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The generalized empirical interpolation method (GEIM) can be used to estimate the
physical field by combining observation data acquired from the physical system itself
and a reduced model of the underlying physical system. In presence of observation noise,
the estimation error of the GEIM is blurred even diverged. We propose to address this issue
by imposing a smooth constraint, namely, to constrain the H1 semi-norm of the
reconstructed field of the reduced model. The efficiency of the approach, which we will
call theH1 regularization GEIM (R-GEIM), is illustrated by numerical experiments of a typical
IAEA benchmark problem in nuclear reactor physics. A theoretical analysis of the proposed
R-GEIM will be presented in future works.
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1 INTRODUCTION AND PRELIMINARIES

In nuclear reactor simulations, data assimilation (DA) with reduced basis (RB) enables the
reconstruction of the physical field, e.g., for constructing a fast/thermal flux and power field
within a nuclear core in an optimal way based on neutronic transport/diffusion model and
observations (Gong et al., 2016; Argaud et al., 2017a; Gong et al., 2017; Argaud et al., 2018;
Gong, 2018). In practice, the existing methods are based on a reduced basis, however, this approach is
not robust with respect to observation noise and there are some additional constraints or
regularization on the low-dimensional subspaces, i.e., the related coefficients, have been
proposed as possible remedies in several recent works (Argaud et al., 2017b; Gong et al., 2020;
Gong et al., 2021). The idea of introducing box constraints was originally introduced in Argaud et al.
(2017a) to stabilize the generalized empirical interpolation method in the presence of noise (Maday
and Mula, 2013). The same idea has been applied to the POD basis and the background space (Gong
et al., 2019) of the so-called parametrized-background data-weak (PBDW) data assimilation (Maday
et al., 2015a). Recently, the regularization of the GEIM/POD coefficients has been studied in Gong
et al. (2021). The corresponding theoretical analysis can be found in Gong (2018), Herzet et al.
(2018), and Gong et al. (2019). This article introduces H1 regularization schemes for the
approximation, and numerical experiments in nuclear reactor physics indicate its potential to
address this obstruction.

Our goal is to approximate the physical state u from a given compact set M ⊂ X (manifold),
which represents the possible state of a physical system taking place inΩ. WhereX is a Banach space
over a domain Ω ⊂ Rd (d≥ 1) being equipped with the norm ‖.‖X . In the framework of data
assimilation with reduced basis, any u ∈ M can be estimated by combining two parts. The first term
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is a certain amount (m) of observation of u acquired directly from
sensors of the underline physical system, which can be represented by
a combination of linear functionals of X ′ (the dual space of X )
evaluated on u. The second term is the use of a family of (reduced)
subspacesZn of finite dimension n which is assumed to approximate
well with the manifold M in a given accuracy.

The algorithms used to build the reduced subspace {Zn}n and
find appropriate linear functionals have already been reported in
the community of reduced modeling [see Maday and Mula, 2013;
Maday et al., 2015b; Maday et al., 2015c; Maday et al., 2016]. Note
that even if this is not necessary in the previous statements, the
construction of the reduced spaces Zn could be recursive, i.e., we
have Zn−1 ⊂ Zn. The field u ∈ M can be approximated by
interpolation (Argaud et al., 2018) or data assimilation (Gong,
2018; Gong et al., 2019).

For reading convenience, let us first introduce some notations
used throughout this article. We first introduces the standard
L2(Ω) or H Hilbert space over the special domain Ω ⊂ Rd

equipped with an inner product (w, v)L2(Ω) ≡ ∫Ωwvdx and the

induced norm ‖w‖L2(Ω) �
����������
(w,w)L2(Ω)

√
. The semi-norm H1 is

defined by |w|H1(Ω) �
������������
(∇w,∇w)H1(Ω)

√
, where the inner product

is (w, v)H1(Ω) ≡ ∫Ω∇w∇vdx. For a given Hilbert space U and the

related dual space U′, the Riesz operator RU : U′ → U satisfies: for
any given ℓ ∈ U′, we have (RUℓ, v) � ℓ(v),∀v ∈ U .

Let us denote by u (r; μ) the solution of a parameter-dependent
partial differential equation (PDE) set on Ω and on a closed
parametric domain D ⊂ Rp. For any given μ ∈ D, the physical
field u (r; μ) belongs to U ⊂ L2(Ω) or H1(Ω), a functional space
derived from the PDE. We call the setM ≡ {u(r; μ); μ ∈ D} of all
parameter-dependent solution manifold. Let LM: U → RM be
the vector-valued observation functional LM(u) �
(ℓ1(u), . . . , ℓM(u))T of u ∈ U .

2 FIELD RECONSTRUCTION WITH
REGULARIZATION

Our goal in this work is to infer any state u ∈ U over a spacial
domain Ω ∈ Rd given only some corresponding noisy
observations y � (yobs

1 , . . . , yobs
M )T. This empirical learning

problem from a limited data set is always underdetermined. In
general, with observation noise, a regularization term R (u) is
added to the loss function, and then a general convex model
fitting problem can be written in the form:

minimize
u∈U

J(u) ≔ V(L(u), y) + λR(u), (2.1)

where V: RM → R is a convex loss function that describes the
cost of predicting u when the observation is y. λ is a parameter
which presents the importance of the regularization term. R (u) is
usually a convex regularization function to impose a penalty on
the complexity of u through some prior knowledge.

2.1 H1 Regularization
The goal of regularization is to prevent overfitting or to denoise in
mathematics and particularly in the fields of inverse problems

(Ivanov, 1976; Andreui et al., 1977; Balas, 1995; Arnold, 1998;
Vladimir, 2012; Benning and Burger, 2018), by introducing
additional information in order to solve ill-posed problems.
From a Bayesian (James Press, 1989) point of view,
regularization techniques correspond to introduce some prior
distributions on model parameters. The general choice of R (u) is
a norm-like form ‖u‖2χ , where χ represents different kinds of norm
depending on the underlying application. The simplest choice of
R (u) is L2 norm, say, ‖u‖2L2(Ω), which has been well studied in the
literature, either from a theoretical or algorithmic point of view.
The regularization is also called Tikhonov regularization
(Andreui et al., 1977), which is essentially a trade-off between
fitting the data and reducing the norm of the solution. For some
real-world problems, there has been much interest in alternative
regularization terms. For example, total variation (TV)
regularization, R(u) � ‖∇u‖L1(Ω), is popular in image
reconstruction or other domains (Rudin et al., 1992; Rudin
et al., 1992; Chan et al., 1997; Chan and Tai, 2003;
Wachsmuth and Wachsmuth, 2011; De los Reyes and
Schönlieb, 2012). By using a L1 norm, sharp edges would be
allowed as the penalty is finite, and it also allows discontinuous
controls which can be important in certain applications.

If one would like to impose a smooth control, the H1 semi-
norm can be used:

R(u) � ‖∇u‖L2(Ω). (2.2)

Examples can be found in the context of parameter
estimation problems (Keung and Zou, 1998; Cai et al., 2008;
Wilson et al., 2009; Barker et al., 2016), image-deblurring (Chan
et al., 1997; Li et al., 2010; Cimrák and Melicher, 2012), image
reconstruction (Ng et al., 2000), and flow control
(Heinkenschloss, 1998; Collis et al., 2001). The work in Van
Den Doel et al. (2012) shows that the proposed H1 semi-norm
regularization performs better than L1 regularization cousin,
total variation, for problems with very noisy data due to the
smooth nature of controlled variables. The authors in Srikant
did a comparison ofH1 and TV regularization methods and also
studied the shortcomings and limitations of some of the
implementations schemes, such as a Gaussian filter. H1

regularization would perform well over uniform regions in
the domain but would perform poorly over edges.
Furthermore, to solve the PDE-constrained optimization
problem as reported in Haber and Hanson (2007), the
authors suggested a synthetic regularization functional of the
form:

R(u) � ‖u‖2L2(Ω) + c‖∇u‖L2(Ω), (2.3)

where the parameter c can be adapted. Note that this synthetic
regularization is now commonly used to solve the ill-posed
inverse problems.

2.2 Generalized Empirical Interpolation
Method
Recall that our goal is to estimate the state utrue[μ] ∈ U of a
physical system for a given parameter μ ∈ D, by using a
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parameterized best-knowledge model and M (potentially noisy)
observations.

The first step is to choose a sequence of n-dimensional
subspaces {Zn}n such that the best approximation of any given
utrue [μ] in the space Zn converges to zero when n goes to
infinity, i.e.,

lim
n→∞

inf
w∈Zn

‖utrue[μ] − w‖≤ ϵZ ∀μ ∈ D (2.4)

for an acceptable tolerance ϵZ . We further assume that the
selected subspaces satisfy

Z1 ⊂/⊂ ZNmax ⊂/⊂ U . (2.5)

In other words, we choose the subspaces such that the most
dominant physical system is well represented for a relatively small
n. In particular, these subspaces may be constructed through
the application of model reduction methods to a
parameterized PDE.

The second step is to model the data acquisition procedure.
Given a system in of a parameter μ ∈ D, we assume the
observations are of the form

∀m � 1, . . . ,M, yobs
m [μ] � ℓm(utrue[μ]) + em, (2.6)

where yobs
m [μ] is the value of the mth observation, ℓm is the

linear functional associated with the mth sensor, and em is
the observation noise associated with the mth sensor. The
detailed form of the functional ℓm depends on the
specific sensor used to acquire data. For example, if
the sensor measures a local value of the state, then
we may model the observation value as Gaussian
convolution

ℓm(v) ≡ ∫
Ω

(2πr2m)−d/2exp −‖x − xc
m‖2ℓ2(Rd)

2r2m
( )( )v(x)dx, (2.7)

where (2πr2m)−d/2exp(−
‖x−xcm‖2ℓ2(Rd )

2r2m
) is a Gaussian distributed

function to present the response of the sensor for a given
physical field v, and xc

m ∈ Rd is the center of the sensor in the
special domain Ω, and rm ∈ R>0 is the physical width of the
sensor. In particular, the localized sensor is of interest in this
work.

We assume that em is independent and identically
distributed (IID), and with a density of pm on R. In
practice, the mean and covariance of the observation data
acquired are more readily quantifiable than the distribution
pm. Thus, we assume the mean and the covariance of the
distribution exist and make the following assumptions on the
noise term: (i) zero mean: E [em] � 0, m � 1, . . . , M; (ii)
variance: E[e2m] � σ2m, m � 1, . . . , M; (iii) and uncorrelated: E
[emen] � 0, m ≠ n.

By running the greedy algorithm of the so-called
generalized empirical interpolation method [GEIM
(Maday and Mula, 2013)], a set of basis {qn}n is generated
and spanned the reduced space Zn � span{q1, . . . , qn}. Then,
the generalized interpolation process is well defined as
follows:

IN[u] � ∑N
j�1

αjqj subject to:∀i � 1, . . . ,M, ℓi(IN[u]) � ℓi(u).

(2.8)

With noisy observations, GEIM is, however, not robust with
respect to observation noise (Argaud et al., 2017b), and in that
work, a so-called constrained stabilized GEIM (CS-GEIM) by
using a constrained least squares approximation was proposed to
address this obstruction, where numerical experiments indicate
its potential.

3 H1 REGULARIZATION FORMULATION OF
GEIM

Now, we state theH1 regularization scheme for GEIM (R-GEIM).
Given a reduced space ZN � span{q1, . . . , qN} ⊂ U of dimension
N spanned by N basis {qi}Ni�1 and M measurement functionals
LM ≔ (ℓ1, . . . , ℓM)T and the corresponding noisy measurements
y � (yobs

1 , . . . , yobs
M )T, M ≥ N, then the reconstruction problem

from measurements is: find u ∈ ZN such that:

u � argmin
u∈ZN

V(L(u), y) + ξ‖∇u‖2L2(Ω), (3.1)

where V: RM → R is loss function that evaluates the cost of
estimating u giving the observation y which depends on the
underlying application. The symbol “argmin

·
” is argument of the

minimum, thus argmin
u∈ZN

f(u) is the value of u for which f(u)
attains its minimum. The parameter ξ is a trade-off factor
between the regularization term and the loss function term.
Furthermore, if we have no information about the noise
distribution, three proposed typical forms of V could be
‖L(u) − y‖2l ,, where l � ∞, 1, 2. For the above R-GEIM, we
have the following remarks:

• The basis and measurements of the chosen scheme could be
based on GEIM, POD, or any other approach.

• Later, we will show that l � 2 corresponds to the least squares
method, and l � 1 corresponds to the least absolute
deviations (LAD) (Bloomfield and Steiger, 1980).
Compared to the traditional least squares method, the
LAD is much robust and finds its applications in
many areas.

• By using the H1 regularization for the reduced basis field
reconstruction, the first assumption is that the field u is in
H1 space; for the most regular physical problem, this
condition is satisfied automatically, and the H1

regularization term is a kind of smooth control for the
underlying field reconstruction problem.

If we have no prior information about noise, a commonly used
way to formulize Eq. 3.1 is taking 2 norm for the loss function
term, we have the following results:

R-GEIM: Given a reduced space ZN � span{q1, . . . , qN} ⊂ U
of dimension N spanned by N basis {qi}Ni�1 and M(≥ N)
measurement functionals LM ≔ (ℓ1, . . . , ℓM)T and the
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corresponding noisy measurements y � (yobs
1 , . . . , yobs

M )T, then
the reconstruction problem from measurements is: find u ∈ ZN

such that:

u � argmin
u∈ZN

1
M
‖L(u) − y‖22 + ξ‖∇u‖2L2(Ω). (3.2)

Let M be an M × N full-column rank matrix with elements
Mi,j � ℓi(qj), i � 1, . . . , M, j � 1, . . . , N and N be an N × N
matrix with elements Ni,j � (∇qi,∇qj), i, j � 1, . . . , N, then
the algebraic form of Eq. 3.2 is: find α � (α1, . . . , αN)T ∈ RN

or v � ∑N
j�1αjqj ∈ ZN such that:

αp � arg min
α∈RN

(Mα − y)T(Mα − y) +MξαTNα, (3.3)

the solution is

αp � (MTM +MξN)−1MTy. (3.4)

Proof. Let J(α, y) � (Mα − y)T(Mα − y) +MξαTNα, then we
have:

∇J(α, y) � 2MTMα + 2MξNα − 2MTy,

the solution to minimize J (α,y) is the αp that satisfies ∇J (αp,y) �
0. Because,M is anM × N full-column rank matrix, so thatMTM

is a symmetric positive definite (SPD) matrix.From the definition
of N, it is a symmetric positive semi-definite matrix, so
MTM +MξN is an N × N invertible matrix, which completes
the proof.

Let D be the M × M covariance matrix of the measurement
with elementsDi,j � E[eiej], i, j � 1, . . . ,M. If em is uncorrelated,
Di,j � 0 for i ≠ j, thenD is a diagonal matrix withDi,i � σ2i and the
variance of the ith measurement, Eq. 3.3 can be improved by

αp � argmin
α∈RN

(Mα − y)TD−1(Mα − y) +MξαTNα, (3.5)

and the solution is

αp � (MTD−1M +MξN)−1MTD−1y. (3.6)

Later, we will show this is also the algebraic formulation for
Gaussian noise with covarianceD. If we can make use of the prior
information of noise, we have the following remark:

Remark. Let r(u) be the bias of the reduced model from the truth
L(u) − y � e + r(u). By using maximum likelihood (ML)
estimation for the following common noise densities, we have:

• Uniform noise, when the noise term em is uniformly
independent and identically distributed on ( − e0, e0),
then the reconstruction problem is: find u ∈ ZN such that:

u � argmin
u∈ZN

‖∇u‖2L2(Ω), subject to ‖L(u) − y‖∞ ≤ e0 + ‖r(u)‖∞.

(3.7)

If the noise bounds are different for different measurements, the
constraint in Eq. 3.7
becomes |ℓm(u) − yobs

m |≤ em + |rm(u)|, m � 1, . . . ,M.

• Gaussian noise, when the noise em is Gaussian with the zero
mean and covariance matrix D, then the reconstruction
problem is: find u ∈ ZN such that

u � argmin
u∈ZN

(L(u) − y)TD−1(L(u) − y) +Mξ‖∇u‖2L2(Ω). (3.8)

• Laplacian noise, when the noise em is Laplacian
independent, identically distributed with density
p(e) � 1

2e0
e−|e|/e0 , then the reconstruction problem is: find

u ∈ ZN such that

u � argmin
u∈ZN

‖L(u) − y‖21 + ξ‖∇u‖2L2(Ω). (3.9)

We refer readers to Boyd and Vandenberghe (2004) for further
theoretical analysis on this remark. Through this remark, the
physical means of the term ‖L(u) − y‖2l in Eq. 3.1 for different l is
easier to understand. The ∞, 1, and 2 norms interpret the
maximum likelihood estimation with a noise density, that is,
uniform, Laplacian, and Gaussian, respectively. Considering for
the most engineering problems, the noise density is Gaussian and
also bounded, and thus we only present numerical results of
uniform noise and Gaussian noise in this work.

Another remark is that, in this work, numerical results are
illustrated based on GEIM, more precisely. The reduced basis in
Eq. 3.2 is derived with GEIM, but this regularization is fit for the
POD basis or the basis selected from the greedy reduced basis
method (Grepl et al., 2007) without any modification.

4 NUMERICAL RESULTS AND ANALYSIS

In this section, we illustrate the performance of R-GEIM on a
typical benchmark problem in nuclear reactor physics. The test
example is adapted based on the classical 2D IAEA benchmark
problem (Benchmark Problem Book, 1977; Gong et al., 2017); the
geometry of the 2D core is shown in Figure 1. This problem
represents the mid-plane z � 190 cm of the 3D IAEA benchmark
problem, that is used by references (Theler et al., 2011). The
reactor spacial domain is Ω � region (1, 2, 3, 4). The core and
control regions are Ωcore � region (1, 2, 3) and Ωcontrol � region
(3), respectively. We consider the value of Σa,2|Ω1

, Σa,2|Ω2
, and

Σa,2|Ω3
in the core region Ω1,2,3 as a parameter (so p � 3 and

μ � [Σa,2|Ω1
,Σa,2|Ω2

,Σa,2|Ω3
]). We assume that

Σa,2|Ωi
∈ [0.080, 0.150] for i � 1, 2, 3. The rest of the

coefficients of the diffusion model are fixed to the values
indicated in Table 1 of Gong et al. (2017).

The neutronic field (fast and thermal flux, power distribution)
is derived by solving two group diffusion equations. The
numerical algorithm is implemented by employing the free
finite elements solver FreeFem++ (Hecht, 2012). The norm
‖ · ‖L2(Ω) is induced by the inner product
(w, v)L2(Ω) � ∫Ωwvdx, and the semi-norm ‖ · ‖H1(Ω) is
induced by the inner product (w, v)H1(Ω) � ∫Ω∇w∇vdx. The
measurement we employed here is same as Eq. 2.7 with rm �
1 cm and set {wi}Ni�1 being the corresponding Riesz representation
with H1 inner product. Finally, we set the finite element size
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to d � 0.1 cm, which is enough for our analysis. We refer to
Argaud et al. (2017b) for detailed implementation of this
problem with FreeFem++.

The regularization factor ξ is essential for R-GEIM. It can
significantly affect the reconstruction error of R-GEIM, and if
they are incorrectly specified then the field reconstructed with
R-GEIM is suboptimal. We show the variation of the errors in
L∞, H1, and L2 norms for R-GEIM with respect to different
regularization factors ξ in Figure 2. The dimension of reduced
basis is fixed to n � 80, the number of measurements is set tom �

FIGURE 1 |Geometry of a 2D IAEA benchmark. Upper octant: region assignments; lower octant: fuel assembly identification [from reference (Benchmark Problem
Book, 1977; Theler et al., 2011)].

FIGURE 2 | Variation of the errors in L∞, H1, and L2 norms for R-GEIM with respect to the different regularization factor ξ. The reduced dimension is n � 80, number
of measurement is m � 2n, and the observation noise is uniformly distributed with noise levels 10−2 (A) and 10−3 (B).

TABLE 1 | Coefficient value: diffusion coefficients Di (in cm) and macroscopic
cross sections (in cm-1).

Region D1 D2 Σ1→2 Σa1 Σa2 vΣf2 Materiala

1 1.5 0.4 0.02 0.01 0.080 0.135 Fuel 1
2 1.5 0.4 0.02 0.01 0.085 0.135 Fuel 2
3 1.5 0.4 0.02 0.01 0.130 0.135 Fuel 2 + rod
4 [1.0,3.0] or 2.0b 0.3 0.04 0 0.010 0 Reflector

aAxial bucking B2
zg � 0.8 · 10-4 for all regions and energy groups

bHere 2.0 is the exact value from Reference (Theler et al., 2011).
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2n, and the observation noise is uniformly distributed, with a
noise level σ � 10−2, 10−3. It can be observed that the optimal ξ is
different for different error metrics. For the errors evaluated in L2

norm, the optimal ξop ∼ 0.1, and for L∞ norm or H1 norm, the
optimal ξop∼ 1. In the left of this work, we fix ξ to be the optimal value

and evaluate the errors in L2 norm and H1 norm, which reflect the
average error of the reconstructed field itself and its gradient.

This section illustrates the behavior of GEIM, CS-GEIM, and
R-GEIM, in case of noisy observations. We first show the
variation of the errors in L2 norm and H1 norm for GEIM,

FIGURE 3 | The variation of the errors in L2 norm (A) H1 norm (B) for GEIM, CS-GEIM, and R-GEIM with respect to different reduced dimension n. The number of
measurement is m � 2n, and the observation noise is uniformly distributed with a noise level σ � 10−2.

FIGURE 4 | Variation of the errors in L2 norm (A) and H1 norm (B) for GEIM, CS-GEIM, and R-GEIM with respect to different reduced dimension n. The number of
measurement is m � 2n, and the observation noise is uniformly distributed with a noise level σ � 10−3.

FIGURE 5 | Variation of the errors in L2 norm (A) and H1 norm (B) for GEIM, CS-GEIM, and R-GEIM with respect to different reduced dimension n. The number of
measurement is m � 2n, and the observation noise is Gaussian distributed with a noise level σ � 10−2.
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CS-GEIM, and R-GEIM with respect to different reduced
dimensions n in Figure 3. The observation noise is assumed
to be uniformly distributed, with a noise level σ � 10−2. The
number of measurements is m � 2n. Figure 4 illustrates the case
for the noise level σ � 10−3. The cases with Gaussian-distributed
observation noise are shown in Figure 5 for the noise level σ �
10−2 and in Figure 6 for the noise level 10−3.

From these figures, we can conclude that R-GEIM shows a
better stability performance in the case of noisy measurement.
The accuracy can be as good as CS-GEIM, but the R-GEIM
algorithm is much simpler, with relatively low computational
cost; the main cost for the online stage is to solve the matrix
system Eq. 3.4. But for CS-GEIM, the relative complex
constrained quadratic programming problem has to be solved.

5 CONCLUSION AND FUTURE WORKS

The traditional generalized empirical interpolationmethod is well
studied for data assimilation in many domains. However, this
reduced modeling-based data assimilation method is not robust
with respect to observation noise. We propose addressing this
issue by imposing a smooth constraint, namely, anH1 semi-norm
of the reconstructed field to involve some prior knowledge of the
noise. The efficiency of the approach, which we call R-GEIM, is
illustrated by an IAEA benchmark numerical experiment, dealing
with the reconstruction of the neutronic field derived from
neutron diffusion equations in nuclear reactor physics. With
H1 regularization, the behavior of the reconstruction is
improved in the case of noisy observation. Further works are
ongoing: i) mathematical analysis of the stable and accurate

behavior of this regularization approach and ii) the
regularization trade-off factor will be studied to give
an outline on how to choose these factors for generic
problems.
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