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Electric load forecasting is a prominent topic in energy research. Support vector regression
(SVR) has extensively and successfully achieved good performance in electric load
forecasting. Clifford support vector regression (CSVR) realizes multiple outputs by the
Clifford geometric algebra which can be used in multistep forecasting of electric load.
However, the effect of input is different from the forecasting value. Since the load
forecasting value affects the energy reserve and distribution in the energy system, the
accuracy is important in electric load forecasting. In this study, a fuzzy support vector
machine is proposed based on geometric algebra named Clifford fuzzy support vector
machine for regression (CFSVR). Through fuzzy membership, different input points have
different contributions to deciding the optimal regression hyperplane. We evaluate the
performance of the proposed CFSVR in fitting tasks on numerical simulation, UCI data set
and signal data set, and forecasting tasks on electric load data set and NN3 data set. The
result of the experiment indicates that Clifford fuzzy support vector machine for regression
has better performance than CSVR and SVR of other algorithms which can improve the
accuracy of electric load forecasting and achieve multistep forecasting.

Keywords: Clifford geometric algebra, support vector regression, fuzzy membership, multi-output, electric load
forecasting

1 INTRODUCTION

Electric load forecasting is used to forecast the value of electric load in the future, which plays an
important role in electric system operation. Support vector machines (SVMs) (Hong et al., 2013),
auto-regressive moving average, neural networks (Kelo and Dudul, 2012; Gao et al., 2021), etc. are the
common methods of electric load forecasting. Compared with other methods, the support vector
machine (SVM) is a powerful tool that is widely used in function approximation and prediction. The
SVM is first proposed by Vapnik in 1990 (Vapnik, 2013), which is widely used for classification and
regression. The theory of the SVM is based on the idea of structural risk minimization (SRM), that is,
for classification problems, the SVM finds the optimal hyperplane which can separate different
classes of training points. Similar to classification, the support vector machine for regression (SVR) is
also based on the idea of SRM which represents that the SVR fits a regression function over a set of
training points at the most ϵ-deviation from the actually obtained targets. The regression can be
regarded as a convex programming task which aims at solving a quadratic minimization problem
(Cortes, 1995).
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In the past research, the SVR has a good performance in
electric load forecasting based on both large and small samples
(Hong, 2009). A multi-output SVR can improve operating
efficiency in the case of multistep sequence forecasting (Fan
et al., 2016), as well as data analysis (Shi et al., 2006) and
anomaly detection (Zhang et al., 2019). The SVR cannot take
straightforward to multi-output, although it has been widely used
in data analysis and forecasting. A naive way is to use SVR for
several times, but it needs expensive cost. Fortunately, the Clifford
support vector machine (CSVM) (Bayro-Corrochano and Arana-
Daniel, 2005; Bayro-Corrochano and Arana-Daniel, 2010),
developed by E. Bayro-Corrochano, is a generalization of real-
and complex-valued support vector machines. It realizes multi-
output by using Clifford geometric algebra which enhances the
capability of the SVR.

Although previous research has clarified the ability of CSVR in
the application of multi-case interpolation (Bayro-Corrochano and
Arana-Daniel, 2010), the accuracy of CSVR can be improved in
fitting and forecasting. Accuracy is an important issue of the electric
load forecasting because the forecasting value affects the energy
reserve and distribution (Bunn, 2000). The input points may be
affected by noise and outliers which make the points abnormal. In
this case, the result of the regression will deviate from the optimal
hyperplane by CSVR and SVR of the classical algorithm. In addition,
multistep forecasting is a prominent research in many fields
including electric load forecasting (Huang et al., 2021; Ma et al.,
2021). For CSVR, the weights of all points are the same. Actually, the
value of different points has different effects on the predicted value.
The value of the points which are closer to the predicted point has
more relation to the predicted value.

To solve this problem, fuzzy membership can be set to give
different weights to each training point which means different
training points have different contributions to the regression
function. The bigger the membership is, the greater the weight
makes decision on the regression surface. Through setting
appropriate fuzzy membership, the effect of noise and outliers
can be reduced. In addition, for forecasting, the points closer to
the predicted point have more contribution to the
predicted value.

The contribution of this study is to apply fuzzy membership to
CSVR and reformulate it into the Clifford fuzzy support vector
machine for regression (CFSVR). Then the proposed CFSVR is
applied in solving the fitting and sequence forecasting. In a fitting
situation, the fuzzy membership reduces the effect of outliers and
noise, while in a forecasting situation, the fuzzy membership enables
different points in sequence to have different contributions to the
predicted value. Finally, the experiments on simulation, UCI data set,
and antenna signal data set show that the proposed CFSVR has
better performance than CSVR. In addition, the experiments on
electric load data set and NN3 data set for forecasting demonstrate
that the proposed CFSVR effectively improves the accuracy of CSVR
and SVR of other algorithms.

The rest of this article is organized as follows. Related work is
reviewed in Section 2. Geometric algebra and CSVR are
introduced in Section 3. The proposed CFSVR is described in
Section 4. The experiment is presented in Section 5. The
conclusion is given in Section 6.

2 RELATED WORK

In the past, the multi-output support vector machine was
mainly realized by using single-output SVR several times. A
multi-output support vector machine was proposed in 2002
by Fernando and Gustavo which uses a hypersphere to
represent the insensitive loss area and replace the original
loss function with a quadratic insensitive loss function
(Pérez-Cruz et al., 2002). Matilde and Mario proposed a
multi-output support vector regression machine whose
original loss function is also replaced with a quadratic
insensitive function for non-linear channel estimation of
multiple-input multiple-output systems in 2004 (Sánchez-
Fernández et al., 2004). The Taylor expansion is applied to
the iterative algorithm, which speeds up the calculation when
solving the Lagrange multiplier. Zhang Wei proposed a
multi-output support vector machine based on the least
squares support vector machine in 2012 which realizes
multi-output by extending multidimensional spatial
features (Wei et al., 2012).

The multi-output support vector regression machine based on
real numbers solves the high computational complexity of
multiple single-output support vector regression machines
mainly by expanding the real number kernel on the basis of
the original support vector machine regression. But complex
number regression is also needed in some applications. The
support vector regression machine based on real number splits
the complex numbers into different real numbers which ignore
the connection between algebras.

A support vector regression machine based on complex
numbers proposed by Pantelis Bouboulis mapped the complex
number to a complex feature space to divide the complex number
into real part and imaginary part, and then it used real number
kernel and imaginary number kernel, respectively. Shilton
proposed a support vector regression machine based on
divisional algebraic space (Bouboulis et al., 2017). This method
used an insensitive loss function, instead of the loss function
depending on the coordinate system. The proposed quaternion
and complex-valued support vector regression for equalization
and function approximation is called αX-SVR (Shilton and Lai,
2007; Shilton et al., 2009) (Shilton, 2012). However, division
algebra has only four forms: real numbers, complex numbers
(R2), quaternions (R4), and octonions (R8), which are limited to
process higher dimensional signals.

In order to expand the dimension of the output, Bayro-Corrochano
proposed a Clifford geometric algebraic support vector machine that
expresses variables in the form of multivectors by a Clifford product
(Bayro-Corrochano et al., 2005). Therefore, the CSVR takes advantage
of geometric characteristics to realize multi-output and reduce the cost
of computation.

3 CLIFFORD SUPPORT VECTOR
REGRESSION

In this section, we introduce the basis of geometric algebra and
the CSVR.
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3.1 Geometric Algebra
Gn is defined as a geometric algebra, which is a linear space. The
Clifford product of vectors a and b is the sum of their inner
product and their wedge product, as follows:

ab � a · b + a ∧ b. (1)

The inner product of the two vectors is a scalar or dot product.
The wedge product is a known quantity in geometric algebra
called a bivector, which is a plane constructed by sweeping a
along b. The outer product can be generalized to higher
dimensions. Thus, the outer product of k-vectors is a k-vector
or k-blade (Corrochano and Sobczyk, 2001). A multivector
A ∈ Gn is the sum of k-blades of different or equal grades. A �
〈A〉r is called homogeneous of grade r.

Then we devote a geometric algebra Gn of the n-dimensional
space specified by Gp,q,r, where n � p + q + r and p, q, and r
represent the number of these three basis vectors which squares to
1, −1, and 0, respectively.

In an n-dimension space, an orthonormal basis of vectors
leads to a basis

1, ei{ }, ei ∧ ej{ }, . . . , e1 ∧ e2 ∧/∧ en{ }{ } (2)

that spans the entire geometric algebra Gn, which means that any
multivector can be expressed on this basis. For example, the
orthogonal bases for Clifford algebra in the G3,0,0 space are
constructed by vectors with 23 � 8 grades, given as follows:

{1, (e1, e2, e3), (e1 ∧ e2, e2 ∧ e3, e3 ∧ e1)(e1 ∧ e2 ∧ e3)}, (3)

where1 0 scalar, e1, e2, e3 0 vectors, e1∧e2,e2∧e3,e3∧e1 0
bivectors, e1∧e2∧e3 ≡ I 0 trivector. Here, I is the hypervolume
called pseudoscalar, which commutes with all the multivectors.

3.2 Clifford Support Vector Regression
In this part, we will introduce the CSVR proposed by Bayro-
Corrochano and Arana-Daniel (2010).

In order to realize multiple outputs, the data set is represented
in a Clifford algebra Gn. Each data ith-vector has multivector
entries xi � [xi1, xi2,...,xiD]T, where xij ∈ Gn and D is its
dimension. Suppose there is a set of independently and
identically distributed training points
(x1, y1), (x2, y2), . . . , (xj, yj), . . . , (xl, yl), where each label
is given by yi � ysi + ye1ie1 + ye2ie2 + / + yliI. According to
the SRM, the purpose of the regression problem is to find a
regression function which has the most ϵ-deviation from the
actually obtained targets. Therefore, the regression problem can
be described as a convex optimal problem. For linear regression,
the function f(x) is given by f(x) � ω†Tx + b. Then the
regression problem can be written as follows:

min L(ω, b, ϵ) � 1
2
ω†Tω + C∑

i,j

ξij + ξ*ij( ), (4)

subject to

yi − ω†Txi − b( )
j
< � ϵ + ξij( )

ω†Txi − b − yi( )
j
< � ϵ + ξ*ij( )

ξ ij > � 0, ξ*ij > � 0 for all i, j,

where ω � [ω1,ω2, . . . ,ωD]T, x ∈ GD
n , and C is a constant.

This constrained optimization problem can be solved by the
following Lagrangian form:

Ld
1
2
ω†Tω + C∑l

i�1
ξ i + ξpi( ) −∑l

i�1
αi ϵ + ξi − yi + ω†Txi − b( )

−∑l
i�1

αi ϵ + ξpi + yi − ω†Txi − b( ) −∑l
i�1

ηiξ i + ηpi ξ
p

i

,

(5)

It follows from the saddle point condition that the partial
derivatives of L with respect to the primal variables (ω, b, ξi, ξpi )
have to vanish for optimality.

dL

db
� ∑l

i�0(αp
i − αi) � 0 (6)

dL

dω
� ω −∑l

i�0(αi − αp
i )xi � 0 (7)

dL

dξ(p)i

� C − α(p)i − η(p)i � 0 (8)

dL

dξ i
� C − αi − ηi � 0. (9)

According to the previous three formulas, the dual
optimization problem can be written as follows:

max −1
2
∑1
i�1

αi − αpi( ) αj − αpj( )x†T
i xj

⎧⎨⎩
−ϵ∑l

i�1
αi + αp

i( ) +∑l
i�1

yi αi − αpi( )⎫⎬⎭,

(10)

subject to

∑l
i�1

αi − αp
i � 0

αi, α
p
i ∈ [0, C]

.

For non-linear regression problems, SVR uses kernel to map
the original space to a high-dimensional space. Similar to SVR,
CSVR resorts a Clifford kernel ϕ(x), which realizes Clifford
algebra-valued mapping as Eq. 11:

x ∈ GD
n → ϕ(x) � ϕs(x) + ϕs(x)e1 +/ + ϕI(x)I. (11)

The non-linear regression function is given as follows:

f(x) � ∑l
i�1
(αi − αp

i )K(xi, x) + b, (12)

where K(xi, xj) � ϕ(xi)Tϕ(xj) is the kernel.
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4 CLIFFORD FUZZY SUPPORT VECTOR
REGRESSION

CFSVR and fuzzy membership are introduced in this section.

4.1 Clifford Fuzzy Support Vector
Regression
In many practical applications, the effect of training points is
different. In order to improve the performance of CSVR, fuzzy
membership is set in this study. Fuzzy regression analysis is an

important tool for processing fuzzy data and has been successfully
applied to different applications. In this section, we provide a
detailed description about the idea and formulations of Clifford
fuzzy SVR (CFSVR).

Suppose a set S of labeled training input points with fuzzy
membership.

S � {(x1, y1, s1), (x2, y2, s2), . . . , (xl, yl, sl)}. (13)

The data set is presented in a certain Clifford algebra Gn. Each
data ith-vector has multivector entries xi � [xi1, xi2,...,xiD]T,
where xij ∈ Gn and D is its dimension and a fuzzy
membership si � [si1, si2, . . . , siD]T, δ ≤ si ≤ 1 and sufficient δ > 0.

For the case of linear regression, CFSVR fits the regression
function by giving a given set of training points. The optimal
regression function is given as follows:

FIGURE 1 | Training result of linear regression.

FIGURE 2 | Test result of linear regression.

FIGURE 3 | Training result of non-linear regression.

TABLE 1 | Performance of CFSVR and CSVR on linear regression.

Regression 1
MAE (training) RMSE (training) MAE (test) RMSE (test)

CSVR 0.00487 0.00590 0.000724 0.00089
CFSVR 0.00481 0.00583 0.000397 0.00048

Regression 2
MAE (training) RMSE (training) MAE (test) RMSE (test)

CSVR 0.00499 0.00562 0.00199 0.00237
CFSVR 0.00438 0.00542 0.00133 0.00159
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f(x) � ω†Tx + b, (14)

where f(x), b ∈ GD
n , x ∈ GD

n and ω � [ω1,ω2, . . . ,ωD]T, which is
given by

ωk � ωks +/ + ωke1e2e1e2 +/ + ωKII. (15)

Then

f(x) � ω†Tx + b

� ω†
1,ω

†
2, . . . ,ω

†
D[ ]T x1, x2, . . . , xD[ ] + b

� ∑D
i�1

ω†
i xi + b

. (16)

Combining the structural risk minimization and fuzzy
membership with regression in the feature space, the
regression problem can be written as follows:

min
1
2
ω†Tω + C∑l

i�1
(siξ i + spi ξ

p

i ), (17)

subject to

yi − ω†Txi − b( )
j
< � ϵ + ξi( )

ω†Txi − b − yi( )
j
< � ϵ + ξpi( )

ξ i, ξ
p

i ≥ 0, 1≤ i≤ l.

Since the fuzzy membership si is the attitude of the
corresponding point xi toward the regression function, the
term siξi is then a measure of error with different weighting.

FIGURE 4 | Test result of non-linear regression.

TABLE 2 | Performance of CFSVR and CSVR on non-linear regression.

Regression 1
MAE (training) RMSE (training) MAE (test) RMSE (test)

CSVR 0.03146 0.05545 0.1955 0.3386
CFSVR 0.01877 0.04013 0.1818 0.3325

Regression 2
MAE (training) RMSE (training) MAE (test) RMSE (test)

CSVR 0.000 08634 0.000 08776 0.148 8 0.2424
CFSVR 0.000 07307 0.000 07556 0.148 7 0.2422

FIGURE 5 | Result of the iris by CFSVR.

TABLE 3 | Result of iris by CFSVR and CSVR.

CSVR MAE (training) RMSE (training) MAE (test) RMSE (test)

Setosa 0.1453 0.1717 0.2027 0.2303
Versicolor 0.2826 0.3710 0.5133 0.5332
Virginica 0.3388 0.4041 0.5629 0.6463

CFSVR MAE (training) RMSE (training) MAE (test) RMSE (test)

Setosa 0.1263 0.1467 0.1906 0.2213
Versicolor 0.2796 0.3671 0.5091 0.5296
Virginica 0.3101 0.3738 0.4616 0.5877
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To solve this optimization problem, we construct the
Lagrangian as follows:

L(ω, b, ξ, α) � 1
2
ω†Tω + C∑l

i�1
siξ i + spi ξ

p

i( )
−∑l

i�1
αi ϵ + ξ i − yi + ω†Txi − b( )

−∑l
i�1

αp
i ϵ + ξpi − yi + ω†Txi + b( ) −∑l

i�1
ηiξ i + ηpi ξ

p

i .

(18)

For non-linear regression problems, a Clifford kernel ϕ(x)
written as Eq. 19 is used to map the original space to the high-
dimensional space:

x ∈ GD
n → ϕ(x) � ϕs(x) + ϕs(x)e1 +/ + ϕI(x)I. (19)

The corresponding dual is found by differentiating with
respect to ω, ξi, ξ

p
i and b as Eqs 20–23:

zL(ω, b, ξ, a)
zω

� ω −∑l
i�1
(αp

i − αi)ϕ(xi) � 0 (20)

zL(ω, b, ξ, a)
zξi

� Csi − αi − ηi � 0 (21)

zL(ω, b, ξ, a)
zξpi

� Cspi − αpi − ηpi � 0 (22)

zL(ω, b, ξ, a)
zb

� ∑l
i�1
(αi − αpi ) � 0. (23)

Based on these conditions, the problem can be transformed as
follows:

maxW(a) � 1
2
∑l
i�1

∑l
j�1

αp
i − αi( ) αp

j − αj( )k xi, xj( )
+ϵ∑l

i�1
αp
i + αi( ) −∑l

i�1
yi αpi − αi( ), (24)

subject to

FIGURE 6 | Result of antenna signal data by CFSVR and SVR.

TABLE 4 | Performance of CFSVR and CSVR on antenna signal data.

Train
MAE (training) RMSE (training) MAE (test) RMSE (test)

CSVR 4.257 5.158 4.888 5.505
CFSVR 4.243 5.118 4.883 4.962

Experimental trolley
MAE (training) RMSE (training) MAE (test) RMSE (test)

CSVR 4.000 5.778 4.986 5.153
CFSVR 3.402 4.646 2.327 2.747

TABLE 5 | Performance of CFSVR, CSVR, FSVR, SVR of electric load forecasting.

MAE

SVR FSVR CSVR (n � 2) CFSVR (n � 2) CFSVR (n � 4)

Day 1 448.614 218.904 289.851 174.103 538.899
Day 2 328.957 354.034 214.153 163.679 492.416
Day 3 404.287 384.908 287.142 285.415 281.461
Day 4 470.948 368.666 447.887 188.870 517.925
Day 5 499.906 421.513 256.143 255.805 547.222
Day 6 529.116 423.372 606.346 358.232 676.634
Day 7 319.459 242.141 133.233 120.679 303.558
Day 8 491.659 509.137 423.919 306.615 525.906

RMSE

SVR FSVR CSVR (n � 2) CFSVR (n � 2) CFSVR (n � 4)

Day 1 545.596 321.866 340.469 203.635 662.884
Day 2 357.635 412.085 289.986 240.681 565.929
Day 3 466.103 482.976 436.609 480.773 328.401
Day 4 569.899 424.363 543.805 241.707 588.327
Day 5 537.696 534.443 427.485 427.353 647.194
Day 6 595.568 598.551 671.095 519.546 740.435
Day 7 379.539 276.245 180.432 162.279 344.929
Day 8 579.269 606.519 474.928 375.086 663.111

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7930786

Wang et al. Clifford Fuzzy Support Vector Regression

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


∑l
i�1
(αi − αp

i ) � 0

0≤ αpi , αi ≤Csi, i � 1, 2, . . . , l
.

Then we know

ω � ∑l
i�1
(αi − αp

i )ϕ(xi). (25)

And the regression function is as follows:

FIGURE 7 | Forecasting of the electric load of Day 2.

FIGURE 8 | Error of electric load forecasting of Day 2.
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f(x) � ∑l
i�1
(αi − αp

i )K(xi, x) + b, (26)

where K(xi, xj) � ϕ(xi)Tϕ(xj) is the kernel.

4.2 Fuzzy Membership of Multiple Input
For SVR and CSVR, the training points have the same weight to
decide the regression hyperplane. However, in practical
applications, the importance of different training points is

FIGURE 9 | Forecasting of the electric load of Day 4.

FIGURE 10 | Error of electric load forecasting of Day 4.
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different. For fitting, the training points may be disturbed by
noise, which will cause deviation. For the sequence, the
contribution of different points to the predicted value is also
different, and the point closer to the predicted point has a greater
effect on the predicted point.

Therefore, fuzzy membership is introduced into CSVR. For
fuzzy membership, it is necessary to determine the minimum
membership value σ, where σ > 0. The bigger the membership is,
the greater the weight makes decision on the regression surface.

Then the relationship between the fuzzy membership and the
training data needs to be established. As currently there is not a
unified standard for fuzzy membership, it is necessary to select
the appropriate fuzzy membership degree according to the actual
situation.

For fitting, the distance from the training point to the center of
the training point in the feature space is defined as di. The fuzzy
membership is obtained as follows:

si � f di( ), (27)

where si represents the degree of fuzzy membership, and di
represents the distance. s1 is set to the point where distance d1
is the smallest as 1, while sl is set to the point with the farthest
distance dl as σ, and the fuzzy membership can be defined as
follows:

si � f di( ) � σ − 1
dl − d1

di + dl − d1σ

dl − d1
. (28)

For forecasting of sequence, the number of the point to the
predicted point is an important factor. The fuzzy membership is
obtained as follows:

si � f ni( ), (29)

where si represents the fuzzy membership, and ni represents the
number of the point to the predicted point. The point s1 with the
smallest number n1 is defined to the predicted point to be 1, and
the point sl with the largest number nl to the predicted point to be
σ, and the fuzzy membership degree can be defined as follows:

si � f ni( ) � σ − 1
nl − n1

ni + nl − n1σ

nl − n1
. (30)

TABLE 6 | Result of NN3 time series by CFSVR, CSVR, SVR, LSSVR, FSVR.

MAE

SVR LSSVR FSVR CSVR CFSVR

Series No. 1 679.529 2,504.3 491.5702 454.0456 444.0624
Series No. 2 870.5 1793.8 585.841 780.598 448.294
Series No. 3 522.117 1753.4 669.78 575.657 491.329
Series No. 4 456.582 1,155.2 401.913 513.715 401.394
Series No. 5 456.663 977.164 395.602 390.829 371.876
Series No. 6 326.383 774.001 268.701 322.577 324.050
Series No. 7 971.771 1,144.8 725.958 806.482 676.404
Series No. 8 1,224.1 2,111.2 1,231.6 1,348.6 1,179.4

RMSE

SVR LSSVR FSVR CSVR CFSVR

Series No. 1 834.641 3,315.5 611.3704 596.402 588.141
Series No. 2 1,038.2 2044.8 745.3122 907.779 553.139
Series No. 3 714.323 1985.4 796.791 868.902 697.13
Series No. 4 587.612 1,280.7 525.73 645.145 517.938
Series No. 5 591.374 1,166.4 518.058 494.894 480.571
Series No. 6 373.094 851.371 374.609 394.777 407.691
Series No. 7 1,096.8 1,309.2 875.356 972.089 832.426
Series No. 8 1,519.1 2,379.4 1,482.3 1,445.2 1,340.5

FIGURE 11 | Forecasting of NN3 No. 3.
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Therefore for fitting, we choose the distance between the
training points and the center in the feature space as the basis
for the value of fuzzy membership. For the forecasting of
sequence, the points closer to the predicted point have a larger
value of fuzzy membership, and the points farther from the
predicted point have a smaller value of fuzzy membership. By
different fuzzy membership, different training points have
different contributions to regression. Thus, the accuracy can
be improved.

5 EXPERIMENT

The method proposed in this study can be mainly used for
multi-output data analysis and multi-output forecasting of
sequences. In this section, regression of numerical
simulation, UCI data set, and antenna signal data are
used, while sequence forecasting of electric load data set
and NN3 data set is used to compare the performance of
proposed CFSVR and other methods of support vector
regression.

The result is described bymean absolute error (MAE) and root
mean square error (RMSE) (Gao et al., 2020). MAE refers to the
average value of the absolute value of the error between the
regression value and the actual value, which is shown in Eq. 31:

MAE(X, h) � 1
m

∑m
i�1

| h x(i)( ) − y(i) |, (31)

where y(i) is the actual value, and h(x(i)) is the regression value.
RMSE is the square root of the ratio of the sum of squared

deviations of the regression value from the actual value and the
number of points, as in Eq. 32:

RMSE(X, h) �
������������������
1
m

∑m
i�1

h x(i)( ) − y(i)( )2√
. (32)

The smaller the MAE and RMSE are, the better the regression
performance is.

5.1 Numerical Simulation
5.1.1 Linear Regression
For the linear numerical simulation experiment, 100 training
points and 50 test points are generated and Gaussian white noise
is added. Figure 1 shows the training result of linear binary
number support vector regression, and Figure 2 shows the result
of the test. The abscissa is the output of the real part, and the
ordinate is the output of the imaginary part. The blue dots
represent the original data. The red dots are the CSVR
regression results. The green points are the result of CFSVR,
the training points are represented by dots, and the test points are
represented by the cross. The result is displayed in Table 1 which
shows that the CFSVR has a better performance than CSVR.

5.1.2 Non-Linear Regression
For the non-linear numerical simulation experiment, 100 training
points and 50 test points are also used, and Gaussian white noise
is added to the training points. Figure 3 is the result of training,
and Figure 4 is the result of the test, where the red points
represent the original data, the blue points represent the
results of the CSVR, and the green points represent the results

FIGURE 12 | Error of forecasting of NN3 No. 3.
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of the CFSVR. The result of MAE and RMSE is shown in Table 2
which demonstrates that the CFSVR has a better performance
than CSVR.

5.2 Regression of UCI Data Set
The UCI data set is widely used as machine learning standard
data set, which is a database for machine learning proposed by the
University of California Irvine. The data sets used for regression
include the iris data set, the abalone age data set, and the Boston
housing price data set.

Iris data set is used in this experiment. There are three
classes of iris in this data set. CFSVR can realize the regression
of the three classes of iris at one time. There is a linear
relationship between petal length and petal width. Each
class of iris has fifty points. For each class, 40 points are
used as the training set, and the rest points are used as the test
set, and the petal length is used as input, while the petal width
is used as output for regression.

The regression result of CFSVR is shown in Figure 5. The
result is shown in Table 3 of each class by CFSVR and CSVR.

5.3 Regression of Antenna Signal Data
This regression data set is obtained from the subway scene
communication platform. The purpose of the research is to fit
on the loss of the train and the experimental trolley at different
positions from the station in the same frequency band to obtain
the relationship of the path loss between the simulation and the
actual train at the same frequency. The data of this experiment are
collected in the track and platform of Line 7 in Shanghai. CFSVR
is used to regress the path fading and distance. The distance is
taken as the logarithm. The result is shown in Figure 6 and
Table 4 compared with CSVR.

5.4 Forecasting of Electric Load Data Set
In addition to data analysis, SVR can also be used for sequence
forecasting. The traditional SVR method can only predict a single
step for sequence, while CFSVR can achieve multistep forecasting
due to its multi-output. This section compares CFSVR with
different dimensions of output to SVR, FSVR, and CSVR.

The data of this experiment are from the 2016 Electrical
Engineering Mathematical Modeling Competition. The
electric load data were recorded every 15 min. This
experiment randomly selects 8 sets of 24 h with 96 points:
the first 80 data are used as training points, and the rest 16
points are used as test points for forecasting. SVR, FSVR, and
CSVR (n � 2) were used to compare with CFSVR, and n
represents the dimension of its output, that is, the predicted
step. CFSVR (n � 2) and CFSVR (n � 4) are used for 2-step and
4-step forecasting, respectively. The result is shown in
Table 5. Figures 7–10 depict two examples that show the
result of forecasting and error of Day 2 and Day 4.

For the electrical data set, CFSVR (n � 2) has the best predictive
effect overall. This is because geometric algebra retains the
correlation between different input and output channels.
Compared with FSVR, the correlation between the previous and
the subsequent sequences will make the forecasting more accurate.
But the 4-step forecasting has a larger span than the 2-step

forecasting. In the case of a small number of training points, it
may not be able to capture the characteristics of the latest changes
in the sequence better, so the effect may not be as good as the 2-step
forecasting. Compared with CSVR, CFSVR’s fuzzy membership
makes the training points have different weights for the forecasting
points, which enables CFSVR to have better accuracy.

5.5 Forecasting of NN3 Data Set
In order to show more application of CFSVR in more
sequences, NN3 data set is used in this part. NN3 is an
academic competition funded by SAS and the International
Institute of Forecasters (IIF) (SAS and The International
Institute of Forecasters (IIF), 2006). The NN3 data set is
actual series, with 111 sequences in total. The data are
monthly data, which exhibit both trending and seasonal
behavior. Compared with short-term forecasting, it is more
complicated. For each sequence, there are tens or hundreds of
training data and 18 test data.

In order to compare the proposed CFSVR, CSVR, SVR,
FSVR, and LSSVR, the first 8 sequences are used in the
experiment, and the results are shown in Table 6. Figures
11, 12 depict the example of the result of forecasting and error
of Series No. 3.

6 CONCLUSION

In this study, we propose CFSVR, which can be used for electric load
forecasting. It applies fuzzy membership to the input points so that
different points have different weights for the optimal regression
hyperplane. Compared with other methods of SVR, it improves the
accuracy of electric load forecasting and realizes multistep
forecasting. In the following research, we will focus on how to
set a more suitable fuzzy membership to improve the CFSVR.
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