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There is a growing tendency for industrial consumers to invest in both photovoltaic (PV)
and energy storage systems (ESSs) to meet their electricity requirements. However, the
uncertainty of load demand and PV output brings great challenges for ESS operation. In
this paper, a stochastic model predictive control (MPC) approach-based energy
management strategy for ESSs is proposed. A non-parametric probabilistic prediction
method embedded in time series correlation is adopted to describe the uncertainty of load
demand and PV output. Then, a two-stage energymanagement model is proposed aiming
at minimizing the total operation cost. The upper stage can generate an hourly operation
strategy for ESSs, while the lower stage focuses on a more detailed minute-level operation
strategy. The hourly operation strategy is also used as a basis to guide the ESS operation in
the lower stage. Besides, a chance constraint was introduced to achieve a win–win
solution between PV power consumption and electricity tariff, while the terminal value
constraint of the capacity of ESSs to better cope with the uncertainty beyond the
prediction time window. Finally, the numerical results showed that the proposed
method can achieve an effective ESS energy management strategy.
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INTRODUCTION

In recent years, photovoltaic (PV) panels and energy storage systems (ESSs) have been increasingly
invested in to meet the requirements of developing renewable energy (Barchi et al., 2018; Liu et al.,
2018, 2020). Distributed “PV+ESS” systems are helpful to energy consumption management and can
reduce the operating costs of industrial companies. Moreover, distributed “PV+ESS” systems
installed on the user side contribute to shaving the peak load, thereby delaying the expansion of
distribution networks (Müller et al., 2018). However, the energy management of PV+ESS remain a
challenging problem, especially on how to deal with uncertainty propagated by PV. Therefore, it is
necessary to carry out energy management for PV+ESS to achieve maximal PV output consumption
and reduce electricity costs.

In the energy management of PV+ESS, accurate PV output and consumer load demand
predictions are of great importance (Nunna and Doolla, 2014; Sheikhi et al., 2015; Wang et al.,
2017; Sharma et al., 2021). The probabilistic method is one of the most widely used approaches in the
prediction of renewable generation output and demand (Wang et al., 2017; Wan et al., 2018; Huang
et al., 2020). Studies (Nunna and Doolla, 2014; Sheikhi et al., 2015; Wang et al., 2017; Sharma et al.,
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2021) obtain the probability distributions of PV output and load
demand from historical data and then employ the Monte Carlo
method to generate a large number of scenarios to describe the
uncertainty. The probabilistic methods can be divided into two
main categories: parameterized (Reddy et al., 2015) and non-
parametric probabilistic forecasting method (Zhou et al., 2019;
Wan et al., 2020). Parameterized probabilistic forecasting method
can explicitly express the functional relationship among the
probability predictor variables. However, the accuracy of this
type of method is strongly related to the accuracy of parameter
calibration. The error of the prediction result may be large when
the parameter accuracy is low. Among the non-parametric
probabilistic forecasting methods, the quantile prediction
method is currently the most popular (Dumas et al., 2021),
which does not assume a specific distribution and can obtain
more accurate and flexible forecast results of consumers’ energy
consumption and PV output. Thus, it was adopted in this paper
to make the prediction of PV output and demand.

Considering the future state of charge (SOC) is important for
ESSs to make decisions, especially after being integrated with
devices that introduce uncertainties (Tang et al., 2020, 2021; Li
et al., 2021). The length of the prediction time window and the
time granularity could respectively affect the prediction accuracy
(Shangguan et al., 2021) and the corresponding computational
burden. A longer prediction time window can cover the
uncertainty for a longer period, but takes more time to solve.
On the contrary, a shorter one takes less time to solve, but may be
unable to avoid the problem caused by uncertainty (Małkowski
et al., 2021). Therefore, it is necessary to choose a reasonable
length of prediction time window and prediction granularity
according to the demands of real-world applications.

Several existing works (Atzeni et al., 2013; Spiliopoulos et al.,
2017; Xu et al., 2018; Bakeer et al., 2021) have made contributions
to ESS management. Atzeni et al. (2013). proposed an optimal
operation strategy for a smart grid in which users reduce their
electricity expenses by managing owned energy storage devices.
Spiliopoulos et al. (2017) focused on maximizing the economic
benefits of users who had ESSs installed. Atzeni et al. (2013) and
Spiliopoulos et al. (2017) explored the commercial value of ESSs
to the user side and proposed their benefit functions. Compared
with those of the day-ahead prediction of renewable energy
output and load demand, the prediction data obtained during
intraday operation were more accurate. Hence, Xu et al. (2018)
chose to formulate an optimal intraday rolling operationmodel of
energy storage with the prediction data during the intraday. Yin
et al., (2018) adopted model predictive control (MPC) to realize
the intraday rolling optimal scheduling of ESSs. However, the
guidance of day-ahead schedules to the intraday operation was
ignored in the above works. To this end, we leveraged the SOC
schedules from the long-term operation scheduling to guide the
short-term scheduling in the intraday operation, leading to a
better consideration of the uncertainty beyond the prediction
time window in the short-term operation model. Moreover, to
better integrate renewable energy, chance constraints were
introduced to restrict the integration risk, which can make a
better trade-off between the economic benefit and integration
capacity.

To sum up, focusing onminimizing electricity costs, this paper
proposes a two-stage rolling energy management scheme that is
driven by stochastic MPC. It combines time intervals with coarse
and fine time granularity and can achieve precise optimal control
of ESSs. Chance constraints were introduced to restrict the
integrated capacity of renewable energy, and terminal SOC
constraints were added to better deal with the uncertainty
from the prediction time window. Probabilistic forecasting
methods were used to describe the uncertainty of PV output
and demand, providing data support to energy management. The
effectiveness of the method proposed in this paper was verified
through the analysis of numerical case studies. The main
contributions of this paper are as follows:

1) A stochastic MPC-based energy management strategy for
ESSs is proposed. It is helpful to energy consumption
management and can reduce the operating costs of
industrial companies.

2) A scenario generation method based on the non-parametric
probabilistic prediction method embedded in time series
correlation is adopted to describe the uncertainty of
demand and PV output.

3) The terminal value constraint of the capacity of ESSs is
introduced to cope with the uncertainty beyond the
prediction time window. It can better cover the space
requirements of energy storage in the near future.

This paper is organized as follows: Introduction presents the
framework of the proposed model. The Framework of the
Proposed Model gives the details of the probabilistic
prediction-based scenario generation method. The energy
management scheme based on stochastic MPC is detailed in
Scenario Generation Method Based on the Probabilistic Prediction
Method. Several cases are tested in The Energy Management
Strategy Based on Stochastic MPC to validate the effectiveness
of the proposed method. Conclusion summarizes this paper.

THE FRAMEWORK OF THE PROPOSED
MODEL

ESSs may fail to endure charging or discharging for a long
period due to the limited stored energy and storage capacity.
Therefore, it is necessary to consider future energy
requirements of ESSs when scheduling charging and
discharging. The scheduling time horizon of the rolling
optimization problem is designed to have two timescales.
The coarse time granularity scheduling of ESSs is
formulated based on an hourly timescale. The longer the
forecast time window of the hourly timescale, the more
adequate is the consideration of future requirements. The
fine time granularity scheduling of ESSs is formulated based
on a minute timescale, and its prediction time window is
shorter compared with that of hourly scheduling. In the
minute timescale, the step size of the control is usually set
as 5–15 min to better adapt the power fluctuation, ensuring a
good tracking effect of ESSs. In this paper, the step size of the
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control for the fine granularity scheduling is set as 5 min. The
framework for the two-stage operation model is shown in
Figure 1.

Both the hourly and the 5-min timescale operation models
were based on the stochastic MPC approach. Thus, they share the
same framework, which is shown in Figure 2, and include the
following steps:

Step 1: Initialize or update information. The information
includes the current SOC of the ESS, real-time demand and
output of renewable generation, and the most recently updated
load and renewable generation output forecasts. These pieces
of information are used to conduct the control strategy.
Step 2: Calculate the optimal control strategy. The control
strategy can be calculated by solving the finite-time control
problem with the above-mentioned information.

Step 3: Execute the strategy. The control strategy for the
binding time interval will be executed; then, go back to step 1.

SCENARIO GENERATION METHOD BASED
ON THE PROBABILISTIC PREDICTION
METHOD
Compared with the deterministic prediction method, the
probabilistic prediction method can provide more
comprehensive prediction information and is more conducive
to accurate prediction of user demand and PV output. Because
the procedures to predict load and PV output are the same, we
used the demand prediction as an example to introduce the
prediction procedure.

Probability Distribution
The quantile regression is used to obtain the estimates of the
quantiles of the load distribution. The specific quantile model of
the load can be written as Eqs. 1 and 2.

Pr(Dt ≤ kαt ) � α (1)

kαt � F−1
t (α) (2)

F̂t � {k̂αit
∣∣∣∣∣0≤ α1 ≤ . . . ≤ αN ≤ 1} (3)

where Pr() is the probability operator;Dt is the load at time t; α
represents the level of kαt k

α
t ; and Ft() is the cumulative

distribution function of the load; F̂t represents the predicted
quantile sequence at time t spanning from 0 to 1, which is used
to represent the cumulative distribution function curve of load
forecasting. For each moment, there is a set of predicted
quantile sequences. kαt is the actual quantile and k̂

αi
t

represents the estimated value. N represents the number of
quantiles.

There are four steps to obtain the probability distribution:

a) Obtain the quantile sequence via Eqs. 1–3.
b) Use the linear interpolation method to process the quantile

sequence to obtain the cumulative distribution function curve
Ft()Ft().

FIGURE 1 | Flowchart of the two-stage operation model.

FIGURE 2 | Illustration of model predictive control (MPC).
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c) Use the uniform sampling method to generate a set of random
variables, y � [y1, y2, . . . , yT]T.

d) By solving the inverse function Dt � F−1
t (α), the cumulative

probability of the load D � D1, D2, . . . , DT is obtained.

Scenario Generation Method Embedded
Time Series Correlation
With the obtained probability distribution, a series of forecasted
scenarios of the load can be generated by the random sampling
method. These generated scenarios that retain the probability
characteristics and time series correlation of the load can simulate
the load change. On the basis of the probabilistic prediction
model, the multivariate Gaussian Copula method can be used to
define the correlation structure of the load and can realize the
load prediction, which considers the time series correlation. This
method comprises five steps to generate scenarios:

Step 1: Construct the multivariate cumulative distribution
function. On the basis of the probability prediction model,
the multivariate Gaussian Copula function is further
introduced to construct a new multivariate cumulative
distribution function, F(D1, D2, . . . , DT), that fits the time
series correlation of the load.

F(D1, D2, . . . , DT) � C(F1(D1), F2(D2), . . . , FT(DT))
� C(y1, y2, . . . , yT) (4)

Step 2: Generate the quantile sequence. Generate uniformly
distributed quantile sequences, a � [a1, a2, . . . , aT],
within [0,1].
Step 3: Obtain the value of the random variable yi. Firstly,
define C(y1, 1, . . . , 1) � a to calculate the actual value yp

1 of
the first random variable y1. Secondly, let the partial derivative
of the second random variable y2 be equal to a2, which is the
value of marginal cumulative distribution function.

zT−1C(y1, y2, 1, . . . , 1)
zy1

∣∣∣∣∣∣∣∣
y1�yp1

� a2 (5)

Then, the value of the second variable yp
2 can be obtained via

solving the partial derivative Eq. 5, and then let y2 � yp
2. Thirdly,

make the partial derivative of the third random variable y3 equal
to a3 and obtain the value of the third random variable by solving
the partial derivative Eq. 6. Finally, repeat these steps until the last
one is solved.

zT−1C(y1 ,y2 ,y3 ,1,...,1)
zy1zy2

zT−1C(y1 ,y2 ,1,...,1)
zy1zy2

∣∣∣∣∣∣∣∣∣∣∣∣
y1�yp1 ,y2�yp2

� a3 (6)

Step 4: Generate a quantile series. Repeat steps 2 and 3 for M
times. Let the result [yp

1 , y
p
2, . . . , y

p
T]T obtained in the ith

iteration be vector yp
i . Finally, M sampling values

yp
i , i � 1, 2, . . . ,M, for the multivariate random variable y,

can be obtained.

Step 5: Generate load scenarios. With the quantile sequence
obtained in step 4, the time-dependent load sequences Dw

i �
[Di,1, Di,2, . . . , Di,T]T can be calculated via the inverse function
Di,t � F−1

t (yp
i,t).

A series of time-dependent load scenarios of users can be
generated via the above method. The generated scenarios can be
used to convert the uncertain problem into a deterministic
problem. It should be noted that a large-scale scenario set will
result in a problem that is difficult to solve. Hence, in this paper,
the k-means clustering algorithm is adopted to reduce the scale of
scenarios for reducing the solution time while retaining the
uncertain feature of the load. The occurrence probabilities of
the centric scenarios in the clusters will be different, but their sum
will always be equal to 1.

THE ENERGY MANAGEMENT STRATEGY
BASED ON STOCHASTIC MPC

The General Form
The general form of the stochastic MPC-based optimal operation
model is formulated as follows. The objective value is written as
Eq. 7. The state function is formulated as Eq. 8. Equations 9 and
10 are respectively the chance constraints of the status and inputs.
Equation 11 represents the terminal value constraints.

min{πk+1}N−1
j�0

Exk[∑N−1
j�0 J(xk+j, πk+j) + JN(xk+N)] (7)

xk+1 � Axk + Buk + Gωk (8)

Pr(Exuk+j ≤ 1)≥ 1 − ε, j ∈ N[0,N−1] (9)

Pr(Euuk+j ≤ 1)≥ 1 − ε, j ∈ N[0,N−1] (10)

Tf()≤ 0 (11)

where {πk+1}N−1
j�0 is the control rate, xk represents the system state

variables, uk is the system input, and ωk represents the noise. The
value of noise ωk at time k and the future are unknown. N is the
time window of the forecasting time period and ε is the
probabilistic value of chance constraints. Overall, the
stochastic MPC problem can be considered as a stochastic
programming problem.

To apply the above general stochastic MPC model to the
proposed two-stage energy management of ESSs, the following
three aspects need to be figured out: 1) input variables, including
the current load Dt, the current PV output PSolar,Max

t , and the
electricity price Ct; 2) state variables, including the ESS SOC Et,
the ESS charging power Pchr

t , the ESS discharging power Pdis
t , and

the matching score of the ESS to the day-ahead schedule Gt; 3)
noise information, including the uncertainty of the predicted PV
output PSolar,Max

t+Δt and the load value Dt+Δt.

The Two-Stage Energy Management Model
In this paper, the proposed energy management scheme of ESSs
includes two parts: the upper stage (coarse time granularity
scheduling) and the lower stage (fine time granularity
scheduling). The time interval of the upper stage (hourly
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operation) is indexed byH � {0, 1, 2, . . . , 23}; the time interval of
the lower stage (hourly operation) is represented by
τ � {0,Δt, 2Δt, . . . , 11Δt}. A complete operation cycle can be
represented by multiplying two vectors, (h, t) ∈ H × τ, where
(h, 11Δt + Δt) � (h + 1, 0). It is worth noting that, at different
timescales, the model framework remains unchanged.

The Upper Stage
The coarse time granularity scheduling in the upper stage focuses
on providing a reference to the underneath fine time granularity
scheduling. Particularly, in the upper stage, the forecast step of
renewable generation output and load is set as hourly, and the
forecast time window is set as the whole day. The objective
function of the hourly operation scheduling can be written as
Eq. 12, minimizing user electricity expense. In this stage, the
subscript of the lower stage t is omitted.

min∑Sc

s�1πs∑23

h�h0[C(Eh,s, p
Ess
h,s )

∣∣∣∣∣E0,0] + ccap · pGrid,Max (12)

C(Eh,s, p
Ess
h,s ) � ch(pchr

h,s − pdis
h,s) · Δh (13)

where πs represents the probability of scenario s; C(Eh,s, pEssh,s )
represents the operation cost for hourly operation; E0,0 represents
the initial energy status of the ESS; and ccap represents the
capacity price for electricity supply. pGrid,Max represents the
upper bound of power from the grid during the whole
operation period. ch is the energy price at hour h.

Energy Evolution Function
The energy evolution function of the hourly energy management
model is written as follows:

Eh+1,s � Eh,s + pchr
h,s · ηchr1{(pchr

h,s
−pdis

h,s
)< 0} − pdis

h,s · 1{(pchr
h,s

−pdis
h,s
)< 0}/η

dis

(14)

where ηchr and ηdis respectively represent the charging efficiency
and discharging efficiency. 1{p} is an indicator function, which
returns 1 if the function in {} is true; otherwise, it returns 0.

State Variables
State variables include energy, Eh,sEh,s; charging power, pchr

h,s ;
discharging power, pdis

h,sp
dis
h,s ; charging indicator, yh,s; and

discharging indicator, zh,s. Constraints include four different
sets, namely, power balance constraints as in Eq. 15, energy
limits as in Eq. 16, and the charging and discharging power limits
as in Eqs. 17 and 18. Constraint 19 forces the charging and
discharging of ESSs to be exclusive.

Dh,s + (pchr
h,s − pdis

h,s) � pGrid
h,s + psolar

h,s (15)

Emin ≤Eh,s ≤Emax (16)

0≤pchr
h,s ≤yh,s · pEss,max (17)

0≤pdis
h,s ≤ zh,s · pEss,max (18)

yh,s + zh,s ≤ 1 (19)

In Eqs. 15–19, pGrid
h,s represents the power obtained from the

grid; psolar
h,s is the dispatch of PV; and Emax and Emin are the upper

and lower energy bounds of ESS, respectively. yh,s is the charging
status and zh,s is the discharging status. psolar

h,s is the forecast value
of the PV output.

Input Variables
The load and PV output are defined as the input variables. In this
paper, the proposed model needs to fully supply the load, and the
load forecast will be updated as in Eq. 15. In addition, the PV
output constraints are formulated as

0≤psolar
h,s ≤psolar,Max

h,s (20)

Chance Constraints
To better integrate PV, chance constraints were introduced.
The widely used chance constraint for renewable energy
integration is shown in Eq. 21. It represents that the actual
use of PV power is higher than its predicted value by 90%, and
the probability of PV power usage should be higher than β.

Pr(90% · psolar,Max
h,s ≤psolar

h,s ≤psolar,Max
h,s )≥ β (21)

Tang et al. (2019) proposed an improved chance constraint
model where the expected value of the integrated renewable
energy output is higher than 90% of its predicted scenarios.
The improved model can be formulated as

E[∑S

s�1∑
T

h�1p
solar
h,s ]≥ 90%∑S

s�1∑
T

h�1p
solar,Max
h,s (22)

With the introduction of scenario weights, constraint 22 can be
rewritten as Eq. 23. Compared with the original chance
constraints, the modified model can be solved via a
commercial solver, such as Cplex and Gurobi.

∑S

s�1πs∑T

h�1p
solar
h,s ≥ 90%E[∑S

s�1πs∑T

h�1p
solar,Max
h,s ] (23)

Terminal Energy Constraints
As an energy-limited device, we introduce the energy constraint
of ESSs to force the terminal energy back to the initial value to
ensure their effective periodic operation. This constraint can be
written as:

EH,s � E0,s (24)

where E0,s and EH,s represent the initial and terminal energy,
respectively.

The Lower Stage
The lower stage gives the details of the minute-level operation,
which focuses onmaintaining the power balance in a short period
and is conducive to smoothing the output of integrated PV. The
objective function of the minute-level energy management model
is written as Eq. 25.

min∑SEB

s�1πs∑TEB

t�t0[C
EB(EEB

t,s Eh,s,ΔpEsst,s )
∣∣∣∣∣EEB

0 ] + ccap · pGrid,Max

(25)
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CEB(EEB
t,s Eh,s,ΔpEsst,s ) � ct(Δpchr

h,s − Δpdis
h,s) · Δt (26)

where ΔpEsst,s includes two parts, namely, the deviation of charging
power Δpchr

h,s and the discharge power Δpdis
h,sΔpdis

h,s . S
EB represents

the scenario number of the minute-level operation; TEB

represents the time interval for the minute-level operation;
CEB(EEB

t,s Eh,s,ΔpEsst,s ) is the operation cost of the deviation
operation of energy storage; EEB

0 is the initial operation status
of energy storage for the minute-level operation; and ct represents
the electricity price.

Energy Evaluation Function
The minute-level energy evaluation function is similar to that of
the hour-level model and further considers the change in the
charging and discharging power. Hence, this energy evaluation
function can be written as:

Eh,t+Δt,s � Eh,t,s + pchr
h,s · ηchr1{(pchr

h,s
−pdis

h,s
)< 0} − pdis

h,s ·
1{(pchr

h,s
−pdis

h,s
)< 0}

ηdis

+Δpchr
h,s · ηchr1{(pchr

h,s
−pdis

h,s
)< 0} − Δpdis

h,s ·
1{(pchr

h,s
−pdis

h,s
)< 0}

ηdis

(27)

State Constraints
Similarly, the state constraints of the minute-level operation model
are also made up of four different parts: 1) the power balance in Eq.
28; b) the capacity constraints of energy storage in Eq. 29; c) the
charging and discharging power constraints of energy storage shown
Eqs. 30 and 31; and d) the status constraints of energy storage in Eq.
32. Based on the state constraints of the hour-level operation model,
all the following formulations further consider adjusting the
charging and discharging power of the energy storage during the
minute-level operation period.

Dh,t,s + (pchr
h,t,s − pdis

h,t,s) + (Δpchr
h,t,s − Δpdis

h,t,s) � pGrid
h,t,s + psolar

h,t,s (28)

Emin ≤Eh,t,s ≤Emax (29)

0≤pchr
h,t,s + Δpchr

h,t,s ≤yh,t,s · pEss,max (30)

0≤pdis
h,t,s + Δpdis

h,t,s ≤ zh,t,s · pEss,max (31)

yh,t,s + zh,t,s ≤ 1 (32)

Input Variables
In this stage, the predicted PV output will be updated by the 5-
min forecasted one. Thus, the constraints can be rewritten as.

0≤psolar
h,t,s ≤p

solar,5−min
h,t,s (33)

where psolar
h,t,s is the predicted value of the PV output for the 5-min

ahead operation.

Chance Constraints
In the same way, the chance constraints for renewable generation
consumption can be rewritten as Eq. 34 for the minute-level
operation.

∑S

s�1πs∑T

h�1p
solar
h,s ≥ 90%E[∑S

s�1πs∑T

h�1p
solar,5−Min
h,s ] (34)

Terminal Value Constraints
Compared with the minute-level operation, the hourly
operation strategy can better reflect the future requirement
of the energy storage space in a longer prediction time window.
To cover the space requirement of energy storage in the future,
the energy state of energy storage in the lower stage at terminal
point should be around that calculated by the upper stage. To
constrain this, the matching degree at the terminal point is
introduced. Thus, the terminal value constraint can be
formulated as.

Δeh,t �
∣∣∣∣Eh+n−1,t+12Δt − Êh+n,t

∣∣∣∣
Emax

≤ c (35)

The deviation ratio value Δeh,t is used to measure the deviation
ratio of the capacity of ESSs at the terminal point between the
minute-level operation Eh+n−1,t+12Δt and the hourly operation
Êh+n,t. The deviation ratio should be less than that of the given
maximum deviation ratio c.

CASE STUDY

Parameters
The proposed two-stage energy management is expected to be
validated in a test system. The test system includes the user, PV
panel, and energy storage. The load historical data were obtained
from an industrial user in Sichuan Province, China, and its
baseload is 3.25 MW. The rated power of PV is 1 MW. The
direct quantile regression method was used to obtain the day-
ahead load probability prediction results. The interval and the
prediction time window for hourly scheduling are 1 and 24 h,
respectively, while those for minute-level scheduling are 5 and
180 min, respectively. In this paper, a sodium–sulfur (NaS)
battery was used to test the effect of the proposed model. The
maximum charging and discharging powers are both 300 kW,
and the maximum capacity is 900 kWh. The charging and
discharging efficiencies of energy storage are both 90%. The
time of use price information are as follows: 1) $0.07/kWh
from 5:00 p.m. to 7:00 a.m.; 2) $0.134/kWh from 7:00 a.m. to
9:00 a.m. and from 2:00 p.m. to 5:00 p.m.; and 3) $0.198/kWh for
the rest.

Analysis of the Prediction Results
The PV output had a strong correlation with seasons, while load
had a strong correlation with working hours. Hence, to verify the
accuracy of the adopted prediction method, 1,000 forecasted
scenarios for load and PV output for a summer working day
were generated via the proposed prediction method, which
considers the time series correlation. The k-means clustering
method was used to obtain the typical scenarios of PV and load.
The clustering results are shown in Figure 3. The shadow areas in
Figure 3 represent the range of forecasted PV output and load at
the 80% confidence level.
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The probability prediction method presented in this paper
further considers the time series correlation, which showed better
performance in load and PV output prediction. Therefore, to discuss
the effectiveness of the predictionmethod that considers a time series
correlation, control experiments were carried out in this section.
Another 1,000 sets of typical daily load and PV output forecasted
scenarios without considering time series correlationwere generated.
The performance of the two forecasting methods can be calculated
by comparing the obtained results with the actual values. The
performance metrics of the two prediction methods are listed in
Table 1. The performance metrics of the proposed forecasting
method were 4.1e−2 for variance, 2.778% for kurtosis, and 0.456
for skewness. However, the performance metrics for the comparison
method were 3e−3, 1.454%, and 0.242, respectively. It can be learned
that the proposed prediction method, which takes into account the
time series correlation, can forecast the load data more precisely.

Analysis of the Energy Management
Strategy
Hourly Energy Management Strategy
With the predicted daily load and PV output as inputs, the
optimal operation results for the hourly operation model can

be calculated and are shown in Figure 4. The ESS keeps charging
from 1:00 a.m. to 8:00 a.m. There are two reasons for this
phenomenon: 1) the smaller fluctuations of the load and PV
and 2) the charging prices were lower. Next, the operation
strategies from 10:00 am to 2:00 p.m. are discussed. The energy
state of the ESS can fully reflect its charging and discharging
behaviors. Therefore, in this paper, the energy state of ESS was
selected to present the ESS operation plan. Figure 4 shows the
results of the predicted operation plans and the actual ones from
9:00 a.m. to 1:00 p.m. Particularly, the operation plan for the
previous moment will be overwritten by the latter moment. For
example, the operation plan at 1:00 p.m. covers these plans at
times 9:00 a.m.–12:00 p.m. The ESS keeps discharging with an
amount of 0.3 MW from 9:00 a.m. to 10:00 a.m. The predicted
data are updated at 10:00 a.m., and the newly obtained operation
strategy from 10:00 a.m. to 11:00 a.m. orders the ESS to work at
the idle status. The operation strategy obtained at 9:00 a.m. and
10:00 a.m. is consistent for 10:00–11:00 a.m. However, with the
forecasting information updated, the operation strategy

FIGURE 3 | Typical scenario for photovoltaic (PV) output and load.

TABLE 1 | Load prediction results of the different prediction methods

Variance Kurtosis (%) Skewness

Regardless of time relevance 4.1e−2 2.778 0.456
The proposed method 3e−3 1.454 0.242

TABLE 2 | Operating costs and objective for three strategies

Tariff/$ Objective value/$

24-h Look-ahead 6,156.15 6,172
3-h Look-ahead 6,283.5 6,300.7
6-h Look-ahead 6,171.5 6,187.3

FIGURE 4 | Real operation strategies (with line and dot) and predicted
strategies (with dash and dot) for energy storage from 9:00 a.m. to 1:00 p.m.
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optimized at 10:00 a.m. is modified compared with that at 9:
00 a.m. Besides, all the operational strategies for 2:00–5:00 p.m.
calculated with the forecasted information from 9:00 a.m. to 11:
00 a.m. are charging. This is because the electricity price is
relatively low during this period and ESS can store electricity
for peak hour usage to reduce the electricity expense.

Minute-Level Energy Management Strategy
Furthermore, it can also be learned that the deviation of the
energy storage capacity did not exceed 10% of its rated capacity.
Hence, in this paper, the given maximum deviation ratio value
was set as 10%. This value can be used to guide the degree of
matching for the minute-level operation; the time window length
for an MPC-based model is an important parameter. In this
section, the step size is set as 5 min and three different lengths for
the time window are discussed. The time window lengths for
three different cases were 3, 6, and 24 h. The minute-level
operation results of energy storage for the three different
models are presented in Figure 5. The operation results,
which set 24 h as the time window length, are the global
optimal solution. Compared with the 24-h look-ahead model,
the 6-h look-ahead model also contained two charging/
discharging cycles, while the 3-h look-ahead model had three
charging/discharging cycles. It can be concluded that the model
with a 6-h look-ahead is closer to the global operation solution.
Thus, in this paper, setting 6 h as the time window length of the
look-ahead model is better than that set at 3 h.

We further compared the electrical tariff and objective value in
Eq. 20 of the three different hours set and their results are shown
in Table 2. The electrical tariff is the first part of Eq. 20. The
model with a 24-h look-ahead can obtain the optimal solution.
However, in real time, it is difficult to achieve precise prediction
of data for 24 h. Hence, it is unrealistic to use the 24-h look-ahead

for operation. In this case, with an energy power ratio of 3, the
results obtained via the 6-h look-ahead model showed better
performance compared with the model set at 3 h.

CONCLUSION

In this paper, a two-stage energy management strategy based on
stochastic MPC was proposed. The non-parametric probabilistic
prediction method embedded in time series correlation was used
to generate scenarios of demand and PV output. A two-stage
model, which incorporated an hourly operation model and a
minute-level one, was presented to refine the energy management
of energy storage. From the numerical results, we can conclude
that:

1) The proposed probabilistic prediction method embedded in
time series correlation has better performance in forecasting
the demand and PV output.

2) The deviation ratio of the capacity of ESSs at the terminal
point between the hour-level and minute-level operations can
be set as 10%.

3) When the energy power ratio is 3, the model looking ahead 6 h
has better performance in both run time and solution
compared with the model looking ahead 3 h.
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