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Phase-shifting transformer (PST) is one of the flexible AC transmission technologies to
solve the problem of uneven power transmission. Considering that PST can also be used
as a regulationmeans for the economic operation of the system, it is necessary to study the
power flow optimization of power systems with PST. In order to find a more efficient power
flow optimization method, an improved genetic algorithm including a data-driven module is
proposed. This method uses the deep belief network (DBN) to train the sample set of the
power flow and obtains a high-precision proxy model. Then, the calculation of the DBN
model replaces the traditional adaptation function calculation link which is very time-
consuming due to a great quantity of AC power flow solution work. In addition, the
sectional power flow reversal elimination mechanism in the genetic algorithm is introduced
and appropriately co-designed with DBN to avoid an unreasonable power flow distribution
of the grid section with PST. Finally, by comparing with the traditional model-driven genetic
algorithm and traditional mathematical programming method, the feasibility and the validity
of the method proposed in this paper are verified on the IEEE 39-node system.
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1 INTRODUCTION

With the formation of interconnection of regional power systems, the power transmission is often
done through multiple parallel channels. Due to the differences in transmission distance and line
parameters of these channels, the uneven distribution of the power flow in each channel will result in
the restriction of the cross-section transmission capacity (Sun, 2011). Considering that the existing
transmission network is very complex andmature, improving the transmission capacity of the power
grid through the transformation and construction of the transmission network will be restricted by
environmental conditions, economic costs, and other factors, so it is necessary to fully tap the
transmission potential of the existing transmission network with the minimal investment to improve
its power supply stability and reliability (Nadeem et al., 2020). Phase-shifting transformer, as a kind
of power flow control equipment, has the characteristics of flexible control and large-range
adjustment angle. In addition, it can respond quickly under the help of high-power electronic
devices and is expected to be a daily regulation means for the economic operation of the system
(Verboomen et al., 2005; Kawaura et al., 2016; Morrell and Eggebraaten., 2019). However, although
the phase-shifting transformer (PST) has many advantages, it also increases the complexity of the
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power grid structure. It is more important that when it is
necessary to perform multiple power flow calculations for the
large power grid with the phase-shifting transformer to determine
the best phase-shifter gear, the calculation cost is often very large.
Thus, some methods to improve the power flow optimization
efficiency of power systems with the phase-shifting transformer
are proposed. In literature (Zhang et al., 2021), the iteration step
of the affine direction is improved, and the key mapping
parameters is reconfigured, which improves the efficiency of
the multicenter correction interior point method. In literature
(Cui et al., 2013), matrix block technology is used to reduce the
calculation scale of the nonlinear primal dual interior point
method, which improves the efficiency of optimization of
power systems with phase-shifting transformer. However,
when the scale of the power system is very large, these
measures to improve the optimization efficiency are still
difficult to adapt to the scale of the optimization problem.
Considering the rapidity of data-driven methods, a data-driven
approach will be adapted to solve this problem in this paper.

Traditional power flow optimization methods are model-
driven. Model-driven optimization methods can be divided into
mathematical programming methods, intelligent optimization
algorithms, and hybrid methods (Liu, 2021). Common
mathematical programming methods include the linear
programming method (Mohamed and Venkatesh, 2019), the
interior point method (Pan et al., 2018), and so on. Intelligent
optimization algorithms include genetic algorithm (Ahmed
et al., 2021), particle swarm optimization algorithm (Zhang
et al., 2014), and so on. Hybrid methods refer to the
combination or collaboration of two (or more) methods to
solve an optimization problem and include PSO-sequential
quadratic programming (Victoire and Jeyakumar, 2004),
seeker optimization algorithm-SQP (Sivasubramani and
Swarup, 2010), and so on. However, the model-driven
optimization method has obvious bottlenecks in
computational efficiency, so the data-driven power flow
optimization method has recently aroused the research
interest of many scholars due to its high computation
efficiency. The data-driven optimization methods can be
divided into two categories according to the different
functions of the data drive. The first type is data-driven
modeling, including deterministic modeling and uncertain
modeling—for example, Van Horn et al. (2016) applies data-
driven injection shift factor matrix to the optimal power flow
model so that the real-time security-constrained economic
dispatch of the power grid can be robust to various
disturbances. Lorca and Sun (2014) and Roldan et al. (2018)
respectively proposed the construction methods of data-driven
polyhedron and ellipsoidal uncertainty sets. The second type is
data-driven optimization decisions. Lei et al. (2021) proposed a
data-driven optimal power flow method based on stacked
extreme learning machine framework, which can directly
obtain the optimal scheduling decision scheme of the system
without the iterative process. (Liu et al., 2021) presents a novel
data-driven approach based on artificial neural networks to
enable fast economic dispatch in electricity–gas coupled systems
by utilizing simulation data from the piecewise-linearization-

based model-driven method. In a word, the purpose of the data-
driven optimization method of the first type is to improve the
performance of the built model rather than improve the
optimization efficiency. The second one is to directly replace
the flow optimization process with the neural network, which
greatly reduces the time cost of the optimization. However, the
mapping between the power system operation state and the
optimization decision scheme is complex, especially when the
system scale is large. Directly through the black box prediction,
it is difficult to apply to the actual optimization decisions in a
convincing way. Therefore, an alternative data-driven power
flow optimization framework is proposed to balance the
relationship between interpretability and optimization
efficiency in this paper. We use data drive to replace the
calculation of the power flow in the optimization process
rather than the whole optimization process, which makes the
solution results still retain the physical significance of the
optimization. Our approach is still much faster than the
model-driven optimization method, although it takes longer
than the data-driven optimization method of the second type.

At present, the power flow (PF) calculation methods of power
systems can be divided into the model-driven power flow
calculation and the data-driven power flow calculation. The
former mainly includes the forward–backward method
(Butler-Purry, 2013), the Newton–Raphson method (Zhu and
Tomsovic, 2007), and the DC power flow method (Stott et al.,
2009). With the spread of massive phasor measurement units
(PMUs) and supervisory control and data acquisition (SCADA)
systems, the latter gradually attracted the interest of scholars. The
data-driven power flow method can be divided into three
categories. The method of the first type is to calculate the
Jacobian matrix of high precision based on measured data
(Chen et al., 2016). The method of the second type is to
obtain a more accurate linearized power flow calculation
model based on the measured data (Liu et al., 2019). The
method of the third type uses neural network to replace AC
power flow calculation to realize the faster power flow calculation
(Liu and Kong, 2021). Obviously, only the third kind of method is
used to improve the efficiency of power flow calculation.
Therefore, this paper adopts the third method and combines
the data-driven power flow calculation into the intelligent
optimization algorithm to form the data-driven power flow
optimization method.

In Shi et al. (2019), deep belief network (DBN) is seen to be an
excellent candidate for the data-driven model, and it is a
multilayer probability generation model that extracts features
well. In addition, because of its good feature extraction and
discrimination ability, DBN is widely used in power prediction
and equipment fault diagnosis and shows better results than
traditional machine learning methods in power prediction and
fault diagnosis accuracy (Xu et al., 2018; Tao et al., 2020; Dong
et al., 2021). Therefore, DBN is adopted as the data-driven
approach of this paper.

To sum up, this paper proposes a power flow optimization
method based on data-driven technology and an improved
genetic algorithm for power systems with PST. The method
uses DBN to train the sample set, in which the input variables
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are phase-shift angle, the active power of the generator, and load
active and reactive power and the output variables are system loss
and the power flow of the lines where the power flow reverse may
occur. The calculation link of the fitness function in the genetic
algorithm is replaced by the high-precision DBN model, which
avoids the time-consuming problem of power flow calculation by
the way of iteration and keeps a high accuracy. Moreover, in the
process of genetic algorithm optimization, the introduction of the
sectional power flow reversal elimination mechanism makes the
solutions evolve in an effective optimization direction. So, the
method proposed in this paper reduces the difficulty of power
flow calculation for power systems with PST and improves the
speed of power flow optimization. The main contributions of this
paper are as follows:

(1) A new paradigm of data-driven power flow optimization is
proposed, which improves the optimization efficiency while
ensuring the optimization accuracy and has certain
generalization ability.

(2) By adding state variables of optimization models into the
output set of the sample of neural networks, the proposed
optimization method can completely consider inequality
constraints containing the state variables—for example, by
adding the active power of the lines prone to power reversal
into the output set of the sample, the proposed method can
consider the inequality constraints about power reversal and
can avoid unreasonable power flow distribution of the grid
section with PST.

The structure of this article is as follows: first, Section 2
introduces the equivalent model of PST and the change in
model-based PF calculation of power systems with PST. After
that, Section 3 presents the power flow optimization model of
systems with PST. Next, Section 4 describes the data-driven
approach used to replace the traditional PF calculation and
highlights the improvements to the genetic algorithm.
Subsequently, Section 5 verifies the effectiveness of the
proposed method on the IEEE 39-node modification system
with PST by comparing it with the traditional model-driven
genetic algorithm and traditional mathematical programming
method. Finally, the main findings of this study are
summarized with some prospects for future studies in the
conclusion section.

2 MATHEMATICAL MODEL OF THE PHASE
SHIFTING TRANSFORMER
2.1 The Basic Principle of the Phase Shifting
Transformer
Phase shifting transformer adjustment can generally be divided
into longitudinal adjustment, lateral adjustment and oblique
adjustment (Zhang, 2017). Longitudinal regulation is to adjust
the amplitude of the voltage, lateral regulation is to adjust the
phase of the voltage, and oblique regulation changes both the
voltage amplitude and its phase.

In this paper, the discrete two-core symmetrical PST is
selected as the research object, which belongs to the lateral
adjustment. Its structure is shown in Figure 1.

As can be seen from Figure 1, the structure of the controlled
PST includes a series booster transformer (BT), an excitation
transformer (ET) and a controller (Mehdi, 2010; Bian et al., 2012).
First of all, the parallel transformer is used to obtain the terminal
voltage of the branch where the PST is located. Then, according to
the system’s demand, the voltage of a certain amplitude and phase
angle is obtained by using the mechanical or power electronic
control device. Finally, the voltage is injected into the line by the
series transformer to realize the effect of regulating the voltage
phase angle.

2.2 Power Flow Models With Phase Shifting
Transformer
The equivalent circuit of the branch with PST is shown in
Figure 2.

In Figure 2, Yeq = geq + jbeq represents the equivalent
admittance of the PST, YL = gL + jbL represents the equivalent
admittance of the line, α is the phase-shift angle, and Ui, θi, Uj,
and θj represent the voltage amplitude and phase of node i and j,
respectively.

In the power flow calculation of a system with PST, the node
admittance matrix of the network is generally symmetrical, and a
series of processing and simplifications in the PF calculation is
also based on the symmetry of the node admittance matrix.
However, because the ratio of PSTs is a complex number, not
a scalar, the admittance of the PST branch between node i and
node j, as shown in Figure 2, in an equivalent circuit form,
Yij ≠ Yji, and the node admittance matrix of a system with PST is
no longer symmetrical. In order to maintain the symmetry of the
node admittance matrix, the PST branch should be pre-treated in
order to keep the node admittance matrix of the whole system
symmetrical during PF calculation.

FIGURE 1 | Two-core symmetrical phase-shifting transformer structure
diagram.

FIGURE 2 | The equivalent circuit of the branch with phase-shifting
transformer.
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In details, the variable ratio of the PST is firstly removed, and
the equivalent admittance becomes Yeq. Then, the injection
power of node i and node j needs to be corrected. The
schematic diagram of the equivalent injected power of PST is
shown in Figure 3.

The change of injection power of the nodes at both ends of the
derived equivalent PST is as follows (Noroozian and Andersson.,
1993; Papazoglou et al., 1999; Eremia et al., 2016):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΔPi � UiUj{geq[cos(α + θij) − cos θij] + beq[sin(α + θij) − sin θij]}
ΔQi � UiUj{geq[sin(α + θij) − sin θij] − beq[cos(α + θij) − cos θij]}
ΔPj � UiUj{geq[cos(α − θji) − cos θji] − beq[sin(α − θji) + sin θji]}
ΔQj � −UiUj{geq[sin(α − θji) + sin θji] + beq[cos(α − θji) − cos θji]}

(1)
where ΔPi, ΔPj, ΔQi, and ΔQj denote the injected active and
reactive power of node i and node j, respectively. Moreover, θij =
θi – θj, θji = θj – θi.

It is known by Equation 1 that the equivalent injection power
on both sides of the PST is only related to the parameters of the
PST and the voltage amplitude and phase at both ends of it. In
each iteration of power flow calculation, as long as the equivalent
injection power is calculated through the above-mentioned
formula and added to the original injection power of the node,
the power flow solution with PST can be solved as usual.

3 OPTIMIZATION MODEL OF POWER
SYSTEMS WITH PHASE-SHIFTING
TRANSFORMER
The PST changes the phase of the voltage at the installation point
of it by stringing the voltage with adjustable amplitude into the
transmission line so as to adjust the power flow of the
transmission line. In order to better play the power flow
regulation ability of PST, the power flow optimization model
of power systems with PST is considered as follows (Zhang et al.,
2021):

minf(x, u)
s.t.{ h(x, u) � 0

g ≤g(x, u)≤ �g
(2)

In the expression, f (x,u) is the target function, h (x,u) is an
equation constraint, g (x,u) is an inequality constraint, g and �g

respectively represent the lower and upper limits of g (x,u), and x
and u respectively represent state variables and control variables.
The control variables selected in this paper include phase-shift
angle and generator output power (MW).

3.1 Target Function
The objective function of this paper is the active power loss of the
system. The expression is as follows:

Ploss � ∑Nl

i�1 Gi[V2
i1 + V2

i2 − 2Vi1Vi2 cos(θi1 − θi2)] (3)
where Ploss is the active power loss of the system, Nl is the total
number of branches of the system, Gi is the conductivity of the
branch i,Vi1, θi1, andVi2, θi2 are the voltage and phase angle of the
bus at the head and tail side of branch i, respectively.

3.2 Equation Constraints
The active and reactive power constraint equations are as
follows:

PGi − PDi −∑n

j�1ViVj(Gij cos θij + Bij sin θij) � 0 (4)
QGi − QDi −∑n

j�1ViVj(Gij sin θij − Bij cos θij) � 0 (5)

where PGi and QGi are the active and reactive power output of the
i-bus generator, respectively. PDi and QDi are the load active and
reactive power of the bus i.Gij and Bij are the conductance and the
susceptance of the line i–j, respectively. θij is the voltage phase
difference at both ends of the line i–j.

3.3 Inequality Constraints
3.3.1 Constraints of Control Variables

3.3.1.1 Shift-Phase Angle

In this paper, the phase angle of PST is chosen as the control
variable and limited to the range from αmin to αmax

αmin ≤ α≤ αmax (6)

3.3.1.2 The Generator Active Output (MW)

PGimin ≤PGi ≤PGimax, i � 1,/, GN (7)
The active power output of the generator, PGi, is chosen as

another kind of decision-making variable. Among them, PGimin

and PGimax are the minimum and maximum active power
output of the generator i, respectively. GN indicates the
generator node number that is involved in the decision-
making variable list.

3.3.2 Constraints of State Variables
The inequality constraints for the voltage amplitude of the load
node are as follow:

Vimin ≤Vi ≤Vimax, i � 1,/, ND (8)
whereVimin andVimax are theminimum andmaximum voltage of
the load node, respectively. ND represents the total number of
load nodes. In this paper,Vimin andVimax are set as 0.95 and 1.052
p.u., respectively.

FIGURE 3 | The schematic diagram of equivalent injected power of
phase-shifting transformer.
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The inequality constraints of the reactive power output of
generators are as follows:

QGkmin ≤QGk ≤QGkmax, k � 1, . . . , Ng (9)
where QGkmin and QGkmax are the minimum and maximum
reactive powers of the generator k, respectively, and Ng is the
number of all generators.

The inequality constraints on the transmission limit are as
follow:

Pijmin ≤Pij ≤Pijmax (10)
where Pij is the transmission power from node i to j, and Pijmin

and Pijmax are respectively the minimum and the maximum
permissible powers of line i–j and Pijmin � −Pijmax.

4 PROPOSED METHODOLOGY

4.1 Deep Belief Network
DBN is an efficient unsupervised learning algorithm stacked by a
series of restricted Boltzmann machines (RBMs) and then adds a
layer of back-propagation (BP) neural networks at the bottom
level. The DBN topology and training process are shown in
Figure 4. The DBN training process is divided into
unsupervised training and fine-tuning. First of all, individually
unsupervised training is given to each layer of the RBM network
so as to retain feature information as much as possible when
mapping the feature vectors to different feature spaces. Then, the
parameters obtained from the unsupervised training phase were
uses as the initial value, and the DBN was fine-tuned through BP.
This process can avoid local optimization in the training process.

About the structure of the DBN, this paper selects the phase-
shift angle, generator active power, and active power and reactive
power of the load node as input. The first two kinds of variables
are the control variables. In addition, in order to characterize the
operating states of the power system, the active power and
reactive power of all load nodes are added to the input set of
the sample. Notably, when the number of system load nodes is

huge and the processing capacity of the learning model is limited,
only some key load nodes or cross-section power flow and other
characteristics can be selected to characterize the operation mode
of the power system. The selection of a specific feature in the
operation information of a power system is another interesting
topic and will be further studied in the future. The DBN outputs
are the active total line loss of the system expressed by Ploss, and
the power flow value of the branch where the power flow reverse
phenomenon may occur which is expressed by Pls.

In the face of unbalanced power in the system for PF
calculation in both model-based and data-driven ways, one or
more generators are generally assigned to bear the unbalanced
power—for example, Mezghani et al. (2020) uses multiple
generators, as an automatic generation control scheme, to bear
the unbalanced power caused by uncertain factors when
considering many scenarios. Liu et al. (2021) adopts a slack
generator to bear the unbalanced power caused by data-driven
errors. In this paper, considering that the slack generator needs to
bear the unbalanced power of the system, the active power of the
slack generator cannot participate in the process of power flow
optimization, so the error brought by the data drive in this paper
will also be borne by the slack generator as part of the unbalanced
power, and the sample input set of this paper does not include the
active power of the slack generator.

4.2 Genetic Algorithm Improvement:
Elimination of Power Flow Reversal
Individuals
First, the concept of the power flow reverse is introduced. The
phenomenon of power flow reverse refers to the phenomenon
that the power flow direction is opposite to the positive direction
assumed in advance—for example, if the power flow reverse
occurs on the line i–j, Pij < 0.

The generator area and the load area in the network structure
are normally determined, and the power delivery pattern between
areas through one or more cross-sections is planned and
maintained according to operation rules. Thus, in this paper,
the phenomenon of the power flow reverse of cross-sections or a
line of a section under study is seen as abnormal, contrary to the
requirement of power system operation safety—for example,
when the power flow in one of the parallel lines in a cross-
section is reversed, the resulting loop current/power will make the
distribution of the power flow more uneven within the section
and will probably lead to the phenomenon of power flow overload
in the other lines. Therefore, in this paper, the active powers of the
lines, where the power flow reverse may occur, are added into the
output of the sample set to monitor whether power flow reverse
occurs or not. In this way, the proposed optimization method can
consider Pij > 0, which is the inequality constraint about the
power flow reverse. In order to determine these lines, it is
necessary to use simulation data information to determine
which lines in the concerned section will be prone to power
flow reversal. At the same time, this paper adds the section line
power flow direction identification link in the genetic algorithm
(GA) adaptation calculation step. Considering that each
individual corresponds to an operation state of the power

FIGURE 4 | Deep belief network structure diagram.
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system in the genetic algorithm, if the lines with power flow
reversal in the studied section are identified, the corresponding
individuals are eliminated.

4.3 Power Flow Optimization Based on
Improved Genetic Algorithm With Deep
Belief Network
The calculation link of the fitness function in the improved GA
is replaced by the well-trained DBN model, which realizes the
rapid calculation of the power flow optimization. The main
steps of the improved genetic algorithm based on data drive are
shown in Figure 5, and the implementation process is as
follows:

(1) Construct a quantity of network training samples: The
training samples are constructed by randomly selecting
different load levels, different active power levels of
generators, and different PST gears within a reasonable
range. The system loss value is obtained by the calculation
of formula (3) as one of the DBN output. Another DBN
output is the power flow of the lines in the studied section
where the power flow reverse may occur.

(2) The constructed samples are divided into training sets and
test sets, which are used for DBN training and the

performance testing of the post-training networks,
respectively. The DBN parameters are set according to the
actual system specifications.

(3) Set the GA parameters, including population size, maximum
iteration number, iterative accuracy, cross-probability and
variation probability, etc., and initialize the population. The
genes of each chromosome consist of the active and reactive
load value, the controllable generator power (MW), and the
phase angle of the PST.

(4) The DBN is used to predict each individual to get the
corresponding fitness value and the active powers of the
lines where the power flow reverse may occur, and the power
flow reversal judgment is performed on each individual. The
individuals with power flow reversal are eliminated, and the
others are retained or eliminated through fitness ranking.

(5) Crossover and mutation of the population to obtain the
better offspring.

(6) Determine whether the end condition of GA has been met. If
the maximum number of iterations or the iterative accuracy
is reached, stop the iteration and output the system loss and
the optimal power flow scheme, otherwise return to step (4).

Notably, the main work of calculating the adaptation function is
actually to calculate a power flow in the power flow optimization
problem of a power system. It is very time-consuming to repeatedly

FIGURE 5 | The flow chart of improved genetic algorithm based on data drive.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 7936866

Li et al. Power Flow Optimization With PST

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


calculate the power flow in the iterative process, while replacing the
power flow calculation with the DBN model can greatly reduce the
time cost. Therefore, as long as the learning model is guaranteed
within a certain acceptable precision range, the optimization process
of the algorithm can be greatly accelerated with almost no loss of
optimization accuracy.

5 CASE STUDY

5.1 Phase-Shifting Transformer Installation
Position and Parameters
In this paper, the IEEE 39-node system is used as the simulation
example, and the diagram is shown in Figure 6.

Figure 6 shows three sections of the system (Jia et al., 2010). In
this paper, section B is selected for research. In order to determine
the installation location of the PST, it is necessary to analyze the
power flow distribution of section B, as shown in Table 1.

Among them, F and T represent the starting and ending points
of the branch, and P represents the active power of the line.

It should be noted that, in order to ensure that the IEEE 39-
node systemmeets the inequality constraint (8), some parameters
of the standard IEEE 39-node system are modified in this paper,
and the contents of the modifications are shown in Table 2. The
data in Table 1 is based on the modified IEEE 39-node system.

For simplicity, only one PST is considered. According to the
power flow data shown in Table 1, this paper installs the PST
between nodes 17 and 27. Because this branch has the smallest
power flow, the PST installed on this branch can absorb the power
flow of other lines in the section and improve the overall
transport capacity of the section.

In order to determine the PST parameters, it is necessary to
clarify the active power limit value of the 17–27 branch. This
paper assumes that the active power limit value of the branch with
PST is 350 MW. In addition, this paper takes [−10°, 10°] as the
phase-shift angle adjustment range, and the adjacent phase-shift
gears differ by 1°. According to the parameter design method of

the PST in literature (Yu et al., 2013), the equivalent reactance of
the PST at each tap position can be obtained. Considering that the
difference of the PST equivalent reactance at different gears is
very small, the equivalent reactance corresponding to the phase-
shift angle of 0° is chosen as the equivalent reactance of each gear.
The selected equivalent reactance of the PST is 0.04 p.u.

5.2 Sample Set Construction
In this paper, BPA and MATLAB simulation software are used to
automatically generate a steady-state power flow sample set, and
the GA is implemented on the MATLAB platform. The test
computer is configured as Intel Core i7-4790, CPU s3.2 GHz, 8
GB RAM.

According to the analysis of Section 4.1, the input of the DBN
includes PDi, QDi, PGi, and α. In this paper, only one PST is
installed, and the dimension of the phase-shift angle variable is
one. Then, the generators 30, 32, and 33 are selected to participate
in the power flow optimization process, so there are three active
power variables of the generators. Considering that the sample
system has only 19 load nodes, this paper selects all of the load
nodes to reflect the system operation features and test the capability
of the DBN, which means that there are 38 load variables of active
and reactive power. Totally, the sample input amount is 42. In
terms of the range of the input variables, the phase-shift angle is in
the range of [−10°, 10°], while the active powers of the generators of
BUS30, BUS32, and BUS33 are respectively in the range of [520
MW, 1,040 MW], [362 MW, 725 MW], and [326 MW, 652 MW].
Among them, the upper limit of the active power of each generator
is derived from the example of MATPOWER (Zimmerman et al.,
2011), and the lower limit is half of the upper limit according to
experience. If we set the lower limit value of the active power of
each generator as 0 according to the practice of MATPOWER, a
large number of samples in the simulation will not converge. In
addition, the active and reactive powers of each load node at the
load level of 100% are shown inTable 3. Specifically, the load levels
in the sample set of this paper include 95, 100, 102, and 105%, and
the number of samples per load level is 1,000. So, the input
dimension of the sample set is 42 × 4,000.

Considering that the power flow of line 17–27 is small and easy
to reverse, this paper puts the active power of line 17–27 as one of
the outputs of the DBN. Thus, the output of the DBN is of two
dimensions: the active power of line 17–27 and the system loss.
The sample set used in this paper can be found in the
supplementary material.

5.3 Accuracy of Different Learning Models
In order to compare the prediction accuracy of DBN, in terms
of system network loss, three extra common machine learning

FIGURE 6 | IEEE 39-node system structure diagram.

TABLE 1 | Power flow distribution of section B.

Branch number F T P (MW)

1 BUS17 BUS 27 36
2 BUS17 BUS18 193.4
3 BUS14 BUS4 264.2
4 BUS11 BUS6 319.1
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methods are used for the test: back-propagation neural
network (BP), extreme learning machine (ELM), and
support vector machine (SVM). In the 4,000 sample sets in
Section 5.2, 3,000 samples were randomly selected as the

training set and 1,000 samples as the test set. Thus, these
four models are trained and tested with the same samples. The
model parameters are as follows:

1) DBN: We use two hidden layers, which contain 300 and 400
hidden nodes, respectively. The momentum, learning rate,
and number of RBM pre-training are chosen as 0.7, 0.03, and
100, respectively.

2) ELM: The number of hidden layer nodes is 60.
3) SVM: 4 polynomial nuclear functions are selected. The

penalty function and the nucleus function coefficient is 1.5
and 10, respectively.

The predicted results of different models on the test set are
shown in Figure 7. It can be seen that the DBN used in this paper
has a good prediction effect on the system loss of the test set. The
forecast values of DBN and the expectations (the true values)
from the simulation cases are basically consistent, which canmeet
the application requirements of the system loss assessment. The

TABLE 2 | The modified parameters of the IEEE 39-node system.

No. Before the change After the change

BUS25 Active load: 224 MW, reactive load: 47.2 MVAR Active load: 300 MW, reactive load: 150 MVAR
BUS26 Active load: 139 MW, reactive load: 17 MVAR Active load: 150 MW, reactive load: 30 MVAR
BUS36 Arrange the voltage value or Vmax: 1.063 p.u. Arrange the voltage value or Vmax: 1.030 p.u

TABLE 3 | The active and reactive power of each load node at the load level
of 100%.

No. P (MW) Q (MVAR) No. P (MW) Q (MVAR)

BUS3 322 2.4 BUS23 247.5 84.6
BUS4 500 184 BUS24 308.6 −92
BUS7 233.8 84 BUS25 300 150
BUS8 522 176 BUS26 150 30
BUS12 8.5 88 BUS27 281 75.5
BUS15 320 153 BUS28 206 27.6
BUS16 329 32.3 BUS29 283.5 26.9
BUS18 158 30 BUS31 9.2 4.6
BUS20 680 103 BUS39 1,104 250
BUS21 274 115 — — —

FIGURE 7 | Predicted results of different models on the test set. (A) is DBN, (B) is BP, (C) is ELM, (D) is SVM.
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other three common machine learning methods also show good
prediction results.

In addition, to further compare the performance of the models,
root mean square error (RMSE), mean absolute error (MAE), and
determination coefficients (R2) are used (Kang et al., 2015; Mohan
et al., 2018). The results of the relevant indicators are shown in
Table 4. Among them, RMSE and MAE are used to evaluate the
predictive ability of the model on the test samples. The smaller the
value of RMSE andMAE, the better the predicting performance of
the model for system loss. In addition, R2 is used to evaluate the
fitting degree of the model with the test set. The closer the value is
to 1, the higher the fitting degree is.

As can be seen from Table 4, compared with BP, ELM, and
SVM methods, all the indicators of DBN are leading, so DBN is
recommended as the data-driven module of the GA in this paper.

5.4 Comparison of Data-Driven and
Model-Driven Genetic Algorithms
The basic parameters of the GA used in this paper are as follows:
the number of maximum iterations is 70, the number of variables
is 4, the number of individuals is 40, the generation gap is 0.95, the
crossover probability is 0.7, and the mutation probability is 0.01.

In order to test the accuracy of the data-driven GA and the
generalization ability of the learning models mentioned above
under different load levels of the system, we take the load levels of
93, 95, 97, 99, 101, 103, 105, and 107% for simulation. The
simulation results are shown in Table 5, where the results of the
model-driven genetic algorithm are regarded as true values.

Among them, Ploss,GA represents the optimal system loss value
obtained by model-driven GA. Ploss,DBN-GA, Ploss,BP-GA, Ploss,ELM-

GA, and Ploss,SVM-GA respectively represent the optimal system
losses obtained by different data-driven GA. The relative error is
calculated as follows: (Ploss,XX-GA - Ploss,GA) / Ploss,GA, where the
expression Ploss,XX-GA represents the data-driven GA.

As can be seen from Table 5, the error of DBN-based GA is
smaller than those of other data-driven methods at 97, 101, and
105% load levels. Relatively, the DBN-based GA has less error
than other data-driven methods. As a whole, the DBN-based GA
shows a stronger generalization of different load levels of the
system compared with the other data-driven GA in Table 5.

In order to verify the accuracy of data-driven optimization
results, the optimization results based on DBN were substituted
into BPA (Tao et al., 2013). The active power loss value based
on DBN and BPA (Ploss,DBN-BPA) was compared with that based
on the model-driven method (Ploss,GA), and the results are as
shown in Table 6. This process is named “state recovery” (Liu
et al., 2021) since it is aimed at recovering the system state
based on the optimization results of the data-driven method.
This approach can also help examine whether the results of the
data-driven method can be applicable for practical power flow
optimization.

From the data in Table 6, the precision of the optimization
results based on DBN and BPA is high enough, which means that
the results of the data-driven method can be applicable for
practical power flow optimization.

5.5 Comparison of Genetic Algorithms and a
Mixed-Integer Second-Order Cone
Programming Model
In order to further verify the optimization performance of the
proposed method, we compared the calculation time and
optimization results of different data-driven GA, the model-
driven GA, and the traditional mathematical programming
method at 100% load level. Considering the discrete
characteristics of the PST, the power flow optimization
problem of the traditional solution method is transformed into
a mixed-integer second-order cone programming (MISOCP)
model (Lin et al., 2019). Then, the mature optimization solver
GUROBI is used to solve the problem (Lin et al., 2019). The time
cost and solution results of various models are shown in Table 7.
Moreover, the iteration will be terminated if the difference
between the optimal objective functions of three adjacent
iterations is less than 0.01 when we use the model-driven GA.

As can be seen from the results in Table 7, data-driven GA is
significantly superior to model-driven GA and MISOCP in time
consumption. By comparing the optimization results between

TABLE 4 | Predicted results of different models on the test set.

Model DBN BP ELM SVM

RMSE 0.032363 0.058879 0.094488 0.139440
MAE 0.017190 0.039753 0.069476 0.114470
R2 0.999946 0.999821 0.999539 0.998996

TABLE 5 | Errors of the data-driven genetic algorithm (GA) and model-driven GA.

Load
level
(%)

Ploss,GA

(MW)
Ploss,DBN-

GA

(MW)

Relative
error
(%)

Ploss,BP-

GA

(MW)

Relative
error
(%)

Ploss,ELM-

GA

(MW)

Relative
error
(%)

Ploss,SVM-

GA

(MW)

Relative
error
(%)

93 39.5 38.9838 −1.31 39.1165 −0.97 43.5033 10.13 37.0208 −6.28
95 38.2 38.3535 0.40 38.3811 0.47 38.2034 0.01 38.4691 0.70
97 37.6 37.5784 −0.06 38.0802 1.28 39.0566 3.87 38.3721 2.05
99 37.3 37.5717 0.73 37.3637 0.17 37.7442 1.19 37.8158 1.38
101 37.7 37.7164 0.04 37.0992 −1.59 37.0216 −1.80 37.3028 −1.05
103 38.0 38.1828 0.48 38.0909 0.24 38.1106 0.29 37.6957 −0.80
105 38.8 38.782 −0.05 38.5966 −0.52 38.8291 0.07 38.9025 0.26
107 39.9 39.4093 −1.23 37.3648 −6.35 39.1624 −1.85 40.245 0.86
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different models, it can be seen that the data-driven GA and the
model-driven GA can obtain better solutions than the
traditional MISOCP algorithm, having better performance in
avoiding local optimal in this case. In addition, the accuracy of
DBN is the highest at 100% load level when regarding the result
of model-driven GA as the truth value. In a word, although the
time consumption of DBN is not the shortest, DBN is still a
more appropriate choice considering the comprehensive
performance of accuracy, generalization ability, and time
consumption.

Through the study, it can be seen that the data-driven GA can
greatly accelerate the optimization process under the premise of
ensuring the optimization accuracy.

5.6 Validation of the Improved GA
In order to verify the correctness and validity of Section 4.2, we
make a simulation comparison on whether to adopt the power
flow reversal elimination mechanism. The simulation example is
the IEEE 39-node system with PST at the load level of 100%. The
simulation results are shown in Table 8.

From the comparison of the data in Table 8, it can be seen
that, compared with the practice of eliminating the
individuals with power flow reversal, the uniformity of
power flow distribution in each line of section B is
significantly reduced without eliminating the individuals
with power flow reversal. It is necessary to point out that,
in the scenario studied in this paper, the power flow reverse
phenomenon is more likely to occur when the phase-shift
angle is in the positive interval.

6 CONCLUSION

1) The optimal power flow model of the power system with the
phase-shifting transformer is established, and an efficient
data-driven algorithm is proposed to solve it, which not
only balances the optimization speed and accuracy but also
has certain generalization ability for various power grid
operation modes.

2) The sectional power flow reversal elimination mechanism in
the genetic algorithm is introduced and appropriately co-
designed with DBN to avoid the unreasonable power flow
distribution of the grid section with PST.

3) Simulation examples show that the improved genetic
algorithm containing data drive process proposed in this
paper is effective.

The current research is aimed to optimize the power flow of
power systems with PST in a certain load level range. The change
of the system topology has not been considered. Therefore, how
to apply the proposed method to the power flow optimization of a
power system with more variable operation modes is the main
topic in future works.
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TABLE 7 | Comparison of data-driven genetic algorithm (GA), model-driven GA,
and MISOCP.

Operation CPU time (s) Ploss (MW)

DBN-GA 0.637 37.61
BP-GA 1.608 37.28
ELM-GA 0.593 37.33
SVM-GA 0.640 37.72
Model-driven 262.373 37.6
MISOCP 3.857 38.39

TABLE 8 | The power flow distribution of section B with or without eliminating
individuals of power flow reverse.

F T P (MW)

Eliminated Not eliminated

BUS17 BUS27 8.2 −29.8
BUS17 BUS18 18.1 45.3
BUS14 BUS4 144.4 154.5
BUS11 BUS6 72.2 89.5

TABLE 6 | Errors of the optimization results based on deep belief network (DBN)
and BPA.

Load level (%) Ploss,GA (MW) Ploss,DBN-BPA (MW) Relative error (%)

93 39.5 39.01 −1.24
95 38.2 38.19 −0.03
97 37.6 37.35 −0.66
99 37.3 37.31 0.03
101 37.7 37.7 0
103 38.0 38.14 0.37
105 38.8 38.83 0.08
107 39.9 39.94 0.10
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