
Operation State Evaluation Method of
Smart Distribution Network Based on
Free Probability Theory
Jiaxin Zhang1, Bo Wang1*, Hongxia Wang1, Hengrui Ma2, Fuqi Ma1, Yifan Li1 and
Yingchen Zhang1

1School of Electrical Engineering and Automation,Wuhan University, Wuhan, China, 2Tus-Institute for Renewable Energy, Qinghai
University, Qinghai, China

In view of the current situation that the new generation of smart grids with “double high”
characteristics is in urgent need of effective state evaluation methods due to the
characteristics of strong volatility and diverse demands, a method of operation state
evaluation of smart distribution networks based on free probability theory is proposed,
which is combined with high-order moment indexes to describe the operation trajectory of
distribution networks from a data-driven perspective. First, the state assessment problem
of smart distribution networks is modeled as a binary hypothesis testing problem, and the
asymptotic free equation is established based on free probability theory to provide a
framework for state assessment of distribution networks. Then, a high-order moment
evaluation index is proposed, combined with the sliding time window processing, and the
high-order moment sequence was obtained based on the high-dimensional data of the
distribution network, which is used to describe the state evolution of the distribution
network. Finally, this method is applied to a certain 110-kV distribution network. The
analysis of an example shows that the proposed evaluation framework and indicators can
effectively reflect the data changes in the distribution network and support the state
assessment and evolution analysis of the distribution network.

Keywords: free probability theory, asymptotic spectral distribution, free convolution operation, distribution network
status assessment, moments

INTRODUCTION

As China proposes “to achieve carbon peak before 2030 and achieve carbon neutrality before 2060,”
improving overall energy utilization efficiency and focusing on developing renewable energy has
become an inevitable choice. The power system is closely related to the production, transportation,
and consumption of renewable energy, which also plays a key role in promoting energy
transformation (Zhou et al., 2018). Moreover, the new generation smart grid has the
characteristics of “double high”: the high proportion of renewable energy and the high
proportion of power electronic equipment. Distributed power supply, charging pile/station, and
controllable load, along with other devices, are developing rapidly, and their large-scale access to the
distribution network has brought strong uncertainties to the distribution network due to their
characteristics of strong intermittent and diverse demands, making the operation mode of the
distribution network increasingly complex and changeable.

As a pivotal link of energy, an intelligent distribution network is the key to the smooth operation
of “the production-supply-marketing” of electric energy. The ultimate goal of the intelligent
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distribution network is to build and form a panoramic real-time
system covering the distribution network. The basis of supporting
the panoramic real-time system of the distribution network is the
collection, transmission, and storage of panoramic real-time data
of the distribution network and the effective technology for rapid
analysis of massive multi-source data (Liu, 2010; Yang et al., 2019;
Shen and Raksincharoensak, 2021a; Yang et al., 2021a; Shen and
Raksincharoensak, 2021b; Yang et al., 2021b; Zhang et al., 2021).
The application of cloud computing, big data, Internet of Things,
5G information communication technology, and artificial
intelligence in the power system provides a data basis for the
realization of real-time state estimation and situation awareness
of the smart distribution network (Yang et al., 2018; Shen et al.,
2020a; Ma et al., 2020; Wang et al., 2020). However, the existing
distribution network state estimation and situation awareness
methods find it difficult to meet the requirements in many aspects
of calculation accuracy, calculation speed, and visualization.
Thus, it has become a hot topic for experts, scholars, and
engineers at home and abroad to construct an effective state
estimation and situation awareness system for the intelligent
distribution network to support comprehensive, accurate, and
real-time control of the operation situation of the distribution
network.

In the field of power system state assessment, apart from the
specific model method, classical research methods also include
the analytic hierarchy process (AHP), the fuzzy comprehensive
evaluation method, and principal component analysis (PCA).
The literature (Cao et al., 2007) has proposed a comprehensive
evaluation method for a new rural low-voltage distribution
network based on the AHP and realized practical application.
However, this method mainly solved the problems of distribution
network construction planning and transformation in the near
future and could not evaluate the real-time status. The literature
(Sun et al., 2017) combined PCA and system clustering analysis to
establish a comprehensive evaluation system of county power
grids, which could evaluate the power grid from five aspects of
security, economy, reliability, adaptability, and quality, but also
could not evaluate the real-time state.

In recent years, data-driven state assessment has also been
applied in the power field. The literature (Xu et al., 2016)
proposed a correlation analysis method based on random
matrix theory (RMT). Combining real-time separation window
technology with RMT, the mean spectrum radius (MSR) index was
used to evaluate the correlation of distribution network data. In the
literature (Xu et al., 2018), the evaluation indexes of the hit ratio
and the false alarm rate were proposed, and the vulnerability of the
distribution network was evaluated based on RMT. The literature
(He et al., 2017a) used the basic breakthrough of high-dimensional
statistics in recent years to put forward the research framework of
space-time big data of the distribution network based on the
random matrix. For power system fault identification, the
literature (Xu et al., 2019) proposed a feature self-learning
method based on deep learning for high-dimensional space-
time fault samples, which had fast calculation speed and strong
robustness. However, the method itself had high requirements on
source data but low comprehensibility. The literature (Wei et al.,
2016) proposed a high-dimensional power data fusion method

based on correlation mining in order to solve the key problem of
online stability analysis of large power grids. This method mainly
solved the problem of data fusion and did not directly evaluate the
status of the large power grid.

The key of power system state evaluation based on high-
dimensional big data should be the construction of an evaluation
framework and an evaluation index system and identification of a
power grid or equipment evolution situation. In this study, the
free probability theory (FPT) is introduced into the electric power
field for the first time in China, providing a complete and clear
evaluation framework for the operation status of the smart
distribution network, combining with sliding time window
processing to solve the high-dimensional source data to obtain
the time series of the index. In this study, the high-order moment
index is also proposed to analyze the distribution network from
the perspective of the state assessment and evolution trend and is
applied to the state assessment of the 110-kV distribution
network to verify the effectiveness of the proposed method.

FREE PROBABILITY THEORY AND BIG
DATA PROCESSING METHODS

Introduction to Free Probability Theory
A random matrix is a matrix whose elements are random
variables. Through the high-dimensional statistical analysis,
important information can be extracted from massive
disordered data in a random matrix.

Free probability theory can provide an effective analysis
framework for the asymptotic spectrum distribution of high-
dimensional random matrices. In the 1980s, Voiculescu proposed
FPT to deal with abstract “non-commutative space,” and the random
matrix is a special case of “non-commutative space” (Dan, 1986;
Voiculescu, 1987). The purpose of FPT is to introduce a concept
similar to “independence” in classical probability theory, namely,
“freedom,” and make it applicable to non-commutative random
variables such as random matrices and extend it to the case of large
dimensions, namely, “asymptotic freedom.”

Different from traditional mathematical theory, FPT defines
some new operators, including additive-free convolution ⊞ and
its inverse operation additive-free deconvolution ⊟,
multiplicative-free convolution ⊠ and its inverse operation
multiplicative-free deconvolution ⊡, similar to the addition,
subtraction, multiplication, and division operations in classical
mathematics. Based on the asymptotic spectrum theory of RMT,
combining the concept of asymptotic freedomwith the above new
operators, some difficult problems in classical mathematics can
be solved. In traditional mathematics, if and only if two matrices
are commutative, the eigenvalues of their sum matrix or product
matrix can be obtained from their respective eigenvalues. In FPT,
if two random matrices are asymptotically free and their
respective asymptotic spectral distributions are known, the
asymptotic spectral distributions of their sum matrix or
product matrix can be obtained and vice versa. It is worth
mentioning that in FPT, the semicircular law is similar to the
classical Gaussian distribution, that is, the normalization of the
free random matrix (given spectral distribution) and the spectral
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distribution of matrix converge to the semicircular law; the
Marchenk–Pastur law (M-P law) is similar to the classical
Poisson distribution, that is, the normalization of those single-
rank free random matrices and the spectral distribution of
matrices converge to the M–P law (Tulino and Verdu, 2004).

FPT has become a powerful tool to describe the
characteristics of wireless communication systems.
Spectrum sensing algorithms based on FPT have fast
convergence, which are also suitable for the limited number
of samples, and have high sensing performance in the case of
low signal-to-noise ratio (Tulino and Verdu, 2004). Domestic
and foreign scholars have made great academic achievements
in this field. This study is the first attempt to apply the FPT to
the electric power field, which selects the operation of the
smart distribution network as the application scenario and
evaluates the operation status of the distribution network
based on FPT, providing real-time and efficient support for
intelligent operation and maintenance.

Free Probability Theory

Definition. 1 (Dan, 1986) The empirical spectrum distribution of
an N ×N random matrix BN is defined as follows:

μBN
(x) � 1

N
∑N
i�1
I(λi(BN)≤x), (1)

where λi(BN), i � 1, 2, . . . , N are the eigenvalues of BN, I(·) is the
indicator function.

In RMT, the asymptotic spectral distribution (ASD) is the
empirical spectral distribution of BN when N → ∞, which is
represented by the symbol μB, and can be expressed uniquely by
the following moment:

mk � lim
N→∞

1
N

E{tr(Bk
N)} � ∫xkdμB(x), (2)

where tr(·) represents the rank of the matrix and k represents the
order of moments. In mathematics and statistics, moments can
represent the distribution and morphological characteristics of
variables. The specific moment algorithm of the method
proposed in this study will be introduced in detail in
Calculation of High-Order Moment Index section.

As mentioned above, Voiculescu proposed FPT in order to
introduce the concept of “freedom” and summarize the law
applicable to non-commutative variables such as random
matrices, which is similar to the law in classical probability
theory.

Random matrices are just one kind of non-commutative
variable, and non-commutative variables are all elements of
“non-commutative probability space.” The concept of a non-
commutative probability space is as follows.

Definition. 2 (Couillet and Debbah, 2011) Let B be a non-
commutative algebraic system with unit element I; if ϕ is a
linear function on B and meet ϕ(I) � 1, then the order pair
(B, ϕ) is called a non-commutative probability space.

For random matrices, the identity element I is the identity
matrix IN, and ϕ is defined as follows:

ϕ(C) � 1
N

∑N
i�1
E{Cii} � 1

N
E{tr(C)}, (3)

where C ∈ B, Cii represents the ith row and the ith column
element of C. It can be seen from Eq. 3 that ϕ is the function of
solving the moment. This kind of non-commutative probability
space meets trace lemma, that is, ϕ(ab) � ϕ(ba).

Definition. 3 (Couillet and Debbah, 2011) Let (B, ϕ) be a non-
commutative probability space, and for all n-dimensional
sequences (b1b2 . . . bn), if ϕ(b1b2 . . . bn) � 0 satisfies the
following conditions:

1) bj ∈ Bij, where ij ≤K
2) i1≠i2,i2≠i3, . . . ,in-1≠in
3) for all j ∈ {1, . . . n}, ϕ(bj) � 0

Then, a family of the subalgebra systems of B {B1, . . . , BK}
is free.

Obviously, if {{b1}, . . . , {bn}} is free (each subalgebra system
consists of only one of their elements), then random variables
{b1, . . . , bn} are free.

Furthermore, let us extend the concept of “freedom” to
“asymptotic freedom.”

Definition. 4 (Couillet and Debbah, 2011) If the following two
conditions are met

1) for all k∈{1,. . .,K}, XN,K has an asymptotic spectral
distribution;

2) for all {i1,. . .in} ⊂ {1,. . .,K}, i1≠i2,i2≠i3, . . . ,in-1≠in and family of
unary polynomials {P1,. . .,Pn},

lim
N→∞

ϕ{Pj(XN,ij)} � 0, j ∈ {1, ..., n} (4)

and

lim
N→∞

ϕ
⎧⎨⎩∏n

j�1
Pj(XN,ij)⎫⎬⎭ � 0. (5)

Then the N ×N random matrix family {XN,1, . . . , XN,K} of
non-commutative probability spaces (BN, ϕ) is
asymptotically free.

Based on the above definition of asymptotic freedom,
combined with new operators such as additive-free
convolution, the following illustration is made. If two random
matrices AN∈ C

N × N and BN∈ C
N × N are asymptotically free,

with their asymptotic spectral distributions denoted as μA and μB,
respectively, and AN + BN is known to have asymptotic spectral
distribution μA+B, then

μA+B � μA ⊞ μB, (6)

where ⊞ is called additive-free convolution, namely, μA+B is the
additive-free convolution of μA and μB.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 8030103

Zhang et al. State Evaluation of Distribution Network

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Furthermore, ⊟ is defined as additive-free deconvolution, that
is, if μC � μA ⊞ μB, then μA � μC ⊟ μB, and μB � μC ⊟ μA. So
additive-free convolution and additive-free deconvolution are
inverse operations of each other.

Similarly, if ANBN has an asymptotic spectral distribution μAB,
then

μAB � μA ⊠ μB, (7)

where ⊠ is called multiplicative-free convolution, namely, μAB is
the multiplicative-free convolution of μA and μB.

Furthermore, ⊡ is defined as additive-free deconvolution, that
is, if μC � μA ⊠ μB, then μA � μC ⊡ μB, and μB � μC ⊡ μA. So
multiplicative-free convolution and multiplicative-free
deconvolution are inverse operations of each other. Both
additive- and multiplicative-free convolution are commutative,
namely, μA ⊞ μB � μB ⊞ μA, μA ⊠ μB � μB ⊠ μA. In this way, non-
commutative variables (such as random matrices) can be
exchanged in the operation.

DISTRIBUTION NETWORK STATE
ESTIMATION METHOD BASED ON FPT

Data Pre-Processing
Supervisory Control and Data Acquisition (SCADA) is widely
applied in the power system and collects the branch power,
branch current amplitude, and node voltage amplitude in the
system with high maturity, mainly through the remote terminal
unit (RTU) and the feeder terminal unit (FTU) (Yang et al.,
2020a; Shen et al., 2020b; Zhu et al., 2020; Li et al., 2021a; Shen
et al., 2021a; Shen et al., 2021b; Qi et al., 2021; Xiang et al., 2021).
The data collected by SCADA has the characteristics of mass and
high dimension, so a high-dimension random matrix can be
constructed according to the collected data. Combined with the
sliding time window processing, the data characteristics of
the distribution network can be analyzed based on FPT, and
the distribution network state before and after can be compared
in time to further realize the evolution of the distribution network
operation state.

Assume that i nodes in the distribution network are equipped
with measuring devices, and the sampling interval is 0.01 s. At the
sampling time tn, i nodes each generate a state data (which can be
voltage, current, and power angle), and the state data of all nodes
at this time constitute a column vector x (tn), as shown in the
following formula:

x(tn) � [x1tn, x2tn, ..., xitn]T. (8)

When there are a total of j sampling moments, the j column
vectors are arranged to form a high-dimensional random matrix
Xi×j, as shown below:

Xi×j �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x11 x12 ... x1j

x21 x22 ... x2j

..

.
... ... ...

xi1 xi2 ... xij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

In the above formula, each row of Xi×j is the state data of the
same node at different times, and each column is the state data of
different nodes at the same time.

The normalization process is carried out according to Eq. 10
below, and the normalized matrix ~X with mean value E � 0 and
variance σ2 � 1 is obtained as follows:

~Xl � (Xl − E(Xl))/σ2(Xl), l � 1, 2, ..., i, (10)

where Xl is the lth row of X.
In statistical analysis of high-dimensional data, when the

amount of data is large enough, the data as a whole will show
certain random statistical characteristics after corresponding
processing, such as the single ring theorem and the M–P law
(Ling et al., 2018; Jain et al., 2019; Deepa et al., 2020; Xiong
et al., 2020; Yang et al., 2020b; Li et al., 2021b; Li et al., 2021c;
Yang et al., 2021c; Li et al., 2021d; Ye et al., 2021; Dong and Li,
2021; Liu et al., 2021; Mousavizadeh et al., 2021; Ouyang and
Xu, 2021; Zhu et al., 2021). In the statistical analysis of high-
dimensional power data, the corresponding linear eigenvalue
statistics (LES) are constructed, such as MSR, high-order
moment, etc., which can effectively represent the state of the
distribution network. When there are only random
fluctuations and measurement errors in the measured data,
the data present a random statistical characteristic as a whole.
If abnormal events occur in the power system, the original
stable operation state of the system will be broken, and the
measured data will change accordingly.

State Assessment Model Construction
The problem of distribution network operation state assessment
is understood as a binary hypothesis testing problem, as follows:

y(n) � { v(n), H0

x(n) + v(n), H1
, (11)

where y(n) represents the received sampled signal, x(n)
represents the event signal component, and v(n) represents
the noise component.

The above binary hypothesis testing problem is further
explained. H0 means that no abnormal events occur, and the
received sampled signal only has randomly distributed noise
components. H1 indicates that abnormal events occur, event
signals exist in the sampled signals, and the original stable
operation state of the system is broken.

In this study, the basic idea of the distribution network state
estimation method based on FPT is to estimate the asymptotic
spectrum distribution of the event signal component x(n) by
establishing and solving the asymptotic free equation and then
calculate the high-order moment index mi (i � 1, 2, . . . , n) of the
event signal component x(n). Thus, the high-order moment is
the detection statistic of the algorithm.

Assuming that N received sampled signals y (1), y (2), . . ., y(N)
are used for distribution network state estimation and each
sampled signal is composed of M signal components, the
sample covariance matrix of received sampled signals is as
follows:
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∑̂
y
� 1
N

∑N
n�1

y(n)y(n)H. (12)

The sample covariance matrix of signal component x(n) is as
follows:

∑∧
x

� 1
N

∑N
n�1

x(n)x(n)H. (13)

In FPT, for the signal–noise model, the asymptotic spectral
distributions of the above two sample covariance matrices Σ̂y and
Σ̂x satisfy the following asymptotic free equation (Ryan and
Debbah, 2007):

μ∑̂
y
⊡ μc � ⎛⎝μ∑̂

x
⊡ μc⎞⎠ ⊞ μσ2I, (14)

where c � M/N, and μσ
2
I represents a probability distribution that

has value only at point σ2.
After rigorous mathematical derivation, the spectral

distribution between the sample covariance matrix and the
statistical covariance matrix of the event signal components
can be obtained to satisfy the following relation:

μ∑̂
x
� μ∑

x
⊠ μM

N
. (15)

Substituted into Eq. 10, the asymptotic free equation becomes
the following:

μ∑̂
y
⊡ μc � (μ∑

x
⊠ μM

N
⊡ μc) ⊞ μσ2I. (16)

The asymptotic spectrum distribution of event signal
component x(n) can be obtained by solving the asymptotic
free equation as follows:

μ∑̂
x
� ⎡⎢⎢⎣⎛⎝μ∑̂

y
⊡ μM

N

⎞⎠ ⊟ μσ2I
⎤⎥⎥⎦ ⊠ μc ⊡ μM

N
. (17)

Based on the established asymptotic free equation and the
sliding time windowmethod, the high-order moment index of the
continuous time windowmatrix is obtained to observe the state of
the distribution network.

The state assessment process of the distribution network is
shown in Figure 1 below.

Calculation of High-Order Moment Index
From the above analysis, it can be seen that the calculation
process of solving the high-order moment index is based on
the asymptotic free equation, which involves new operators
defined by FPT, namely, additive-free convolution and its
inverse operation and multiplicative-free convolution and its
inverse operation. It is a relatively simple calculation method
to calculate additive-free convolution through the moment-
cumulant formula (Ryan and Debbah, 2007).

1) Additive-free convolution

The moment-cumulant formula describes the relationship
between the moments of a certain measure and the related R
transformation. The R transformation of a probability
distribution μ is defined as follows:

Rμ � ∑
n

αμnz
n, (18)

where αμn is the nth order cumulant of μ. Based on R
transformation, additive-free convolution can be realized, as
shown in the following formula:

RμA⊞μB � RμA(z) + RμB(z), (19)

which is equivalent to that the cumulative measure has additivity
under additive-free convolution. That is,

αμA⊞μB
n � αμA

n + αμA
n . (20)

The moment-cumulant of the distribution μ is given as
follows:

mμ
k � ∑

n≤ k

αμ
ncoef k−n((1 +mμ

1z +mμ
2z

2 + ...)n), (21)

where coefn(·) is the coefficient of zn.

FIGURE 1 | Distribution network status evaluation process based
on FPT.
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The bidirectional conversion between the cumulant sequence
and the moment sequence can be completed by using the above
formula, that is, the first n-order cumulants can be obtained from
the first n-order moments and vice versa.

This article gives a brief description of the use of the moment-
cumulant formula in free convolution calculation, and the specific
process is described as follows:

1) Taking the sequence of moments as input, vector
f�(1,m1,. . .,mn) with length n+1 is formed, where m1 is the
first-order moment, andmn is the nth-order moment. Then n
vectors are obtained by convolution calculation according to
the following formula:

F1 � f, F2 � fpf, ..., Fn � pnf,

where * stands for the convolution operation, and *n stands for
n-fold classical convolution with itself. With the accumulation
of the convolution operation, the length of vector F increases
gradually. Since only the first n+1 elements of M1,. . .,Mn are
used in subsequent operations, the length of vector F is
uniformly trimmed to n+1 after the convolution operation
in order to simplify calculation and reduce the storage space of
the operation.

2) Calculate each cumulant iteratively. After the cumulants α1,
. . ., αn-1 are obtained by solving the moment-cumulant
formula shown in Eq. 21 for n-1 times, αn can be obtained
by solving the equation for the nth time. It should be added
that the relation between each F vector in Step 1) and Eq. 21
can be expressed by the following:

coef n−k((1 + μ1z + μ2z
2 + ...)k) � Fk(n − k). (22)

This equation can also be understood as writing the
coefficients in the moment-cumulant formula as k-fold
convolution. Based on this formula, it can be known that the
kth cumulant is equivalent to the following expression:

αk � M1(n + 1) − ∑1≤ r≤ k−1αrMr(k − r)
Mk(0) . (23)

Thus, the additive-free convolution and additive-free
deconvolution can be easily calculated by means of the
moment-cumulant formula.

2) Multiplicative-free convolution

Computation involving multiplicative-free convolution and its
inverse operation requires the transformation of boxed
convolution, denoted as ⧆. Boxed convolution can be
understood as a convolution operation acting on a power
series polynomial, which involves the concept of non-cross
partition not being repeated. Among the various forms of
power series, the commonly used power series is Zeta-series,
defined as Zeta(z) � ∑

i
zi. The sequence of moments under the

deterministic measure is defined as M(μ)(z) � ∑∞
k�1mkzk. The

literature has proven that the above R transformation is
equivalent to the following equation:

M(μ) � R(μ)⧆Zeta. (24)

It can be proven that the boxed convolution acting on the
power series polynomial is the combination of multiplicative-free
convolution on each measure, where the boxed convolution of
power series cn−1Zeta represents the convolution of measure μc,
as shown in the following formula:

Mμ⊠μc � Mμ⧆(cn−1Zeta) (25)

also written as follows:

cMμ⊠μc � (cMμ)⧆Zeta. (26)

It can be found that, in fact, the above equation is the
moment-cumulant formula, which is equivalent to Eq. 21.
Thus, in the calculation process, the cumulant is replaced by
the coefficient of cMμ, and the moment is replaced by cMμ×μc.
It is concluded that the calculation process of additive-free
convolution is also applicable to multiplicative-free
convolution operation.

CASE STUDIES

Data Sources
Based on Matlab, this study uses the voltage data of 40 buses
under the maximum operation mode of the 110-kV distribution
network in a certain province in the summer of 2020 to conduct
simulation verification. The total duration of voltage data is 5s,
the number of each sampled signal components is M � 40, and
the sampling interval is Δt � 0.01s, so the high-dimensional
random matrix X40×500 of source data can be obtained. The
specific case description is shown in Table 1. In the following
two cases, the high-order moments of the event signal component
are obtained based on FPT, and the operation status of the
distribution network is analyzed and compared with the
classical PCA method (Rong et al., 2019) and the MSR
indicator (Zheng et al., 2020) in the commonly used random
matrix theory to further verify the effectiveness of the indicators
proposed in this study.

Analysis of Cases
In this study, the high-dimensional random matrix of source
data isX40×500, that is,M � 40 and N � 500, and the sliding time
window size is set as 40 × 60, that is, p � 40, n � 60, so
c � p/n ∈ (0, 1). The index selected in the method based on
FPT is the third-order moment m3 of the event signal
component x(n). The classical PCA assessment indexes for
abnormal state detection are T2 statistics and SPE statistics.
The control limit of T2 statistics is Tα, and T2 <Tα should be
satisfied if the system runs normally; otherwise, it can be
considered abnormal. The control limit of SPE statistics is
Qα. If the system is running properly, it should meet the
SPE<Qα requirement; otherwise, it can be considered
abnormal. In the evaluation of the MSR index based on
RMT, and the calculated inner ring radius is 0.52. If MSR
falls below the threshold of the inner ring radius, it indicates
the occurrence of abnormal events. As the width of the sliding
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time window is 60, all moments and MSR indicators in the
following figures are 0 before the 60th sampling moment, as
hereby stated.

In addition, in the power system, the voltage of each user
must be kept at the rated value or within the allowable range of
voltage offset. Currently, the percentage of voltage offset at the
power supply end of 35 kV and above is defined as ±5% in
China.

1) Case 1

By observing the voltage fluctuation of the 40 buses in Figure 2
below, it can be seen intuitively that the voltage unit values of the
40 buses are initially distributed between (0.955,0.995), which are
in a normal level, and obvious drops occur at about the 100th
sampling time point, that is, the bus voltage drops at about 1s.
Subsequently, the buses’ voltage stops falling around the 300th

TABLE 1 | Case scenario description.

The serial
number

Specific case description

Case 1 0–1 s: normal load
1–3 s: all loads are increased by 5%
3–5 s: the load of the whole network is maintained at 105%

Case 2 0–1 s: normal load
1–3 s: a certain line is set to continuously increase the impact
load
3–5 s: maintain 3 times the original load

FIGURE 2 | Original voltage data of 40 buses in case 1.

FIGURE 3 | T2 and SPE indices of case 1.

FIGURE 4 | MSR index of case 1.

FIGURE 5 | Moments of the signal component in case 1.
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sampling time point, that is, the bus voltage gradually stabilized
after 3s and successfully reached a new stable state.

In Figure 3, the red dotted lines are control limits Tα and Qα,
which is the same in Figure 7. Observing various indicators in the
figures of case 1 (i.e. Figures 3, 4, Figure 5), the T2 index in the
PCA method changes dramatically at the 101th sampling point
and exceeds Tα, indicating abnormal status. It climbs to the 300th
sampling point and then begins to fall but fails to return to the

control limit level, indicating that the power grid tried to re-
establish a new balance after the third second, but it does not
return to the normal state (not in line with the actual situation).
Here, the SPE indicator is similar to the T2 indicator. The MSR
index begins to fall significantly at the 100th sampling point and
falls below the inner ring radius at the 150th sampling point,
indicating that the power grid is in an abnormal state (also not in
line with the actual situation) and then gradually recovers to

FIGURE 6 | Original voltage data of 40 buses in case 2.

FIGURE 7 | T2 and SPE indices of case 2.

FIGURE 8 | MSR index of case 2.
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above the inner ring radius at the 200th sampling point. In the
moment index of each order, obviously, the first-order moment
and the second-order moment are not sensitive to voltage changes,
while the third-order moment is more sensitive to power grid
fluctuations. Therefore, the third-order moment is selected as the
final index in case 1, and the case of case 2 is the same as that of case
1. The third-order moment m3 changes around the value of 1.5
under normal circumstances and changes dramatically at the 100th
sampling point, almost climbing in a straight line. The value ofm3

reaches at 1900, whichmeans that the event signal shows up during
1–1.5 s; soH1 is true. After the 150th sampling point,m3 begins to
decline and shows a downward trend, indicating that the power
grid tried to establish a new equilibrium state in this period. Then
m3 fluctuates at the 300th sampling point and recovers to the
normal level after the 400th sampling point, representing that the
power grid successfully establishes a new stable state, which means
thatH0 is true. Based on the above analysis, in this case, the third-
order moment index m3 can reflect the original data more truly.

2) Case 2

By observing the voltage fluctuation of the 40 buses in Figure 6, it
can be seen intuitively that the voltage unit values of the 40 buses are
initially distributed between (0.95,1), which are in a normal level.
After the 100th sampling point, as the impact load continues to
increase, the voltage level drops sharply, and the minimum voltage
unit value is as low as 0.82, which is at the abnormal operation level.
After the 300th sampling point, the load level remains 3 times that of
the original load, and the power grid tries to re-establish a stable
state. It can be speculated that due to the limited capacity of the
system, the new equilibrium state is not reached, and the voltage level
is in continuous oscillation during 3–5 s.

By observing various indicators in the figures of case 2 (i.e.
Figures 7, 8, 9), the T2 index in PCA begins to climb gradually at
the 101th sampling point, exceeding Tα and indicating abnormal
status. The violent fluctuation occurs at the 280th sampling point,

showing that the power grid is in an extremely unstable state.
Then the T2 index begins to fall and enters an oscillation state
without returning to the control limit level, representing that the
power grid tried to re-establish a new balance at about 3 s but
failed to restore the normal state. Here, the trend of the SPE index
and T2 index is slightly different after the 280th sampling point,
but generally consistent, indicating that the power grid fails to
return to the normal level and is in oscillation. The MSR index
begins to decline at the 100th sampling point and then falls below
the inner ring radius and remains below the threshold of the inner
ring radius, failing to return to normal. The third-order moment
m3 changes dramatically at the 100th sampling point and remains
at a high level, which means H0 is true, and fluctuates near the
300th sampling point and then remains at a high level at about
4,000, indicating that the power grid tried to establish a new
equilibrium in this period but failed, that is, H1 is true.

Through the analysis of the above two cases, it can be found
that the performance of the third-order moment index is better
than that of the T2 index, SPE index, and MSR index in the small
disturbance monitoring of the power grid. When detecting
abnormal events, all four indexes can reflect the operation
state of the power grid effectively.

CONCLUSION

This study proposes a state evaluation method based on FPT,
aiming to evaluate the operation of the distribution network
according to high-order moment indexes. Through simulation
cases, the following conclusions are obtained:

1) Based on the high-dimensional measurement data of the
distribution network, the relevant asymptotic free equation
is established, and the high-order moment index is proposed
to evaluate the distribution network state, which verifies the
feasibility of the proposed evaluation framework based on
FPT, applied to the distribution network state analysis.

2) The free probability theory itself tends to be abstract. When
calculating the high-ordermoment index, themoment-cumulant
formula can effectively simplify the calculation process of the
high-ordermoment. In addition, the evaluation index is the high-
order moment. Theoretically, the index system can be extended
to N-order moments, and the selection of specific indicators
should be determined based on the actual application scenarios.

3) The proposed high-order moment index is compared with the
classical T2 index, SPE index, and the commonly used MSR
index. The simulation results show that the above indexes can
accurately detect the occurrence of abnormal events in the
distribution network, and the high-order moment index
performs better than other indexes mentioned in this article
when only a small disturbance occurs in the distribution network.

In this study, the free probability theory is applied to the
electric power field for the first time, and the proposed evaluation
framework can be extended to high-dimensional electric power
data processing, such as power dispatching, operation and
maintenance control, new energy consumption, reliability

FIGURE 9 | Moments of the signal component in case 2.
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evaluation, and other scenarios to provide decision support.
Based on the above analysis, the follow-up work of this study
will focus on three aspects: the application of multiple power
scenarios, internal performance comparison of high-order
moment indicators, and further expansion as well as
optimization of the evaluation index system (Xue and Lai,
2016, He et al., 2016, Liu et al., 2016, Wang et al., 2019, Chen
et al., 2017, He et al., 2017b, Zhang et al., 2018, Xue, 2015).
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