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Visual Simultaneous Localization and Mapping (SLAM) system is mainly used in real-time
localization andmapping tasks of robots in various complex environments, while traditional
monocular vision algorithms are struggling to cope with weak texture and dynamic scenes.
To solve these problems, this work presents an object detection and clustering assisted
SLAM algorithm (OC-SLAM), which adopts a faster object detection algorithm to add
semantic information to the image and conducts geometrical constraint on the dynamic
keypoints in the prediction box to optimize the camera pose. It also uses RGB-D camera to
perform dense point cloud reconstruction with the dynamic objects rejected, and facilitates
European clustering of dense point clouds to jointly eliminate dynamic features combining
with object detection algorithm. Experiments in the TUM dataset indicate that OC-SLAM
enhances the localization accuracy of the SLAM system in the dynamic environments
compared with original algorithm and it has shown impressive performance in the
localizition and can build a more precise dense point cloud map in dynamic scenes.
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1 INTRODUCTION

The indoor mobile robot is a robot system composed of multi-sensor fusion perception, autonomous
decision making, mission planning, and control, etc. And from the perspective of the global mobile
robot consumer market, its market scale is expanding, and various smart factories have great
industrial demand for robots to complete various production tasks. For complex working
environments, the first problem in autonomous mobile robots is the accuracy of localization and
environmental map construction (Huang et al., 2019; Shen et al., 2020a). There has been a lot of
outstanding work on SLAM research (Mur-Artal and Tardós, 2017; Engel et al., 2014; Qin et al.,
2018), so we can build on these foundational frameworks to deal with tough issues.

In dynamic scenes, if the SLAM system fails to complete loop closure detection, the accuracy of pose
estimation is seriously affected by dynamic features because the algorithm builds a map of the moving
keypoints, resulting in poor system robustness and easily losing the tracking of camera pose. On the one
hand, to solve these problems, some algorithms incorporate semantic segmentation or instance
segmentation at the front-end of the visual odometry to obtain accurate edge information of
moving objects, avoiding the influence of moving points from the feature extraction (Bescos et al.,
2018; Kaneko et al., 2018; Runz et al., 2018; Yu et al., 2018; Zhong et al., 2018). Bescos et al. present a
dynamic SLAM system based on ORBSLAM2 (Mur-Artal and Tardós, 2017) with Mask-RCNN
semantic segmentation (Bescos et al., 2018), which contains monocular, binocular, and RGB-D inputs,
and the extracted dynamic ORB features are rejected by invoking the Mask-RCNN model, but this
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system is mainly time-consuming in the semantic segmentation
algorithm and cannot achieve real-time pose estimation. Kaneko
et al. present a monocular vision SLAMwith a deep learning-based
semantic segmentation method, using DeepLab v2 semantic
segmentation of the mask to reject dynamic points and using
CARLA simulator to provide new datasets for testing (Kaneko
et al., 2018), but also faces the challenge of real-time. Runz et al.
present RGBD-SLAM based on the aforementioned semantic
segmentation and geometric segmentation, which can track
dynamic objects and build corresponding 3D models that can
be applied in AR (Runz et al., 2018). Yu et al. present a five threads
dynamic SLAM system based on ORBSLAM2, adding a SegNet
semantic segmentation thread and a semantic map thread to the
original ORBSLAM2, and running in real-time with P4000 GPU
(Yu et al., 2018). Doherty et al. build an IMU sensor based,
semantic segmentation SLAM system which introduces data
association into the SLAM system optimization process and
performs land marker optimization, camera pose estimation
and semantic information association simultaneously
(Doherty et al., 2020). However, their approaches are fail to
meet the demand for real-time operation and the single
semantic segmentation algorithm does not guarantee the
robustness of the SLAM system in the complex operating
environment of the robot.

On the other hand, some notable results use the optical flow
method for dynamic/static segmentation to highlight the
dynamic semantics in the RGB images and provide the precise
camera pose estimation and background reconstruction for
robots (Alcantarilla et al., 2012; Jaimez et al., 2017; Zhang
et al., 2020; Yu et al., 2021). Alcantara et al. present dense
scene flow into visual SLAM, which performs scene flow
calculation on images, and detects moving objects in the
environment by comparing the scene flow changes of features
(Alcantarilla et al., 2012), but the shortcomings of their method
have been clearly recognized that time consumption severely
affects the optical flow method, which is also restricted by the
constant luminosity hypothesis. In addition to the
aforementioned improvements to the front-end visual
odometry, Henein et al. present a factor graph based back-end
optimization method that incorporates moving point factors for
dynamic objects to form constraints on feature observations,
camera poses and dynamic object movement by semantic
segmentation algorithms (Henein et al., 2020). Recently, some
notable works focus their research on data association for dealing
with the connection between semantic objects and RGB images in
dynamic environments (Bowman et al., 2017; Doherty et al.,
2019; Yu and Lee, 2018; Ran et al., 2021), and allow for better
application of semantic techniques in SLAM algorithms.
Furthermore, to deal with the uncertainty of environment, a
potential approach is to improve SLAM algorithm by combining
with various optimization-based algorithms (Wu and Shen, 2018;
Shen et al., 2021; Shen et al., 2020b; Le et al., 2021;Wu et al., 2021;
Toyoda and Wu, 2021) for scholastic systems.

Inspired by recent researches based on the semantic algorithm,
we investigate the problem of real-time localization and dense
map construction for the indoor mobile robots and propose a
novel RGB-D SLAM framework which leverages a faster object

detection method to obtain semantic information from RGB
image and perform a dense map constuction with dynamic
objects rejected.

Specifically, the main contributions of the SLAM framework
presented in this paper are shown below:

• We design a real-time combined mismatch rejection
algorithm based on the lightweight YOLO-Fastest object
detection algorithm and Euclidean clustering method (OC-
SLAM) where a robot can detect bad keypoints from
dynamic objects through semantic information and point
cloud clustering information. Especially, OC-SLAM is
robust and computationally efficient in dynamic scenes.

• We present a dense point cloud reconstruction with
dynamic objects rejected in OC-SLAM which leverages
depth camera to directly obtain the depth image of
scenes and remove dynamic objects in complex
environments with Kd tree in order to create highly-
precise dense maps.

• We evaluate OC-SLAM on a RGB-D benchmark dataset
with the other state-of-the-art SLAM methods, and the
proposed method achieves improved accuracy and
robustness in dynamic scenes.

In the following section of this paper, we provide the
framework of the proposed method OC-SLAM with the
modules in the semantic object detection thread and dense
mapping thread. Then Section 3 includes experimental
comparison with the original ORB-SLAM2 algorithm on TUM
RGB-D dataset (Sturm et al., 2012). Ultimately, Section 4
contains a brief discussion of the conclusions and results.

2 SYSTEM OVERVIEW

The dynamic objects in the robot operating environment will
seriously affect the estimation of camera poses and mapping
accuracy of the algorithm. Similarly, SLAM systems with
monocular vision cameras cannot obtain real metric scale
information in real complex environments. To accurately
detect the dynamic features in the image, an improved
algorithm is presented in this paper, whose overall framework
is shown in Figure 1. Based on the original ORBSLAM2 (Mur-
Artal and Tardós, 2017), a dense map reconstruction thread and
an object detection thread are added in the system, and the
identification of dynamic objects and the dense point cloud map
reconstruction with dynamic objects removed is implemented by
these two threads.

2.1 Dynamic Object Detection
You only look once (YOLO-Fastest) algorithm is now known to
be the fastest and lightest improved version of the open-source
YOLO universal object detection algorithm (Qiuqiu, 2021),
which can run in real-time on the low-cost devices and
consists of the convolutional neural network (CNN) (Long
et al., 2015), so this paper utilizes the YOLO-Fastest detection
algorithm and combines the geometric epipolar constraint
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method for feature mismatch rejection, and further improves the
original ORBSLAM2 system with three threads by adding the
object detection thread for classification and localization of the
original RGB image.

After the initialization of the SLAM system, the depth image is
pre-processed to convert the depth map into real-scale depth
data. As shown in Figure 2, The former thread is proposed to get
the semantic information of the image and outputs the prediction
box with confidence while the latter thread is improved to
perform dynamic features rejection. The image is input to the
YOLO algorithm for image detection after starting the object
detection thread. While entering the main tracking thread, the
extraction of image ORB features and the calculation of
corresponding descriptors are started to complete the update
of map points, and then the initial value of the camera pose is
determined based on the working mode in which the main
tracking thread is located, and the map points are reprojected
andmatched by the initial camera pose. Thematching association
between the map points and the current frame’s features is
discovered. When the system finishes feature matching, it exits
the main tracking thread and waits for the YOLO object
identification algorithm’s detection result. Simultaneously, the
prediction bounding box and confidence data are output by the
object detection thread, where the results indicate the coordinates
of the center point of a single prediction box, the width and height
of the prediction box and the prediction confidence, and finally
filter the information of the prediction boxes with confidence
below 80, as shown in Figure 3, to obtain the prediction boxes of
each target in the image.

2.2 Dynamic Geometrical Constraint
Therefore, when the object detection thread completes the image
detection task, the matching feature pairs of the current frame are
traversed within the main thread, and if the pixel coordinates of
the features are within the prediction frame, the matching
features outside the prediction frame are used to calculate the
fundamental matrix F of the current frame and the previous

FIGURE 1 | The framework of the combined mismatch rejection algorithm, among which the tracking thread is as same as the original algorithm and the other two
presented threads are added in the system.

FIGURE 2 | The flowchart of the improved object detection thread and
tracking thread in the proposed algorithm.
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images, and the distance from the reprojected epipolar lines to the
corresponding matching features of the two adjacent frames is
calculated by the method of geometric constraints (Andrew,
2001). If a point’s distance error exceeds a threshold value set
in a particular mode, the keypoint is considered an outlier, the
corresponding map point matching association will be deleted.
After the image feature extraction and matching process is
completed, the camera pose estimation, local map
establishment, and loop closure optimization process start
implementation. As shown in Figure 4, p1 and p2 are the
projection points of point P on the two camera images I1 and
I2, respectively, the point p1 should be in the projection of the
epipolar lines l1 under ideal circumstances. As shown in Eq. 1, the

calculation of the fundamental matrix F between the current
frame and the previous image can be defined as follows.

pT
2Fp1 � 0, F � K−Tt × RK−1, (1)

where K is the intrinsic matrix, t and R are the translation and
rotation matrix, respectively. As a result, the distance between the
keypoint and the reprojection line may be computed using the
fundamental matrix, as shown in Eq. 2:

d � pT
2Fp1�����������

A2 + B2 + C2
√ , (2)

where d denotes the distance between points to lines, A, B and
C denote the epipole line parameters. The minimum distance
threshold is set based on the SLAM system’s different modes
(the distance threshold for the constant velocity motion
model mode is smaller than the distance threshold for the
keyframe mode), and if calculated distance exceeds threshold,
the dynamic feature mismatch rejection is performed.
Especially, the rejection of dynamic feature mismatch is
not done when the SLAM system enters the relocalization
mode because additional feature matching relationships are
required for the initialization of the camera posture when the
system enters the localization mode. Mismatch rejection is
disabled in order to prevent the SLAM system from failing to
initialize with insufficient features matching, which results in
the loss of camera tracking. As shown in Figure 5, it depicts
the result of dynamic feature rejection in the current frame

FIGURE 3 | The demonstration of YOLO-Fastest algorithm object detection for TUM dataset.

FIGURE 4 | The demonstration of epipolar geometry constraint.

FIGURE 5 | Improved algorithm for current frame window with sparse point cloud map.
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window with red dots indicating dynamic points and green
dots indicating normal features, demonstrating that the
enhanced method completes dynamic feature rejection
properly. Moreover, the sparse point cloud generated from
the features removes the map points from moving objects
similarly in second image.

2.3 Dense Point Cloud Map Construction
Only sparse point cloud maps of features are built in the
visualization thread of ORBSLAM2 system, which discards a
large portion of the available map information. For this reason,
sparse maps can not intuitively represent map information and
are not available for other mission planning works such as
navigation and obstacle avoidance by mobile robots that dense
point cloud reconstruction is required. In this literature we
introduce a new dense mapping thread to the ORBSLAM2
system, as shown in Figure 6, which is primarily utilized for
dense point cloud reconstruction of the color and depth images
Fernández-Madrigal (2012). If the coordinates of the picture
sequence’s points under the pixel coordinate (·)P are [u,v,1]T,
then the coordinate values [x,y,z]T corresponding to those under
the camera coordinate system (·)C can be determined using Eq. 3:

z � d

s

x � (u − cx) · z

fx

y � (v − cy) · z

fy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (3)

where d is the depth value of the image and s is the depth metric
scale of the camera. When the SLAM system inputs the depth
map, its depth needs to be transformed to the real scale before it
can be calculated. cx, cy, fx and fy are the camera intrinsic
parameters. With the help of the camera extrinsic matrix, the
pixel points can be converted from the coordinate system (·)C to
the real coordinates in the world coordinate system (·)W as
follows:

X
Y
Z

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � (T
x
y
z

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦)1: 3 � R
x
y
z

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + t, (4)

where the coordinates [X,Y,Z]T represent the coordinate in the
coordinate system (·)W, then the correspondence of points
between the pixel coordinate and the world coordinate is

FIGURE 6 | The illustration of dense point cloud reconstruction thread in OC-SLAM system which is designed to perform the construction and clustering of dense
point clouds without moving objects.

FIGURE 7 | Examples of Euclidean segmentation in TUM dataset, (A) is the point cloud segmentation with human bodies in the sitting posture, (B) are the clusters
of the human body in the sitting and standing posture.
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obtained, and the RGB value acquired from color image is set for
each point cloud in the dense mapping thread, so that the basic
dense point cloud is successfully constructed. However, in some
practical applications, the pixel size of an image is usually 640 ×
480, and the number of basic dense point clouds can be up to
300,000, so the point cloud voxel filtering and point cloud fusion
are also needed for the basic point cloud.

2.4 Point Cloud Clustering Method
In this paper, the Euclidean Clustering method (Xiangyang et al.,
2017) will be utilized to accomplish the point cloud segmentation
task with the help of the YOLO-Fastest algorithm, which
segments the point cloud data of the dense map into diverse
single independent point cloud clusters. Figure 7 illustrates the
figures of two frames for 3D point cloud Euclidean clustering
segmentation, when we input the depth image data from the
dataset into the algorithm, a more accurate point cloud Euclidean
segmentation result can be obtained with the assistance of
semantic information from object detection method. Two
point cloud clusters of human body in a sitting position with
a well-defined point cloud profile extracted from the first image
and the right corner of the table failed to remove through the filter
since the human body is too close to the corner of table in
Euclidean distance. In the second frame, a cluster of the human
point cloud in sitting posture and a cluster of the human point
cloud in standing posture are extracted, and the point cloud
segmentation effect is better with no wrong clustering occurs.

2.5 Combined Mismatch Rejection
Algorithm
The specified point cloud clusters in a frame are effectively
separated after finishing the misson of Euclidean segmentation

clustering of dense point cloud data. With this in mind, this
paper presents a new mismatch rejection strategy algorithm for
SLAM systems based on the Euclidean clustering method in
OC-SLAM, which will be combined with an improved method
based on the YOLO-Fastest object detection algorithm for
jointly rejection of features of dynamic objects and ORB
feature extraction in color image is carried out regularly on
the main tracking thread, as shown in Figure 8. Moreover,
feature matching is performed using different approaches
depending on the incoming tracking mode and waits for the
Euclidean clustering segmentation results in place once feature
matching is accomplished. Accordingly, the dense mapping
thread generates a sequence of independent point cloud
clustering results by the use of the Euclidean clustering
method, which includes point cloud dense reconstruction,
voxel filtering and planar model segmentation. Afterwards,
SLAM system set the dense build thread to idle. The tracking
thread continues to implement after receiving the point cloud
data from dense mapping thread, projecting each point cloud
cluster into the pixel coordinate (·)P using the equation:

u � fx · x + cx
v � fy · y + cy

{ · (5)

The reprojection distance is calculated for the feature pairs
contained in each point cloud according to the mismatching
judgment method with respect to the epipolar constraint.
Afterward, if more than half of the feature pairs fail to pass
the geometrical constraint detection, the point cloud cluster is
judged to be extracted from a moving object, and the features in
the whole point cloud cluster and prediction box generated from
the YOLO-Fastest algorithm are eliminated to perform the
processing of moving objects removal in dynamic scenes.

2.6 Dynamic Object Rejection
Based on the previous work, the dense point cloud map is refined
further and the clustered point cloud clusters of moving object in
the base dense point cloud map are eliminated by constructing a
Kd-Tree based on the results of point cloud Euclidean clustering,
resulting in an environment map devoid of dynamic objects. As
shown in Figure 9, two sets of color maps and depth images are
input for dense construction: Figure 9A is the original color
image, Figure 9B is the result of dense point cloud reconstruction
and Figure 9C is the dense point cloud map with dynamic objects
removed in which the point cloud clusters belonging to moving
objects are essentially removed using the Euclidean clustering
algorithm.

3 EXPERIMENTALS AND RESULTS

In this section, the improved algorithm is tested and validated on
the TUMdataset from the Technical University ofMunich, which
collects image data in different experimental environments using
Microsoft’s Kinect camera and provides camera trajectory
groundtruth for each dataset to evaluate the accuracy of the
SLAM algorithm. In this research, dynamic and static

FIGURE 8 | The process of the rejection of dynamic objects. The
presented mapping thread is illustrated in the yellow border which contains
special operations on point clouds while the tracking thread is illustrated in the
blue border which was improved to perform the task of dynamic
keypoints rejection.
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environment data are utilized to test the enhanced algorithm’s
accuracy of camera pose estimation and dense map construction
performance.

3.1 Trajectory Estimation Experiments
In order to verify the robustness and accuracy of the improved
algorithm’s pose estimation, experiments under different
complex environments are designed in this paper. The Root
Mean Squared Error (RMSE) is used as the evaluation
criterion for the absolute camera trajectory error (Sturm et al.,
2012), and the RMSE of the estimated poses at all moments is
calculated as follows:

RMSE(E) � 1
n
∑n
t�1

‖trans(Et)‖2, (6)

where error Et denotes the absolute trajectory estimation error (ATE)
of the SLAM system at moment t, which is obtained by the
calculation of the difference between the estimated trajectory of
the camera pose and the groundtruth of the dataset. trans(·)
indicates the translation of absolute trajectory estimation error Et
and the enhancement effect in the experiment is calculated as the
relative enhancement rate of the combined improved algorithm
trajectory error with respect to the original algorithm. As shown
in Figure 10, Figure 10A is the absolute trajectory error graph of the

FIGURE 9 | (A) are the raw images, (B) are the point cloud dense reconstruction, (C) are the dense reconstruction with dynamic object rejection from which it can
be seen that the clusters of moving human body in the dataset are removed by the improved algorithm.

FIGURE 10 | (A) is the absolute trajectory error distribution of the combined improved algorithm, (B) is the absolute trajectory error distribution of the ORBSLAM2.
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original algorithm without Loop closure and Figure 10B is the error
evaluation graph of the combined algorithm, it can be seen that the
majority of the time the error is below 0.01m in the improved
algorithm except for some extreme cases. Notably, at the moment of
object detection algorithm failure, the Euclidean clustering module
can continue to carry out the rejection of mismatch, which
complements the object detection module to increase the
robustness of the system and reduces the overall trajectory
absolute error. Likewise, indicators of the median and mean
trajectory error have significantly improved. Further, the error
comparison between the improved algorithm and the original
algorithm is shown in Table 1. And the evaluation indexes of the
improved algorithm in the dynamic data sequences walking_static,
walking_xyz, walking_half without loop closure are better than the
original algorithm while the accuracy improvement effect is up to
97.8%, In spite of this, the accuracy in the image sequences in the
static environment is approximately equal to that of the original

algorithm in the static environment, indicating that the improvement
modules in the algorithm do not lose too much algorithm
performance. Importantly, the processing time per frame is only
97ms on a low-performance processor, while the DynaSLAM
(Bescos et al., 2018) algorithm takes 195ms for the Mask R-CNN
module alone using theNvidia TeslaM40GPU. Therefore, compared
with the improved method using Mask R-CNN, the improved
algorithm in this paper greatly improves the operation speed of
the algorithm without excessive loss of accuracy.

3.2 Dense Reconstruction Experiment
Based on the successful detection and recognition of dynamic point
cloud clusters, this paper performs point cloud dense building
experiments on the improved algorithm, inputting normal image
sequences in TUM dataset and image sequences in dynamic scenes
to compare the dense building performance of the improved algorithm
in two different dataset environments. As shown in Figure 11, in the

TABLE 1 | The comparison of absolute trajectory error of pose estimation in TUM dataset.

Image
sequence

ORB-SLAM2(m) Proposed(m) Improvements(%)

RMSE Mean Media RMSE Mean Media RMSE Mean Media

walking_static 0.325 0.284 0.213 0.007 0.006 0.006 97.8 97.8 97,1
walking_xyz 0.756 0.655 0.653 0.129 0.119 0.118 84.1 81.7 81.9
walking_half 0.426 0.433 0.414 0.083 0.085 0.080 80.4 80.3 80.6
sitting_static 0.008 0.008 0.007 0.008 0.008 0.007 −1.1 −3.7 2.6

FIGURE 11 | The illustration of presented algorithm for dense point cloud map construction performance in the normal dataset, (A) is the sparse map, (B) is the
dense point cloud map construction result, (C) is the dense map with moving body rejected.

FIGURE 12 | The illustration of presented algorithm for dense point cloud map construction performance in the dynamic dataset, (A) is the sparse map, (B) is the
dense point cloud map construction result.
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dense reconstruction experiment under the normal environment
dataset, Figure 11A shows the sparse point cloud map established
by the original system where the red points represent the map points
successfully observed and the black points represent the map points
observed in the current frame. Since the algorithm only calculates map
points from the extracted features and performs fusion operation for
redundant map points, only the sparse point cloud map is established.
Figures 11B,C show the dense point cloudmap built by the improved
algorithm, which completely recovers the point cloud data in the
dataset and further extracts more image information from the image
sequence, making the mapping performance of the SLAM system
more intuitive and the normal line of themap can be further calculated
subsequently, thus reconstructing the network from the point cloud
and converting the point cloud into a grid map. By contrast, as shown
in Figure 12, in the dense reconstruction experiments under dynamic
scene datasets, Figure 12A shows the sparse point cloud map built by
the original system, which is built with low accuracy and fluctuating
map updating with wrong map points due to the influence brought by
fast-moving dynamic objects, thus leading to poor back-end nonlinear
optimization of camera poses and map points. With this in mind,
Figure 12B shows the dense point cloud map built by the improved
algorithm, which not only recovers the specific scenes in the dataset
completely but also uses the YOLO-Fastest object detection algorithm
and the Euclidean clustering algorithm to eliminate the dynamic
objects clusters in the dynamic scenes and retains the information
of static objects in the point cloudmap, which improves the robustness
and accuracy of the dense point cloud mapping.

4 CONCLUSION

In this paper, we present an improved semantic SLAM algorithm
(OC-SLAM) based on YOLO-Fastest object detection and Euclidean
clustering method to reduce the impact of dynamic features on the
accuracy of camera trajectory calculation by special processing of
tricky issues in dynamic scenes to solve the problem of pose
estimation and dense map construction. In comparison to Mask
R-CNN and other semantic segmentation recognition methods, the
proposed algorithm in this paper can greatly accelerate computation
speed by leveraging the characteristics of the YOLO-Fastest algorithm
to meet the algorithm’s real-time requirements without sacrificing
pose estimation accuracy. The absolute trajectory error(ATE)
experiments in the TUM dataset indicate that this approach can

increase accuracy on a low-performance embedded devices and build
a dense point cloud map in the complex environment with dynamic
objects eliminated.
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