to the limitation of each pretreatment method, combined
pretreatment technologies have been developed. As early as 2012,

deacetylation with 0.1 M NaOH before acid pretreatment was
suggested by Chen and his co-workers to improve the monomeric
sugar yield andminimum ethanol selling price (Chen et al., 2012).
Two-stage hydrothermal pretreatment was proposed byMin et al.
to diminish inhibitors and enhance the total sugar recovery at the
same time (Min et al., 2015). Then, combinatorial pretreatment
with 1% H2SO4 for 30 min followed by 1% NaOH for 60 min at
120°C of corn stover were investigated in an effort to
synergistically improve carbohydrate conversion and lignin
processability into polyhydroxyalkanoate (Liu et al., 2017).
Similarly, a highlighted application of combinatorial
pretreatments of autohydrolysis followed by dilute alkali
extraction was applied by Huang and his coworkers to
maximize the carbohydrate output from bamboo (Huang C.
et al., 2020). Furthermore, combination pretreatment using
dilute sulfuric acid, liquid hot water, sodium hydroxide, and
ethanol were developed by the same research group (Liu et al.,
2018). Results showed that combinatorial pretreatment was an
effective strategy to facilitate lignin valorization. In an effort to
efficiently produce sugars and improve lignin processability for
the fabrication of lignin nanoparticles, combinatorial organosolv
pretreatment (COP) was thus developed (Liu Z-H. et al., 2019).

Sulfite pretreatment to overcome recalcitrance of lignocellulose
(SPORL) is another combined pretreatment technology which
consists of sulfite pretreatment with acid catalyst followed by
mechanical refining (Zhu et al., 2009). SPORL-treated softwood
chips were significantly softened and over 90% of enzymatic
cellulose conversion could be obtained (Zhu et al., 2009). It was
indicated that hemicellulose removal and lignin sulfonation during
SPORL were beneficial for the following cellulose hydrolysis
process (Zhu et al., 2009). When applied to a hardwood, near
complete cellulose conversion to glucose could be achieved with
only about 4% sodium bisulfite charge on aspen at 180°C for
30 min (Wang et al., 2009). Afterwards, by comparing SPORL with
dilute acid (DA) pretreatments, it was found that higher enzymatic
digestibility and ethanol yield were produced after SPORL thanDA
pretreated wood chips (Tian et al., 2011). More effective in xylan
removal and decreased extent of lignin condensation during
SPORL might explain this observation. Furthermore, lower
amount of furfural and HMF were formed, which was favorable
for the following yeast fermentation (Tian et al., 2011).

Fenton oxidation is an environmental friendly process operated
undermild conditions (Zhang et al., 2018). Lignin and hemicellulose
could be degraded during the process, which enhances the enzymatic
hydrolysis subsequently (Wang S. et al., 2021). To further explore
ultrasound-assisted Fenton reaction, it was compared with dilute
acid-catalyzed steam explosion. Results showed that ultrasound-
assisted Fenton reaction removed more lignin and created slightly
more accessible area and pores on the surface of the substrate
compared with dilute acid-catalyzed steam explosion (Wang
et al., 2016). During Fenton pretreatment, C1 of cellulose was
oxidized, which plays an important role in improving enzymatic
hydrolysis bymaking cellulose more accessible (Yang et al., 2019). In
addition, lignin structure was transformed after Fenton
pretreatment. The S/G and phenolic OH group content were
decreased, while the carboxylic content and the negative zeta
potential were increased, all of which might be the reason for
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decreased unproductive adsorption of cellulases on lignin compared
with untreated milled bamboo lignin (Wu et al., 2018).

Furthermore, sequential Fenton oxidation and sulfomethylation
pretreatment was applied to increase the enzymatic accessibility by
20% after pretreatment. Fenton oxidative reaction could help
introduce sulfomethyl group on aromatic ring more easily by
oxidative demethylation, cleave some interunit linkages and
increase the hydrophilicity of residual lignin (Ying et al., 2019).
Two-pot sequential pretreatment, comprising of ultrasound
ethanol and deep eutectic solvent, was developed to efficiently
fractionate lignocellulosic biomass into cellulose with high
digestibility and high-quality lignin with tailored chemical
structures (Ji et al., 2021).

Reductive catalytic fractionation (RCF) has emerged in the
past few years to pursue value-added lignin derived products and
a cellulose-rich residue that could be further converted to its
sugar monomers (Korányi et al., 2020). The key steps include
solvolytic extraction, catalytic degradation and upgrading of
lignin (Liu et al., 2020). Many different feedstocks (softwood,
hardwood and Gramineae), catalysts (Raney-Ni, Zn-Pd/C, Pd/C,
Ru/C, Ni/C, Ni2P/SiO2, Ni@ZIF-8) and process (solvent,
temperature, pressure and time, one-pot method, two-step
method) have been investigated to obtain various value-added
lignin derived phenolic chemicals up till now (Ferrini and
Rinaldi, 2014; Parsell et al., 2015; Schutyser et al., 2015; Luo
et al., 2016; Shuai et al., 2016a; Anderson et al., 2017; Cao et al.,
2018; Graça et al., 2018; Liu X. et al., 2019). Recently,
hydrogenolysis of lignin in birch sawdust with the selectivity
towards 4-propyl guaiacol and 4-propyl syringol was achieved
with noble metal based catalysts of 5% Ru/C (Liu et al., 2020). A
low-cost MoO2/C catalyst was prepared for the RCF of biomass
feedstocks, with high selectivity towards methyl coumarate and
methyl ferulate (Gong et al., 2021). Effective removal of the
catalyst from the pretreatment residue to enable subsequent
enzymatic hydrolysis will be essential for the efficient biofuel
production and catalyst recycle at industrial scale.

2.2 Interactions Between Lignin and
Cellulases by Model Compounds
Until now, often conflicting conclusion have been reported on
the impact and the underlying mechanisms of lignin on
cellulases and its hydrolysis properties. It is challenging to
investigate the impact of a single lignin feature on cellulases,
as any change will result in a concurrent change in other lignin
properties. Thus, model compounds are a useful tool in the
mechanism study. Homodimers of guaiacyl (LGG) were used as
a representative to predict lignin binding sites of β-glucosidases
by AutoDock (Lu et al., 2017). Based on the predicted results,
the adsorption of the CBM onto lignin was decreased by altering
the charge properties of amino acid in CBH, indicating the
feasibility of model compounds’ application in the mechanism
research. Three types of 13C-labeled β-O-4 lignin oligomer
models were then synthesized and applied in binding sites
research of Cellobiohydrolase I (Cel7A) in lignins by
Tokunaga and his coworkers (Tokunaga et al., 2020). To
explore the effect of lignin composition on cellulases

adsorption, H-DHP, G-DHP, and S-DHP (dehydrogenation
polymers) were prepared. The results clearly showed that
lignin composition had a significant impact on cellulases
performance, and that G-type lignin exhibited the most
detrimental effect (Yao et al., 2021). With the development
of synthetic chemistry, lignin models with higher molecular
weight would simulate further investigations into the lignin-
cellulases adsorption process with more conclusive results.

2.3 Decrease Nonproductive Adsorption by
Additives
Lignin-blocking additives, such as bovine serum albumin,
soybean protein, and surfactants, have been applied in the
enzymatic hydrolysis process to improve glucose yields (Kim
et al., 1982; Yang and Wyman, 2006; Selig et al., 2008;
Mukasekuru et al., 2018; Bhagia et al., 2019; Florencio et al.,
2019; Luo et al., 2020). It was reported that these additives could
improve glucose release by cellulases treatment by binding to
lignin, thus decreased nonproductive cellulases adsorption to
lignin (Borjesson et al., 2007; Zheng et al., 2008). Furthermore,
biomass washing combined with soybean protein addition was
evaluated recently on glucose release during the enzymatic
hydrolysis process, which is cost-competitive in a large-scale
industrial process (Pinto et al., 2021).

3 PERSPECTIVE FOR FUTURE
CHALLENGES OF LIGNIN IN BIOREFINERY
PROCESS
Lignin is expected to play an essential role in the future integrated
biorefinery process and the development of renewable chemicals
and biomaterials. Themechanism underlying cellulases adsorption
to lignin has not been fully elucidated so far, mainly due to the
complex structure of enzymes, and the heterogeneity of lignin
which was also the cause for undesirable lignin performances of
particular applications (Yoo et al., 2020).

The unique biosynthesis of lignin causes the initial heterogeneity
of this biopolymer. Furthermore, most pretreatments result in an
increase the structural heterogeneity of lignin. The
depolymerization/repolymerization of lignin during the
pretreatment often increase the polydispersity of lignin molecular
weight. Future pretreatmentmethods that decrease the heterogeneity
of lignin might favor the following enzymatic hydrolysis process.

The application of recovered lignin from pretreatment is vital to
the biorefinery process. It was reported that over-cleavage of β-O-4
linkages to yield more dissolved lignin could damage the lignin’s
structure for future lignin valorization (Dong et al., 2019). Promising
pretreatment should offer a reaction pathway for lignin structural
integrity and enhanced cellulose digestibility simultaneously.
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