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Future energy systems will comprise 100% renewable energy and involve high integration
of energy systems. District heating (DH) and cooling systems will be an undeniable part of
future energy systems, as they facilitate high-efficiency, low-cost, and clean production.
Low-temperature district heating (LTDH) is one of the candidates for future district heating
systems, where the supply temperature is 60°C or below. Reducing heat losses from the
pipe network in DH systems is challenging. Improving the insulation standards in DH pipes
can decrease heat and temperature losses in the pipe networks. This study employs
computational fluid dynamics to evaluate the optimum insulation thickness based on the
material and digging costs in South Korea. A micro hybrid DH system with natural gas run
fuel cell, heat pump and solar thermal is proposed in this study. An evaluation of the system
with a 500m pipe network system supplying hot water at 60°C with polyethylene, ethylene
propylene diene monomer rubber, and polyurethane as insulation materials using ANSYS
Fluent 17.2 shows that the heat losses are minimal when using PU foams. A cost
estimation analysis showed that 32 mm was the optimum insulation thickness for
achieving heat losses below 20W/m and minimum material and digging costs when
burring the pipeline network in the ground.

Keywords: low temperature district heating, oil and natural gas run boiler, pipe heat losses, CFD analysis, pipe
insulation, optimum insulation thickness, cost estimation

INTRODUCTION

Decreasing fossil fuel sources and extreme weather changes due to global warming have
accelerated the search for future sustainable energy systems, including 100% renewable
systems (Alberg Østergaard et al., 2010; Mathiesen et al., 2014; Gatt et al., 2020). Energy
consumption in areas such as manufacturing, buildings, transportation, and agriculture has
recently received considerable attention because of the high rate of heat losses associated with
them. The building sector, which consumes 20% of the total global energy, with an expected
annual increase of 1.4% between 2012 and 2040 (U.S. Energy Information Administration
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(EIA)1), tops this list. A significant portion of building energy
consumption is from space heating, which is approximately
two times that of other consumption sources such as cooking,
water heating, and refrigeration (Kaynakli, 2008).

Natural gas is one of the best sources to reduce the carbon
emissions and transition towards green building concept
(Abánades, 2018; Mohammad et al., 2021). Centralized production
facilities mainly provide space heating in buildings through a heat
transfer network called district heating (DH). The thermal energy is
distributed through a pipe network that connects the thermal
generation facility with the different building consumption nodes
integrated with the system (Werner, 2013). Most of the world’s DH
systems are currently based on the technologically advanced fourth-
generation district heating (4GDH) system also called low-
temperature district heating, where the supply temperature is 60°C
and below (Lund et al., 2014; Lund et al., 2018). The primary fuel to
run such systems is the natural gas. Reducing the supply temperature
reduces the rate of heat losses from the system, which subsequently
increases the supply and distribution efficiency and integrates low-
temperature renewable energy and waste heat sources (Alberg
Østergaard et al., 2010; Brocklebank et al., 2018).

Many countries worldwide have been promoting 4GDH system
projects to improve energy efficiency and reduce greenhouse gas
emissions (Case studies of Low Temperature District Heating
systems, 2020). Network transmission and distribution heat losses
are key factors in the design of cost-effective low-energy DH systems.
The heat losses in DH occur from the envelope of the dwellings or
during the transmission of hot water. Therefore, proper insulation in
buildings and piping systems is important for energy savings and
undesirable emission reduction from burning fossil fuels. There have
been many studies on thermal insulation in the literature (Lund and
Mohammadi, 2016). Various thermal insulationmaterials are currently
used in DH networks, including polyethylene (PEX), ethylene
propylene diene monomer rubber (EPDM), and polyurethane (PU).
Milad et. performed computational thermal hydraulic performance
analysis for various future DH schemes with PUR as insulation
material (Khosravi and Arabkoohsar, 2019). Ali et al. proposed the
optimum insulation thickness of pipes used in DH pipeline networks
with rock wool as insulation material (Keçebaş et al., 2011), and
Zukowski determined heat losses from pipelines (Zukowski, 2020).
Danielewicz presented a numerical model of heat losses from the pre-
insulated DH pipes buried in the ground (Danielewicz et al., 2016).

In South Korea, the heating is mainly provided through
traditional oil or natural gas run boiler systems, only few newly
developed cities and towns have implemented third-generation DH
systems. The upcoming government policies are focused towards the
low temperature district heating implementation. For that reasons
few authors have recently studied the insulation materials and
related heat losses when used for low temperature district heating
pipes. Kim et al. performed a simulation to evaluate the surface
temperature change based on the insulation thickness (Kim et al.,
2020). In another study, the insulation surface temperature and
energy losses were compared (Kim et al., 2021). However, studies

that deal with low-temperature district heating (LTDH)
implementation and associated challenges could not be found.

The present study examines the feasibility of PEX, EPDM
rubber, and PU foam insulation materials for implementing
LTDH in a demonstration site that supplies heat load to
buildings from a hybrid smart energy system. CFD analysis
was performed to evaluate the heat losses in each insulation
material with varying thicknesses, and cost estimation evaluated
the material and digging costs. The combined results demonstrate
that an optimum insulation thickness of 32 mm using PU foam
can reduce heat loss to below 20W/m.

MICRO DISTRICT HEATING SYSTEM IN
SOUTH KOREA

Hybrid energy systems are getting attention because of the building
heat demand difference during winter and summer seasons (Sharafi
et al., 2015; Ali and Jang, 2020). There have been many studies and
demonstrations on such systems (Ataei et al., 2015; Mokhtara et al.,
2021). The Korean government is incentivizing hybrid energy system
and LTDH implementation to encourage renewable heating systems
and reduce network heat losses (Baek et al., 2015; Kim, 2017; South
Korea supports District Energy in Cities Initiative, 2019). The Korea
Institute of Civil Engineering and Building Technology (KICT) has
launched a project to develop an integrated system to satisfy the
heating requirements at a building site. Figure 1 summarizes the
proposed hybrid energy system comprising 470 solar panels, 10 kW
fuel cells, and 84 kW geothermal heat pumps to manage the heat load
at the site. The Solar System will be installed on the parking space
available in the vicinity of the KICT. One goal of installing the Solar
System on parking space is the performance assessment of low
temperature heating pipes i.e. the heat losses from the pipes when
the hot water travels at a distance far from the target building. The
additional goal of this is to provide shadow to the parked cars of the
employees. The production capacity of the Solar System is calculated
to be 261,500 kWh. The heat produced from the Solar System is
transferred to the thermal storage system (4a) via primary networking
system. The storage capacity of the thermal storage system (4a) is 40
ton. From where the hot water produced will be supplied to building
5(a) via secondary networking system. The fuel cell and heat pump
systems will be installed in the basement of the building (5b). The fuel
cell is operated utilizing natural gas and themain output of the fuel cell
is electricity. The waste water produced by the fuel cell which is at the
temperature of about 60–70°C is utilized to supply the heating
demand of building (5b). The heat pump works on the principle
of a thermodynamic heat cycle. The hot air produced from the heat
pumpwill be transferred to heat up thewater from the thermal storage
system (4b) via heat exchanger through primary networking system.
During the winter season, when the heating demand of building 5(b)
increases, the excess hotwater produced from the solar thermal system
and stored at thermal storage 4(b) is supplied to heat building 5(b).
The length of the hot water distribution network is approximately 500
m, and a low-temperature heating network is installed to supply this
heat. The ultimate goal of this project is to demonstrate that the LTDH
in South Korea has network heat losses below 17%, as per the
guidelines of the 4GDH. Because the current study is designed for1https://www.eia.gov/index.php (Accessed August 9, 2021).
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demonstration purposes, the networking length is not as long as in the
actual system. Therefore, the objective of the current study was to
contain heat losses to below 20W/m, which, when upgraded to larger

systems (approximately 10 kmnetworking length), can retain the heat
losses to below 17%.

A typical insulation pipe was considered for this study. Table 1
lists the dimensions of the pipe components simulated in this study,
and the characteristics of the heat-carrying pipe and medium are
summarized in Table 2. Table 3 shows the thermal and physical
properties of the three insulation materials evaluated in this study.

NUMERICAL MODEL AND BOUNDARY
CONDITIONS

A numerical model of the pipeline with thermal insulation
was developed using the ANSYS Release 17.2. Assumptions

FIGURE 1 | Micro District Heating System Demonstration Site proposed by KICT (1) Solar Thermal Collectors (2) Supply Pipe (3) Return Pipe (4a,b) Thermal
Storage (5a,b) Target Building to Supply the Heat (6) Low-Temperature Pipe (7) Fuel Cell (8) Geothermal Source Heat Pump.

TABLE 1 | Dimensions of carrier and jacket pipes.

Pipe Casing

Nominal Diameter Outer Diameter Thickness Outer Diameter Thickness

(mm) (mm) (mm) (mm) (mm)

104.3 114.3 5 195.5 3.5

TABLE 2 | Characteristics of Heat carrying medium and pipe.

Component Material Density Specific Heat Thermal Conductivity
(kg/m.s)

Viscosity

(kg/m3) (J/kg.K) (W/m.K) (kg/m.s)

Heat Carrier Water 982 4,136.5 0.65 0.001
Pipe Steel 8,030 502.5 16.27 —

TABLE 3 | Thermal and physical properties of the three insulation materials
and soil.

S.No Material Density Thermal Conductivity

(kg/m3) (W/m.K)

1 PEX 33 0.043
2 EPDM 56 0.035
3 PU 30 0.022
4 Soil 1,600 2.58
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taken in this study were: incompressible flow, turbulent
model (k-epsilon), no viscous heating, no inside heat
generation, and same thermal properties during the flow.
Absolute velocity formulation was used along with pressure
based solver. A turbulent flow was assumed as the Reynolds
number was higher than 20,000, and the standard K-epsilon
(k-ε) turbulence model was used to simulate the mean flow
characteristics. Velocity and pressure coupling was
controlled by Semi- Implicit Method for Pressure-Linked
Equations (SIMPLE). For pressure second Oder spatial
discretization scheme was used, while for turbulent
dissipation rate, turbulent kinetic energy and for
discretization of momentum second Oder upwind scheme
was used. The outlet was at zero gauge pressure. Figure 2
summarizes the numerical model and boundary conditions
along with the dimensions considered in this study. A
portion of the ANSYS model is also presented elaborating
the walls with and without heat losses in Figure 2.

Governing Equations
Following governing equations were used for conservation of
energy, mass, and momentum (Ahmad et al., 2013).
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Where “k” is kinetic turbulence energy, “∈” is turbulence rate of
dissipation and “Gk” is the generation of kinetic turbulence
energy.

For simplifying the model, the pipeline was assumed to have
no bends. In addition, the inlet and outlet sides of the domain
were declared as walls with zero heat flux to suitably compare
the different types of insulation materials.

Validation and Grid Sensitivity Analysis
The computational domain is discretized by octagonal 3-D
elements in a non-uniform grid. Considering the importance
of the heat distribution along the radius of the pipe, the meshing
has been done with very small elements. Table 4 gives
information about three different mesh grids considered in the
simulations.

Figure 3 compares the values obtained from the simulations
with various mesh grid structures (A, B, C) for the rate of heat
transfer from the pipes and those reported by the pipe
manufacturer. Therefore, not only does this figure present

FIGURE 2 | Schematic and the ANSYS model of the simulated computational domain along with boundary conditions.
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the results of the sensitivity analysis on the mesh grids, but it
also is a reference for the validity of the results of the
simulations. A very good agreement was found between the
results obtained from the simulations (in all the mesh grid
sizes) and those reported by the Polytherm (HomePage2).
The Grid type C was considered for the whole study because
the results were closer to the data provided by the
manufacturer.

RESULTS AND DISCUSSION

Seasonal Effect of Insulation Materials on
Outlet Temperature (Tout)
Water enters the pipe at 60 °C and travels a distance of 500 m.
Figure 4 shows the temperature drop of water as it travels
along pipeline. The presented data is for the four seasons
in South Korea with different insulation materials. The
average temperature in each of the four seasons is shown
in Table 5.

The temperature drop in winter is 0.52, 0.7, and 0.84°C,
whereas that in spring is 0.43, 0.6, and 0.72°C for PU, EPDM,

and PEX foam insulation materials, respectively. The
temperature drop during summer and autumn was
relatively lower than that during the winter and spring
seasons because of the higher outdoor temperatures. The
temperature drop for summer is 0.28, 0.44, and 0.54°C,
whereas that in spring is 0.37, 0.51, and 0.6°C for PU,
EPDM, and PEX foam insulation materials, respectively.
For the same mass flow rate, a lower environmental
temperature causes a larger temperature drop at the pipe
outlet, resulting in a lower temperature drop during the
summer seasons.

Figure 5 presents the contours of the temperature
distribution in the radial direction at the pipe outlet
including the soil domain for the three insulation materials.
The portion of the soil domain is separately shown in the figure
to better understand how the soil domain looks like at the
outlet of the pipe. Since the maximum temperature drop
occurs during the winter season, the contours are drawn
only for this period when the average outside temperature
is 1°C.

Annual Heat Losses
Figure 6 shows the monthly heat losses for different
insulation materials for the entire year. The outdoor
temperature is also plotted for each month. As expected,
the heat loss decreases during summer and increases during
winter. The percentage heat losses are lower in PU foam and
higher in PEX foam insulation. The maximum heat loss
occurs in February and has values of 1.49, 1.23, and 0.92%
in PEX, EPDM rubber, and PU foam insulation. The average
minimum temperature during February is −1°C. The heat
loss is maximum during the start of the year (winter in South
Korea). The heat loss curve decreases with an increase in
outdoor temperature as the weather shifts to spring and
summer and increases again as the outdoor temperature
drops during autumn. The heat losses are maximum in
PEX foam insulation and minimum in PU foam
insulation. The EPDM rubber foam falls between the PU
and PEX foams.

Figure 7 summarizes the total annual heat loss in the three
insulation materials for the distribution network in Figure 1. The
maximum heat loss was observed for the PEX foam, followed by
EPDM rubber, and PU with values of approximately 1.1, 0.9, and
0.7%, respectively.

Effect of Insulation Thickness on Pipe Heat
Loss
This section analyses the effect of varying the insulation
thickness to reduce the heat losses in insulation materials
with different thermal conductivity. Figure 8 illustrates the
effect of insulation thickness on the total annual heat loss in
the three insulation materials. The heat loss decreases as the
insulation thickness increases in all cases. As the insulation
thickness increases from 20 to 30 mm, the heat loss decreases by
approximately 28, 27, and 29% in PEX foam, EPDM rubber

FIGURE 3 | The mesh grid sensitivity analysis and validation of the CFD
results.

TABLE 4 | Dimensions of mesh cells in different mesh grids.

Grid Type Average Mesh Size (mm)

Radial Direction Longitudinal Direction

Grid A 0.02 0.08
Grid B 0.01 0.04
Grid C 0.005 0.02

2https://www.polytherm.ie/ (Accessed November 14, 2021).
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foam, and PU foam, respectively. Similarly, an increase in the
insulation thickness from 30 to 40 mm lowers the heat losses to
18, 19, and 20% in PEX foam, EPDM rubber foam, and PU
foam, respectively. A significant reduction in heat loss is
observed in the higher ranges of insulation thickness but at a
reduced rate. The PU foam insulation shows the maximum heat
loss reduction rate in the different insulation thicknesses range
considered in this analysis.

COST ESTIMATION

The main objective of lowering the operating temperature in
DH systems is to decrease the rate of heat loss, which
eventually reduces the cost of DH. However, it might be
economically beneficial to reinforce insulations in
transmission pipelines compared to existing standard
pipes. This requires optimization based on techno-
economic considerations to analyze reinforcement cost
per meter of the pipe and resulting benefits.

The economic feasibility of different insulation materials
is discussed in this section. A cost survey was conducted to
estimate the materials and digging costs for three different
types and sizes of DH pipes (한국물가정보3). Table 6
summarizes the material cost per meter and digging cost

FIGURE 4 | Average Temperature drop along the pipe length during.

TABLE 5 | Average seasonal temperatures in South Korea.

Season Average temperature

(°C)

Winter 0.87
Spring 9.87
Summer 21.87
Autumn 17.87

3http://www.kpi.or.kr (Accessed November 14, 2021).
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of the three insulation materials with varying thicknesses.
Two types of digging costs are considered: soil digging and
concrete digging. Concrete digging costs approximately four
times more than soil digging because of the heavy machinery
and skilled labor required.

One of the primary goals of this study is to ensure the
system’s economic feasibility by retaining the heat losses in
the pipe to below 20 W/m. Because the demonstration site
requires only soil digging, analysis was performed
considering only the soil digging cost. The results are
shown in Figure 9.

The heat loss decreases with increasing insulation
thickness, and the total cost increases with increasing
insulation thickness for all materials. A heat loss of
20 W/m is obtained with PU foam insulation with a
thickness of 32 mm and above. EPDM rubber foam with
55 mm insulation thickness also exhibits a heat loss below
20 W/m, whereas PEX foam requires an insulation
thickness of 70 mm or above to achieve the same heat
loss. The total cost per meter for PEX foam with 70 mm
insulation is approximately USD 1010, whereas that of PU
foam with 32 mm insulation thickness is approximately

FIGURE 5 | Contours of radial temperature distribution at the pipe outlet through the insulations including the soil domain during winter with (A) PU Foam (B) EPDM
Rubber Foam (C) PEX Foam.
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USD 990. The highest cost was found for the EPDM rubber
foam, that is, USD 1035. The cost difference becomes
relatively higher as the required pipe length is 500 m.
Therefore, a PU form with an insulation thickness of
32 mm is proposed, considering optimum cost
performance.

CONCLUSION

This study presents the heat loss analysis of a regular DH pipe
used in a micro DH system demonstration site for
implementing LTDH in South Korea. The heat loss
analyses of such pipes for three insulation materials, the
PEX foam, EPDM rubber foam, and PU foam insulations,
are presented first. Subsequently, the effect of insulation
thickness on heat loss and material and digging costs were
investigated.

The results show that, as expected, the PU foam insulation
shows a lower heat loss rate and temperature drop along the
pipe, where the PEX foam insulation has the highest heat loss
rate and temperature drop when the supply temperature was
60°C. PU insulation also showed a higher heat loss reduction
rate than the EPDM rubber and PEX foam insulation materials.

The materials and digging cost estimation analysis with
varying insulation thickness also supports PU foam with an
insulation thickness of 32 mm as the ideal material for LTDH
systems to maintain heat losses below 20 W/m.
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