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The utilization of fossil fuel has increased atmospheric carbon dioxide (CO2)
concentrations drastically over the last few decades. This leads to global warming
and climate change, increasing the occurrence of more severe weather around the
world. One promising solution to reduce anthropogenic CO2 emissions is methanation.
Many researchers and industries are interested in CO2 methanation as a power-to-gas
technology and carbon capture and storage (CCS) system. Producing an energy
carrier, methane (CH4), via CO2 methanation and water electrolysis is an exceptionally
effective method of capturing energy generated by renewables. To enhance
methanation efficiency, numerous researches have been conducted to develop
catalysts with high activity, CH4 selectivity, and stability against the reaction heat.
Therefore, in this mini-review, the characteristics and recent advances of metal-based
catalysts in methanation of CO2 is discussed.
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INTRODUCTION

Solving climate change represents one of mankind’s biggest challenges in the 21st century (Wang
and Gong, 2011). The dominant greenhouse gases (GHGs) that raise Earth’s temperature are
water vapor, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Water vapor makes
up roughly 75% of the total greenhouse effect, CO2 and CH4 contribute roughly 24%, while N2O
and ozone (O3) accounts for the remaining 1%. Despite being the major GHG, water vapor
behaves as feedback of greenhouse effect and is temperature-dependent. Instead, CO2 is the main
driver of greenhouse effect. This is due to high concentration and long retention time of CO2 in
the atmosphere compared to other GHGs (Tan et al., 2021). The substantial effect of CO2 on
global warming has prompted worldwide effort to curb anthropogenic GHG emissions (Wang
and Gong, 2011). One promising solution is CO2 methanation. Methanation, uncovered by Paul
Sabatier and Jean-Baptiste Senderens in 1902, refers to the reaction between COx and hydrogen
(H2) to produce methane (CH4) (Eqs. 1, 2). Methanation can turn emitted CO2 into the valuable
energy carrier CH4, potentially creating power-to-gas platform and circular carbon economy.
Since renewable energy is increasingly used for global electricity generation, power-to-gas
systems utilizing CO2 methanation can solve the issue of intermittent power production from
renewables such as solar and wind. The green CH4 produced from renewable electricity can be
stored and converted back to electricity when needed (Rönsch et al., 2016; Frontera et al., 2017).
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CO2 methanation is also a pivotal process for future manned
space travel as its reactants, CO2 and H2, are continuously
produced from respiration and water electrolysis (Sheehan,
2021).

CO + 3H2 ↔CH4 +H2O ΔH298K � −206 kJ/mol (1)

CO2 + 4H2 ↔CH4 + 2H2O ΔH298K � −164 kJ/mol (2)

Despite the highly exothermic nature of CO2 methanation
(Eq. 2), the reaction is thermodynamically favored at low
temperatures. However, catalysts are necessary to lower the
high activation barriers and speed up the reaction (Su et al.,
2016). Methanation catalysts must fulfil two requirements: (1)
display high efficiency and activity at low temperatures, and (2)
remain stable against the reaction heat (Xu et al., 2016a). The
most common catalysts are nickel (Ni)-based due to the cheap
and abundant Ni metal. But Ni-based catalysts suffer from
sintering, creation of mobile Ni sub-carbonyls, and creation of
carbon deposits. In contrast, ruthenium (Ru)-based catalysts
show high activity and stability across a broad range of
operating conditions. Other transition metals [iron (Fe), cobalt
(Co)] and noble metals [rhodium (Rh), palladium (Pd)] have also
shown catalytic activity in CO2 methanation (Su et al., 2016;
Frontera et al., 2017; Dębek et al., 2019). Therefore, this mini-
review aims to discuss the characteristics of different metal-based
catalysts in CO2 methanation and provide a comparison of their
recent advances.

RECENT DEVELOPMENTS IN NI-BASED
CATALYSTS

Ni is the most thoroughly researched metal for CO2

methanation due to its relatively high activity, exceptional
CH4 selectivity, and lower cost compared to noble metals
(Rönsch et al., 2016). Numerous researches have highlighted
that Ni-based catalyst activity is enhanced by smaller Ni
particles and greater degree of dispersion (Dębek et al.,

2019). The key breakthroughs for Ni-based catalysts in CO2

methanation lies in enhancing their reactivity, stability at lower
temperatures (typically operate around 400°C), and CH4

selectivity. However, at lower temperatures, the appearance
of mobile Ni subcarbonyls causes sintering which reduces
catalytic ability and increases carbon deposits. Besides lower
temperature operation, catalyst basicity is another important
parameter since active sites with moderate basicity are key
locations for creation of monodentate formate species. These
species are crucial as they amplify catalytic performance and
CH4 selectivity of Ni-based catalysts (Figure 1) (He et al., 2014;
Daroughegi et al., 2017; Wierzbicki et al., 2017). All these
characteristics of Ni-based catalysts can be altered by
choosing different supports, promoters, catalyst synthesis
method, and catalyst pretreatment (Dębek et al., 2019). Using
five different mesoporous supports, Guo et al. (2018) found that
Ni catalyst activity decreased along this trend: Ni/ZSM-5 > Ni/
SBA-15 > Ni/Al2O3 > Ni/SiO2 > Ni/MCM-41. The basicity of
Ni/ZSM-5 enhanced monodentate formate creation on the
catalyst surface, which displayed higher activity compared to
bidentate formate created on Ni/MCM-41 (Guo et al., 2018).
Meanwhile, Fukuhara et al. (2017) found that highly basic
support, like MgO, strongly adsorbed CO2 on the catalyst
surface which reduced catalytic performance (Fukuhara et al.,
2017). Among various supports for Ni-based catalysts, ceria
(Ce) has been shown to achieve better performance. This is
because the existence of oxygen vacancies on Ce surface
increases catalyst basicity and establishes redox interactions
between Ni particles and Ce support (Zhou et al., 2016). But
this structural advantage can show negative impacts when
unsuitable catalyst synthesis technique is used. This was
validated by Konishcheva et al. (2016) who documented
diminished activity from Ni(Cl)/CeO2 catalyst compared to
Ni/CeO2. This was because chlorine (Cl) particles hindered
CO2 methanation reaction pathway, resulting in lower
activity (Konishcheva et al., 2016). A performance
comparison of different Ni-based catalysts in CO2

methanation is found in Table 1.

FIGURE 1 | Scheme of reaction mechanisms of Ni/Al2O3 catalyst in CO2 methanation (Cárdenas-Arenas et al., 2020).
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RECENT DEVELOPMENTS IN OTHER
METAL-BASED CATALYSTS

Ruthenium
Ruthenium (Ru) is also one of the most reactive catalysts for
methanation. However, its catalytic ability and CH4 selectivity are

greatly influenced by the choice of support, dispersion of metallic
Ru on the supports (greater dispersion lowers the apparent
activation energy), and inclusion of promoters that enhances
the Ru activity (Garbarino et al., 2015; Garbarino et al., 2016;
Toemen et al., 2016). Ru-based catalysts display higher reactivity
and lower reduction temperatures compared to Ni-based

TABLE 1 | Performance comparison of different nickel (Ni)-based catalysts in CO2 methanation.

Catalyst CO2 conversion CH4

selectivity
Operating conditions References

20Ni/Al2O3 81% 96% 400°C, 1 atm, CO2:H2:N2 � 6:30:64, GHSV � 55,000 h−1 Garbarino et al.
(2015)

75Ni25Fe/
Al2O3

3.39 × 106 mol
gcat

−1 s−1
97.6% 250°C, CO2:H2 � 1:24, mcat � 0.1 g, reduced at 550°C for 4 h Ray and Deo,

(2017)
15Ni/Al2O3 1.07 × 106 mol

gcat
−1 s−1

100% 250°C, CO2:H2 � 1:24, mcat � 0.1 g, reduced at 550°C for 4 h Ray and Deo,
(2017)

Sponge Ni 83% >95% 250°C, CO2:H2:He � 1:4:5, mcat � 0.3 g, WGHSV � 0.11 molCO2 gcat
−1 h−1, stored

underwater at room temperature, dried in air at room temperature for 48 h before use
Tada et al. (2017)

90Ni10Fe ≈0.8 μmol m−2 s−1 ≈98% 250°C, 1 atm, CO2:H2 � 4:96, mcat � 0.15 g, calcined at 500°C for 6 h Pandey et al. (2018)
Ni/ZrO2 71.9% 69.5% 300°C, CO2:H2:N2 � 4:16:5, GHSV � 60,000 h−1, calcined at 500°C for 3 h Jia et al. (2019)
Ni/ZrO2 32.9% 30.3% 300°C, CO2:H2:N2 � 4:16:5, GHSV � 60,000 h−1, decomposed with dielectric barrier

discharge plasma for 1 h
Jia et al. (2019)

Ni/Pr2O3-
CeO2

54.5% 100% 350°C, CO2:H2 � 1:4, WGHSV � 25,000 ml g−1 h−1 Siakavelas et al.
(2021)

Ni/Sm2O3-
CeO2

44.9% 100% 350°C, CO2:H2 � 1:4, WGHSV � 25,000 ml g−1 h−1 Siakavelas et al.
(2021)

Ni/MgO-CeO2 43.2% 100% 350°C, CO2:H2 � 1:4, WGHSV � 25,000 ml g−1 h−1 Siakavelas et al.
(2021)

TABLE 2 | Performance comparison of different transition- and noble-metal-based catalysts for CO2 methanation.

Catalyst CO2 conversion CH4

selectivity
Operating conditions References

3Ru/Al2O3 96% 96% 300°C, 1 atm, CO2:H2:N2 � 6:30:64, GHSV � 15,000 h−1 Garbarino et al. (2015)
10Ru-30Mn-
60Cu/Al2O3

98.5% – 220°C, CO2:H2 � 1:4, mcat � 5 g, calcined at 1,000°C for 5 h Zamani et al. (2015)

2Ru/TiO2 ≈20% 100% 250°C, CO2:H2:He � 5:20:75, mcat � 100 g Panagiotopoulou, (2017)
5Ru/Al2O3 TOF/I0 ≈ 1 × 10–10 mRu

2

minterface
−1 s−1

100% 250°C, CO2:H2:He � 5:20:75, mcat � 100 g, calcined at 650°C for 4 h Panagiotopoulou, (2017)

Rh@S-1-OH ≈75% ≈99% 450°C, 1 MPa, CO2:H2:Ar � 1:3:1, mcat � 0.5 g, calcined at 550°C for 4 h Wang et al. (2019)
Rh@HZSM-5 ≈70% ≈99% 450°C, 1 MPa, CO2:H2:Ar � 1:3:1, mcat � 0.5 g Wang et al. (2019)
Rh@KZSM-5 ≈55% ≈73% 500°C, 1 MPa, CO2:H2:Ar � 1:3:1, mcat � 0.5 g, calcined at 500°C for 4 h Wang et al. (2019)
Rh@S-1 ≈51% ≈20% 500°C, 1 MPa, CO2:H2:Ar � 1:3:1, mcat � 0.5 g, calcined at 550°C for 4 h Wang et al. (2019)
6Pd/UiO-66 56.0% 97.3% 340°C, 4 MPa, CO2:H2:N2 � 16:64:20, mcat � 0.6 g, GHSV � 15,000 h−1,

calcined at 360°C for 3 h
Jiang et al. (2019)

PdO@LaCoO3 62.3% 99% 300°C, 3 MPa, CO2:H2:He � 24:72:4, mcat � 0.15 g, calcined at 500°C
for 1 h

Wang et al. (2021)

PdO/LaCoO3 31.8% 87.4% 300°C, 3 MPa, CO2:H2:He � 24:72:4, mcat � 0.15 g, calcined at 500°C
for 1 h

Wang et al. (2021)

CoO 73% 94% 400°C, CO2:H2 � 1:4, GHSV � 1,500 cm3 h−1 gcat
−1, calcined under

argon atmosphere (0.1 MPa) at 500°C for 2 h
Kierzkowska-Pawlak et al.
(2019)

2Co/ZrO2 85% ≈99% 400°C, 3 MPa, CO2:H2 � 1:4, mcat � 0.5 g, citric acid-assisted
impregnation where molar ratio of citric acid to Co was 2, calcined at

500°C for 4 h

Li et al. (2019)

Co-Zr0.1-B-O 78.1% 97.8% 180°C, 8 MPa, CO2:H2 � 1:1, mcat � 0.04 g Tu et al. (2021)
2Mg/Fe2O3 32% 65% 400°C, 8 bar, CO2:H2:N2 � 1:4:5, GHSV � 10,000 h−1, mcat � 4 g,

calcined at 400°C for 2 h
Baysal and Kureti, (2020)

α-Fe2O3 ≈24% ≈7% 400°C, 1 bar, CO2:H2:N2 � 1:4:5, GHSV � 52,000 h−1, mcat � 0.2 g Kirchner et al. (2020)
15Fe/SiO2 ≈19% ≈3.5% 400°C, 1 bar, CO2:H2:N2 � 1:4:5, GHSV � 52,000 h−1, mcat � 0.2 g,

calcined at 400°C for 2 h
Kirchner et al. (2020)
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catalysts (Garbarino et al., 2015; Garbarino et al., 2016). Studies
on Ru/Al2O3 catalyst discovered that its activity was enhanced
when activated via reaction with the CO2/H2 stream compared to
the pre-reduced version (Garbarino et al., 2015). The Ru/Al2O3

catalyst also became more active with smaller Ru particle size (Li
et al., 2013; Zheng et al., 2016). When using TiO2 as support, Xu
et al., 2016b showed that pretreatment temperature of Ru/rutile-
TiO2 at 600°C achieved a maximum CO2 turnover frequency
(TOF) of 1.59 s−1. The high activity of Ru/rutile-TiO2 was due to
the increased encapsulation of Ru particles by TiO2 layers and
higher concentrations of hydroxyl groups on the TiO2 layers,
which enhanced CO2 dissociation (Xu et al., 2016b). In a separate
study, a binary supported Ru/TiO2-Al2O3 catalyst showed 3.1-
fold increase in CO2 methanation reaction rate compared to Ru/
Al2O3 catalyst. The smaller mean Ru particle size of 2.8 nm in Ru/
TiO2-Al2O3 contributed to its higher activity compared to 4.3 nm
in Ru/Al2O3. The small particle size was maintained by the
presence of rutile-TiO2, which obstructed the agglomeration of
Ru particles (Xu et al., 2016a). Table 2 shows the performance
comparison of different noble metal- and transition metal-based
catalysts for CO2 methanation.

Rhodium
Many studies have demonstrated Rh as among the most reactive
catalysts for methanation of CO2 at low temperatures
(100–200°C). The primary benefit of Rh-based catalyst is its
lower reduction temperature (less than 400°C) compared to
the commonly used Ni-based catalyst (typically more than
500°C) (Dębek et al., 2019). It was hypothesized that CO2

methanation on Rh-based catalysts followed two mechanisms:
(1) dissociation of CO2 into CO followed by hydrogenation of
CO, or (2) direct hydrogenation of chemisorbed CO2 molecules.
However, mechanistic studies performed by Beuls et al. (2012)
verified the former mechanism as well as showing that surface
gem-dicarbonyl species had higher reactivity compared to surface
linear species (Figure 2). The formation of gem-dicarbonyls was
boosted by the interactions between surface Rh+ molecules and

CO2 (Beuls et al., 2012). In one study, CO2methanation using Rh/
ɣ-Al2O3 catalysts at low temperature was investigated. Selectivity
to CH4 was 100% under all test conditions. At higher
temperatures of 185–200°C, Rh particle size did not affect
methanation, whereas at lower temperatures, bigger particle
size enhanced the methanation reaction (Karelovic and Ruiz,
2012). During methanation, the presence of oxygen (O2) in low
concentrations could increase CH4 yield by encouraging the
formation of more surface reactive species like gem-
dicarbonyls. But when O2 concentrations rose above the
optimum, it would inevitably oxidize the metal Rh atoms,
reducing the effectiveness of the catalysts (Jacquemin et al.,
2010; Beuls et al., 2012).

Palladium
Since Pd can catalyze both methanol synthesis and reverse water
gas shift (RWGS) reaction, its methanation capability was also
investigated (Rui et al., 2017; Nelson et al., 2020). Numerous
researches have demonstrated good catalytic ability for Pd-based
catalysts in CO2 methanation. However, the drawbacks of Pd-
based catalysts include higher cost of Pd compared to transition
metals, low activity (acceptable performance usually observed
beyond 400°C), lesser CH4 selectivity, and greater selectivity
towards methanol and heavier hydrocarbons (Dębek et al.,
2019). A recent study by Jiang et al. (2019) demonstrated the
use of UiO-66 support and Pd nanoparticles for CO2

methanation. Synergy was observed in the Pd/UiO-66 catalyst
whereby CO2, activated by Zr6O4(OH)4 molecules on UiO-66,
was hydrogenated by H2 molecules dissociated by Pd. At 340°C,
4 MPa and 6 wt% Pd loading, high CO2 conversion, CH4

selectivity and space-time yield of 56.0%, 97.3% and 856 g h−1

kgcat
−1 were observed (Jiang et al., 2019). Luo et al. (2020)

described the remarkable activity and stability of PdFe
intermetallic nanocrystals for CO2 methanation. At 180°C,
CO2:H2 ratio of 1:4 and 1 bar, the maximum yield of face-
centered-tetragonal (fct) PdFe catalyst was 5.3 mmol g−1 h−1,
an increase of 6.6, 1.6, 3.3, and 5.3-fold compared to face-

FIGURE 2 | Scheme of reaction mechanisms of Rh/Al2O3 catalyst in CO2 methanation (Jacquemin et al., 2010; Beuls et al., 2012; Kim et al., 2020)
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centered-cubic (fcc) PdFe nanocrystals, Ru/C, Ni/C, and Pd/C
catalysts. The fct-PdFe nanocrystals also maintained 98% activity
after 20 successive runs. Mechanistic studies found that PdFe
nanocrystals could renew their Fe species via reversible oxidation-
reduction process during CO2 methanation, thereby maintaining
the catalytic ability of Fe species in dissociating CO2 into an
intermediate COp (Luo et al., 2020).

Cobalt
Since Co is an active catalys in Fischer-Tropsch reaction, its
catalytic ability in CO2 methanation was also studied (Chen et al.,
2018). The synthesis of long-chain hydrocarbons from syngas
(CO and H2) by Co catalyst implies that Co does not catalyze
water-gas shift reaction. This beneficial characteristic of Co may
become disadvantageous for CH4 selectivity during methanation.
Numerous researches have described higher Co activity under
smaller Co particle sizes and increased particles dispersion,
whereas sintering lowers Co activity (Dębek et al., 2019). An
investigation by Le et al. (2017) revealed that Co activity and type
of end-product relied on the choice of support. Co activity was
reduced along this sequence: CeO2 > SiO2 > ZrO2 > Al2O3 >
TiO2. The primary product for all catalysts was CH4, with ethane
and CO as by-products in high and low activity catalysts,
respectively (Le et al., 2017). In a recent study, Tu et al.
(2021) discovered that adding zirconium (Zr) promoter
enabled amorphous Co-Zr0.1-B-O catalyst to commence CO2

methanation at temperatures as low as 140°C. Maximum catalyst
activity was achieved at 180°C (10.7 mmolCO2 gcat

−1 h−1) with
78.1% CH4 yield and 97.8% CH4 selectivity, on par with noble
metal catalysts under similar conditions. The high catalyst
performance could be attributed to: (1) prevalent surface
defects and inherent active sites in the amorphous structure,
and (2) expansion of active surface area and tuning of oxidation
state of surface particles by Zr promoter (Tu et al., 2021). Another
study by Li et al. (2019) examined the effects of organic acid-
assisted incipient wetness impregnation for Co catalyst
preparation. Critic acid-assisted 2Co/ZrO2 catalyst attained
85% CO2 conversion and ≈99% CH4 selectivity. Molar ratio of
citric acid to Co between 0 and 2 resulted in highly dispersed Co
particles and improved activity. Adequate particle dispersion
allowed optimal interaction between Co-ZrO2 and oxygen
vacancy, giving rise to more active sites (Li et al., 2019).

Iron
Iron Fe is the second most widely used catalyst for Fischer-
Tropsch reaction and a common catalyst for RWGS reaction. As
such, it was hypothesized that Fe catalyst could dissociate CO2 to
CO via RWGS pathway followed by methanation of CO (Dorner
et al., 2010; Mahmoudi et al., 2017). The benefits of Fe-based
catalysts include cheaper Fe metal and lesser toxicological effect
compared to Ni. But Fe-based catalysts suffer from low CH4

selectivity (Dębek et al., 2019). Kirchner et al. (2018) synthesized
Fe-based catalysts from commercial iron oxides and activated the
catalyst in the CO2/H2 stream without reduction pretreatment.
During methanation, iron carbides and carbon deposits appeared
on the catalyst surface. Large quantities of CO were observed due

to RWGS reaction. Nano-sized ɣ-Fe2O3 catalyst achieved the best
result due to the high concentrations of surface carbon species
compared to low reactivity carbides that formed on α-Fe2O3

catalyst (Kirchner et al., 2018). In another study, De Masi et al.
(2020) magnetically-induced heating on bimetallic catalyst
Fe30Ni70/SirAlOx to trigger CO2 methanation. Acceptable CO2

conversion (71%) but low CH4 selectivity (65%) were obtained
due to formation of Fe-rich shell on the catalyst surface. After
covering the catalyst with a thin Ni layer, the catalyst performance
was enhanced to 100% conversion and 100% CH4 selectivity
under low magnetic field and moderate conditions (25 ml min−1,
19 mT, 300 kHz) (De Masi et al., 2020).

CONCLUSION

Presently, methanation is receiving ever-growing attention
due to global warming, climate change, depleting fossil
fuels, and increasing usage of renewables in global energy
generation. The reutilization of atmospheric CO2 to
produce valuable energy carrier CH4 presents a promising
pathway towards net zero carbon future. The CH4 synthesized
from methanation is compatible with existing gas pipelines
and energy infrastructures. CO2 methanation process is greatly
dependent on catalysts performance. Hence, improving and
developing catalysts with high activity, CH4 selectivity,
stability, and lifetime is among the key areas of intense
research. Ni-based catalysts are the most widely
commercialized catalysts due to its cheaper price and
relatively high activity. But Ni-based catalysts suffer from
deactivation due to sintering and oxidation. Conversely, Ru-
based catalysts have the highest activity and better stability, but
more expensive Ru metal. Generating H2 from water
electrolysis using inexpensive renewables may improve the
commercialization of more expensive catalysts. More research
is required to solve these technological and economic issues.
However, once solved, CO2 methanation will become a key
technology for a sustainable future.
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