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With the increase of complexity of the power system structure and operation mode, the
risk of large-scale power outage accidents rises, which urgently need an accuracy
algorithm for identifying vulnerabilities and mitigating risks. Aiming at this, the improved
DebtRank (DR) algorithm is modified to adapt to the property of the power systems. The
overloading state of the transmission lines plays a notable role of stable operation of the
power systems. An electrical DR algorithm is proposed to incorporate the overloading
state to the identification of vulnerable lines in the power systems in this article. First, a dual
model of power system topology is established, the nodes of which represent the lines in
the power systems. Then, besides the normal state and failure state having been
considered, the definition of the overloading state is also added, and the line load and
network topology are considered in the electrical DR algorithm to identify vulnerable lines.
Finally, the correctness and reasonability of the vulnerable lines of the power systems
identified by the electrical DR algorithm are proved by the comparative analysis of cascade
failure simulation, showing its better advantages in vulnerability assessment of power
systems.
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INTRODUCTION

The security and stability of the power systems have become increasingly challenging as the scale and
structural complexity of power systems have been augmented, which results in large-scale power
outages and an increased risk with significant social and economic losses (Wang et al., 2017; Li et al.,
2020; Zhang et al., 2021). Power outages are typically affected by cascade failures triggered by the
failures of critical nodes or critical lines of the power systems (Chopade and Bikdash, 2016). Line
interruptions can impact other components and trigger cascading failures (Hui Ren and Dobson,
2008), and they are more sensitive to being induced than node (substation) interruptions (Hines
et al., 2016). As a result, identifying critical lines is critical for preventing and controlling major
outages.

Critical lines, also known as “vulnerable lines” (Meng, 2018), are lines which change under
operating conditions and have a significant impact on the system, are more likely to trigger cascade
failure, and increase system vulnerability. Until now, there are mainly two categories of methods for
identifying vulnerable lines in power systems. The first method is based on identifying vulnerable
lines and system operating states. The identification of the system operation state is realized with the
power flow calculation, and the identification of vulnerable lines in the system operation state is
realized by simulating the development trend of the system state to assess the vulnerability systems
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(Abedi et al., 2019; Cai et al., 2021; Li and Qi, 2021). The second
method is based on network topology (Armaghani et al., 2020), in
which assessment indices derived from the complex network
theory are applied, such as degree (Kitsak et al., 2010) and
betweenness (Bai and Miao, 2015), either combined with
electrical characteristic improvement index or updated
indicator weight (Zhu et al., 2021). Evaluating the impact of
removing a line or changing the operational state of a line on the
network to measure the vulnerability of the line is proposed in the
study by Okojie et al. (2015).

Feature vector ranking methods originating from other fields,
such as computer, biology, and finance, have been applied to
power systems in recent years as the complexity of the power
systems has been increasing. The feature vector approach shows
the advantage of identifying critical lines in power systems by
considering not only the number of node (line) neighbors but also
the impact of neighborhood quality on node (line) importance
(Ren and L, 2014). The feature vector ranking methods combine
electrical characteristics, such as power system flow and
transmission capacity of power system lines to identify
vulnerable lines in power systems (Hu, 2018). The PageRank
algorithm evaluating the impact of web pages in the internet can
be modified to identify vulnerable lines or nodes which adapt to
the power system’s performance (Ma et al., 2016; Ma et al., 2017).
The modified weighted PageRank algorithm was applied to
measure the importance of nodes in a multi-energy power
system (Shen et al., 2019). Furthermore, the PageRank
algorithm is modified for finding vulnerable lines in large-scale
power systems by extending the interaction graph to a directed
weighted graph (Ma et al., 2017). To improve the identification
efficiency, a PSNodeRank algorithm has been proposed, which
abstracts the power systems into a complicated directed weighted
network (Sun et al., 2020).

As a novel feature vector ranking method, the DebtRank (DR)
algorithm is proposed in financial networks reflecting debt
relationships, which can be used to assess the impact of debt
default or bankruptcy of a financial node on other financial nodes
of the financial network. The DR algorithm can effectively avoid
the error caused by circular calculations among financial nodes by
adding the definition of the node state (Battiston et al., 2012).

Existing methods for identifying vulnerable lines in power
systems involve the consequences of both the normal state and
failure state of a cascade failure model as well as the impact on the
parameters of the line (Kitsak et al., 2010; Bai and Miao, 2015;
Okojie et al., 2015; Zhu et al., 2021). However, in power systems,
there is a transition process from the normal state to failure state
of the transmission lines. The DR algorithm can consider the
intermediate state between the normal state and failure state in
the vulnerability assessment process, which enables more
appropriate amount and control of approaching errors as well
as failure recovery.

The remainder of this article is organized as follows: the DR
algorithm is introduced in the DR Algorithm section. The
electrical DR algorithm is proposed in the Electrical DebtRank
Algorithm for Power Systems section for assessing the
vulnerability of power systems. The Vulnerable Lines
Identification Process Based on the Electrical DR Algorithm

section describes the steps and flow of the electrical DR
algorithm for power systems. In the Case Studies section, the
case studies of the electrical DR algorithm in power systems are
analyzed with the IEEE-39 and IEEE-118 bus power systems.
Also, the load loss of power systems caused by the vulnerable line
fluctuations identified by the electrical DR algorithm is further
compared and analyzed. The full article is concluded in the
Conclusion section.

DR ALGORITHM

The DR algorithm was proposed by Stefano Battiston et al. in
2012 to consider the impact of the initial failure node of the
financial network on the system (Battiston et al., 2012), and it is
currently widely used in the financial field to effectively assess the
debt risk of financial institutions. In the DR algorithm, the
financial network is described as a directed network, in which
the nodes represent individual financial institutions and the edges
represent debt transactions between financial institutions
(Thurner and Poledna, 2013). The algorithm that can avoid
the impact of initial nodes is overestimated, and some cascade
failures are underestimated due to repeated calculations in the
system.

The DR algorithm to assess the node impact is shown in (1):

Ri � ∑
j

hj(t)vj − hi(1)vi, (1)

where vi and vj are the economic values of institutions i and j,
respectively. Ri is the vulnerability assessment index of institution
i, which assesses the systematic impact of node i. A larger value of
Ri indicates that the larger the impact caused by node i, the more
important the node is.

In (1), Ri assesses the impact of node i on the rest of the system
by introducing the second term so that the impact of a node is
calculated in the algorithm without the effect caused by a change
in the initial state of node i, where t is the period, hj (t) is the
continuous variable associated with state variable si of node j at
period t, hj (t)∈[0,1], and hi (1) is the value of the continuous
variable at the initial state of node i. The DR algorithm used to
avoid the impact caused by the accident is being double-counted
by introducing the continuous variable hi and the state variable si.
The dynamic properties of hi and si are expressed in (2) and (3),
respectively,

hi(t) � min
⎧⎪⎨⎪⎩1, hi(t − 1) + ∑

j|sj(t−1)�D
Wijhj(t − 1)

⎫⎪⎬⎪⎭, (2)

si(t) �
⎧⎪⎨⎪⎩

D if hi(t)> 0; si(t − 1) ≠ I
I if si(t − 1) � D

si(t − 1) otherwise
. (3)

Wij in (2) is the impact of the undistressed state or inactive
state of node i on node j. hj (t−1) is the continuous variable of
node j at moment t−1, node j is the node whose sj is in the
undistressed state at moment t−1, and the value of hi(t) is equal to
the sum of hi(t−1) plus the product of all nodes whose state is
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inactive at moment t−1 and the impact of node i on it. hi (t) has a
maximum value of 1 in dynamic change.

In (3), si is a discrete variable with three states, si � {U, D, I}. U
denotes the undistressed (normal) state, that is, the state that
node j works is the normal state. D denotes the distressed state,
that is, the state that the institution represented by node i can
continue to operate but the operating state exceeds a safe or set
threshold. I denotes the inactive (failure) state, that is, the state
that the institution represented by node i is in the failure state that
is not operational at all. The definition of the state variable si can
be introduced for adding a definition of a state that involves the
overloading state between the normal state and failure state in
operation of power systems.

For the state variable si (t), when the continuous variable hi of
node i is larger than 0 at time t and si (t−1) is not in the inactive
state, the state variable of si (t) is converted to distressed state D.
When the state variable si (t−1) of node i is in distressed state D,
the state variable of si(t) is converted to inactive state I. In other
cases, the state variable of si (t) inherits si, the value of the state
variable at moment t−1. The value of the state variable si changes
with the value of hi. After a finite period t, the dynamics stops and
all nodes in the network are in state U or state I. When a node
steps into the distressed state at moment t−1, this node turns to
the inactive state at period t.

ELECTRICAL DEBTRANK ALGORITHM
FOR POWER SYSTEMS
The Preliminary of the Electrical DR
Algorithm
The DR algorithm can effectively assess the vulnerability of the
financial network. Because of the differences between the
electrical characteristics of power systems and financial
networks, the DR algorithm cannot be applied directly in
power systems. Therefore, it is necessary to modify the DR
algorithm to adapt to the power systems. The modified

algorithm applied to power system line vulnerability
assessment is known as the electrical DR algorithm. The
improvement ideas are as follows:

1) For critical nodes in the financial network, the DR algorithm is
used to transmit fluctuations through debt transactions
between financial institutions, whereas in the power
systems, fluctuations produced by changes in the state of
nodes are transmitted through topologies and connection of
power systems (Bardoscia et al., 2016).

2) The DR algorithm has three states: undistressed state U,
distressed state D, and inactive state I. The load rate of the
line is used as the operation state assessment index in the line
operation state of power systems; when the line is in the
overloading state, the line is in operation but in the poor
operation state because of the increased line load rate. The
overloading state of the power systems can be defined by
introduced distressed state D in the DR algorithm.

3) The DR algorithm is utilized to identify the important nodes
of the financial networks. In the power systems, disruption of
line failure is higher than that of nodes. We want to rank the
lines in the power systems in order of impact so that the
topology power system is modeled to the dual graph, dual the
lines into nodes.

State Definition of the Electrical DR Algorithm
The line load factor is related to the failure rate of a power system
line. The increase of the load factor of the lines leads to an
increase in line heating, which increases the failure probability as
well as the probability of line outage (Cheng et al., 2006). Figure 1
depicts the relationship between line failure probability and load
factor.

In Figure 1, Lmin is the lower threshold of the line power flow
crossing limit, that is, the maximum power transmitted by the
line to maintain normal state operation. Lmax is the higher
threshold of the line power flow crossing limit, that is, the
maximum power allowed to be transmitted of the line. The
chance of a line outage is presented by Fl, which is the
average statistical value. Between Lmin and Lmax, there is a
state in which the power system line is in an operable but
overloaded state, that is, the overloading state. With the line
load factor rise in the overloading state, the power flow surpasses
the thermal stability limit, and the line remains operational but
under poor conditions, and the probability of failure rises (Huang
et al., 2020). In the result, not only the normal state and failure
state in the present method of line vulnerability assessment

FIGURE 1 | Line failure probability curve with power flow.

TABLE 1 | States between the DR algorithm and electrical DR algorithm and the
present method in power systems.

DR algorithm Electrical DR algorithm Present method in
power systems

Undistressed state U Normal state N Normal state N
Distressed state D Overloading state O Not considered
Inactive state I Failure state F Failure state F
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should be considered but also the overloading state should be
addressed.

The states between the DR algorithm, electrical DR algorithm,
and present method in power systems are shown in Table 1. The
three states, namely, undistressed state U, distressed state D, and
inactive state I defined in the DR algorithm are defined as normal
stateN, overloading stateO, and failure state F in the electrical DR
algorithm, respectively. Compared with the present vulnerable
line identification methods in power systems, the electrical DR
algorithm adds the definition of the overloading state.

Vulnerable Line Assessment Method of Power
Systems Compared With the Financial Network
The dual modeling of the power systems is conducted in order to
identify the vulnerable lines in the power systems. In the dual
model of power systems, each line is represented by a node in the
dual topologymodel. The relationship between transmission lines
in the actual power systems is the edge of the dual topology
model. To accurately depict the electrical performance of power
systems, the direction of the power flow of the line is defined as
the direction of the edge in the dual graph.

Both financial network and power systems are topological
graphs when modeling based on the complex network theory.
From the complex network theory, the comparative relationship
between the dual topology model of power systems and the
financial network is shown in Table 2. The financial
institution nodes correspond to the power system lines, and
the debt relationship between the financial institutions
corresponds to the power flow relationship between the lines.

The assessment index of vulnerable lines in power systems is
developed by applying the principle of ranking the impact of
important institutions in the financial network based on the
similarities between the power systems and the financial
network. Nodes i and j in financial institutions in (1) map
lines l and k in power systems, corresponding to nodes l and k
in the power system dual topology graph. The comparison of the
financial network and power system topology is shown in
Table 2. Rl is the impact indicator of line l in power systems,
which measures the impact on the power systems due to the
fluctuation of line l. A large value of Rl means that the impact
caused by line l is greater and the line is more important.

Improvement of the DR Algorithm
The DR algorithm needs to be modified to adapt to the
characteristics of the power systems.

Considering the load capacity of the line, the larger the power
flow transmitted by the line, the greater the impact caused. In the

power system, there is a connection between line l and line k,
defining the impact of line l on line k as Ylk.

Ylk � {1, Pl∑Pk
}, (4)

where Pl and Pk are the power flow of lines l and k after the line
l fluctuations, respectively, and ∑Pk is the total amount of line k
power flow for the line connected to line k. The maximum value
of Ylk is 1.

According to the DR algorithm, two variables hi and si are
introduced to prevent the impact from being double-counted,
avoiding the overestimation of the effect produced by the original
disturbance and an underestimation of the damage generated by
cascade failure. In the electrical DR algorithm, hl (t) is defined as
the continuous variable of line l at moment t, associated with the
line k state variable sk. hl (t) represents the dynamic changes of the
power systems represented in the tth period and is related to the
value of line l at period t and the previous state of the line and
whether other lines are in the overloading state. The power flow of
line increase will lead to an increase in the probability of line
heating meltdown (Huang et al., 2020). When the cascade failure
occurs, the redistribution of power flow will impact the
neighboring line state.

hl(t) � min
⎧⎨⎩1, hl(t − 1) + ∑

k|sk(t−1)�O
Ylkhk(t − 1)⎫⎬⎭. (5)

The more the line which is connected with line l enters to an
overloading state at period t−1, the larger the value of hl (t) in the
dynamic change is. The maximum value of hl (t) in the dynamic
change is 1. The state variable sl is determined by the continuous
variable hl, and sl (t) can be shown in (6):

sl(t) �
⎧⎪⎨⎪⎩

O if hl(t)> �Fl; sl(t − 1) ≠ F
F if sl(t − 1) � O

sl(t − 1) otherwise
. (6)

The state variable sl is determined by the continuous variable
hl. The state variable sl represents the three states of line l, whereN
is the normal state, indicating that line l can operate properly. O
represents an overloading state, in which line l can continue to
operate but the state surpasses a specified thermal stability area,
increasing the likelihood of failure. F represents a failure state, in
which line l is unable to operate.

Equation (6) expresses the conversion connection between the
three states. When the hl (t) of line l is larger than the average line
outage probability �Fl at time t and the previous state, sl (t−1) of sl

TABLE 2 | Consistent correspondence between the dual topology of the power system, the power system topology, and the financial network.

Financial network Power system topology Power
system dual topology

Institutions Lines Nodes
Debt relationship Interline connection relations Lines
Institution economic value Line power flow ratio Node power flow ratio
Total value of the asset Total power of the line and its connected lines Total power of the node and its connected nodes
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(t) is not in state F. The state variable sl(t−1) of the next state sl(t)
is converted to state O. When the state variable sl (t−1) of line l is
in state O, the state variable sl (t−1) of the next state sl (t) is
converted to state F. In other cases, when sl (t−1) is a failure state
or the hl (t) is less than the average outage probability �Fl, the state
variable of sl (t) inherits the value of the state variable of sl at
moment t−1.

According to equations 4–6, the electrical DR algorithm can be
expressed as

Rl � ∑
k

hk(t)pk − hl(1)pl, (7)

pk � Pk∑Pk′
, (8)

pl � Pl∑Pl′
, (9)

where pk and pl represent the power flow of line k and line l,
respectively.∑Pk′ and∑Pl′ represent the total ratio of power flow
of line k and line l, respectively. As mentioned in (7), the electrical
DR algorithm can calculate the value of Rl for each line. The larger
the Rl value, the more vulnerable the line ranking results can be,
resulting in the power systems.

VULNERABLE LINE IDENTIFICATION
PROCESSBASEDONTHEELECTRICALDR
ALGORITHM
To evaluate the vulnerability of power system lines, the process of
the modified method is shown as follows:

1) Establishing power system dual topology model. The dual
topology model of power systems is established by taking the
lines in the actual power systems corresponding to the nodes
in the dual topology model. The relationship between lines
formed through the nodes as the edges of the dual model.

2) Selecting the initial disturbance line. In the power system dual
model, select the line in order and set to an overloading state
as the initial disturbance node. Then, the power flow after
node fluctuation can be calculated.

3) Assigning variables hl and sl. Initial values to variables hl and sl
for each node of the dual topology model are assigned. In
order to ensure the independence and accuracy of each
calculation, this article assigns hl and sl to each node in the
dual model.

4) Calculating the impact matrix Y. Based on the node
connection matrix of the dual model, the influence Ylk

between each node is calculated and the influence matrix Y
is derived.

5) The Rl value of each node of the dual topology model is
calculated from the equations 4–9.

6) Sorting of node Rl values. The values of Rl are sorted according
to the calculated values; the larger the value, the greater the
impact on the performance of the power systems and the more
important it is.

CASE STUDIES

This article identifies IEEE-39 and IEEE-118 bus power systems’
vulnerable lines by the electrical DR algorithm. The results are
performed to verify the effectiveness of this algorithm.

The overloading state takes the line load factor larger or equal
to 0.8 and less than 1. The average statistical value of the line
outage probability �Fl is 1.81 × 10−4 (Huang et al., 2020); the sk (1)
of lines is normal stateN. The sl (1) of the initial disturbance is the
overloading state O. Considering other random factors when the
system random power flow changes, the continuous variable hl(1)
is distributed on [0,1].

Electrical DR Algorithm Applied to the
IEEE-39 Bus Power System
The network topology graph of the IEEE-39 bus power system
with 46 lines is as shown in Figure 2. The dual topology model of
the IEEE-39 bus power system is established, in which the lines of
the actual power systems are transformed into nodes.

Based on equations (4–9), the Rl values of the 46 lines in the
IEEE-39 bus power system (46 nodes in the dual topology graph)
are shown in Figure 3. The larger the Rl value, the more
influential and important the line is. According to the
magnitude of their Rl values, the top 10 vulnerable lines are
ranked in Table 3. To verify the effectiveness of the algorithm
proposed in this article for identifying vulnerable lines, the
identification results of vulnerable lines by the electrical DR
algorithm are compared with the top 10 lines identified by the
modified PageRank algorithm (Ren and L, 2014), the modified
LeaderRank algorithm (Wei et al., 2021), and the electrical

FIGURE 2 | IEEE-39 bus power system network topology.
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betweenness (Wang et al., 2014) method for vulnerable line
ranking.

According to Table 3, the top 10 lines of the rank of two lines
(the second and third ranking of the line) are generator 31 and 35
out of the line, respectively. The failure of the lines will severely
affect the system power output shortage, resulting in a major
power outage accident. There are three lines for the power system
to connect the important load nodes, bearing a heavy power
transmission task. These line breaks will reduce the connectivity
of the power system, threatening the safe and stable operation of
the system and destroying the power balance of the power
systems. For example, line 29 in the first order is the
connection line between load nodes 16 and 24. Disconnection
of load node 16, which connects five nodes in the power systems
and is one of the most significant nodes in the system, will split
the system into two pieces, creating power flow fluctuations and
large system topology changes.

The top 10 vulnerable lines identified by the four algorithms in
Table 3 are removed according to the ranking of each algorithm.
Cascade failure simulations are performed 500 times, resulting in
the changes in the percentage of load loss and the cumulative

probability of load loss. The comparison of different algorithms is
shown in Figure 4.

Figure 4 shows that removing the 10 vulnerable lines
identified by using the electrical DR algorithm results in a
maximum load loss of 31%, which is significantly higher than
the maximum load loss of 24% for the modified PageRank
algorithm and 26% for the modified LeaderRank algorithm.
The maximum load loss of the electrical DR algorithm is also
higher than the maximum load loss of 29% for the electrical
betweenness method. When the system load loss percentage is
0.13%, the cumulative likelihood of load loss for the top 10 line
variations indicated by the electrical DR algorithm is slightly
higher than that of the modified LeaderRank algorithm and the
modified PageRank algorithm. When the load loss is larger than
17%, the cumulative probability of load loss is significantly higher
than that of the modified PageRank algorithm, the modified
LeaderRank algorithm, and the electrical betweenness method.
The electrical DR algorithm shows a significant advantage. It can
be seen that the probability of cascade failure that may result from
vulnerable lines identified using the electrical DR algorithm is
greater.

FIGURE 3 | Rl value of the IEEE-39 bus power system.

TABLE 3 | Result comparison of four identification algorithms for the IEEE-39 bus power system.

Rank Electrical DR algorithm Modified PageRank algorithm Modified LeaderRank algorithm Electrical betweenness method

1 29(16–24) 46(29–38) 37(22–35) 26(16–17)
2 14(6–31) 20(10–32) 20(10–32-) 24(14–15)
3 35(21–22) 14(6–31) 33(19–33) 6(3–4)
4 34(20–34) 3(2–3) 27(16–19) 1(1–2)
5 25(15–16) 5(2–30) 46(29–38) 27(16–19)
6 31(17–27) 27(16–19) 41(25–37) 16(8–9)
7 45(28–29) 33(19–33) 39(23–36) 46(29–38)
8 28(16–21) 37(22–35) 35(21–22) 37(22–35)
9 8(4–5) 42(26–27) 45(28–29) 39(23–36)
10 21(11–12) 34(20–34) 34(20–34) 41(25–27)
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Electrical DR Algorithm Applied to the
IEEE-118 Bus Power System
Based on equations (4–9), the Rl values of the 179 lines in the
IEEE-118 bus power system are shown in Figure 5, where the
larger the Rl value, the more influential it is in the system and the
more important the line is.

According to the simulation results of the IEEE-39 bus power
system as well as the variation of load loss percentage and load
loss accumulation probability and the comparison graph in the
Electrical DR Algorithm Applied to IEEE-39 Bus Power System
section, the electrical betweenness method is slightly superior and
is more popular among the four algorithms involved in the
comparison. As a result, the electrical betweenness method is
compared to the electrical DR algorithm in the validation
comparison simulation of the IEEE-118 bus power system.

To verify the effectiveness of the identified vulnerable line
algorithm proposed in this article, the vulnerable line

identification results obtained in this article are compared with
those of the top 10 lines in the vulnerable line ranking identified
by electrical betweenness (Wang et al., 2014), as shown in

FIGURE 4 | IEEE-39 bus power system line fluctuation load loss result comparison; electrical DR algorithm applied to the IEEE-118 bus power system.

FIGURE 5 | Rl value of the IEEE-118 bus power system.

TABLE 4 | Rl values of the IEEE-118 network are compared with those of the
electrical betweenness method.

Rank Electrical DR algorithm Electrical betweenness method

1 33(25–27) 104(65–68)
2 40(29–31) 126(68–81)
3 108(69–70) 127(80–81)
4 66(42–49) 133(36–85)
5 103(66–67) 54(30–38)
6 38(26–30) 97(64–65)
7 70(49–50) 102(65–66)
8 183(68–116) 98(49–66)
9 52(37–39) 37(8–30)
10 15(7–12) 107(68–69)
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Table 4. The lines are ranked according to the magnitude of their
Rl values. The transmission lines ranked among the top 10 in the
simulation results are shown in Table 4. As shown in Table 4, we
can see that the vulnerable lines obtained from the modified
electrical DR algorithm have five lines for generator outgoing
lines and other five lines connecting important load nodes in the
power systems which bear a heavy power transmission task.
These lines will bring huge load loss after disconnecting, such
as the first ranking of line 33 is the outgoing line between
generator 25 and generator 27. Once the disconnection of line
33 severely restricts the power outgoing from generator 27, the
disconnection will lead to a wide range of power flow transfers,
causing cascade failure.

The top 10 vulnerable lines identified by the two algorithms
in Table 4 are removed and simulated for cascade failure 500
times. Figure 6 shows the change in the percentage of load loss
and the cumulative probability of load loss due to the removal

of the top 10 vulnerable lines by the two algorithms and the
comparison.

As can be seen in Figure 6, the removal of the 10 vulnerable
lines identified using the electrical DR algorithm caused the
maximum load loss percentage of 20.5%, which is significantly
larger than the maximum load loss of 14% for the electrical
betweenness method. The top 10 lines identified by the electrical
DR algorithm fluctuate in the system load loss percentage at 0.8%,
and the cumulative probability of load loss is slightly higher than
that of the electrical betweenness method. The cumulative
probabilities after a load loss greater than 8% are consistently
higher than those of the electrical betweenness method, and the
electrical DR algorithm shows clear advantages. Moreover,
removal of the 10 vulnerable lines identified using the
electrical DR algorithm resulted in a maximum load loss
percentage of 21%, which was significantly better than the
maximum load loss percentage of 14% for the electrical

FIGURE 6 | IEEE-118 bus power system line fluctuation load loss comparison.

FIGURE 7 | IEEE-118 power system removes the first 10 vulnerable lines; load loss comparison diagram.
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betweenness method, showing that the vulnerable lines identified
using the electrical DR algorithm are more vulnerable and the
potential of line breakwill cause a greater probability of cascade failure.

The top 10 lines identified by the two algorithms in Table 4 are
removed in order of vulnerable line value Rl and electrical
dielectric number. Figure 7 shows the variation of load loss
due to stepwise removal of the top 10 vulnerable lines sorted by
both methods. In Figure 7, the load loss of the electrical DR
algorithm is close to that of the electrical betweenness method
when the first five vulnerable lines are removed, indicating that
the impact on the power systems is almost the same when the first
five vulnerable lines are removed. However, when the removal of
vulnerable lines continues, the load loss caused by the electrical
DR algorithm is significantly higher than that of the electrical
betweenness method. It shows that the impact of vulnerable lines
identified by the electrical DR algorithm is larger than that of the
electrical betweenness method, especially in preventing large-
scale power outages.

CONCLUSION

In large-scale power systems, cascade failure caused by
transmission line accidents leads to an occurrence of large
outage, which can cause serious economic and social losses.
Based on the dual model, this article proposes the electrical
DR algorithm for identification of vulnerable lines in power
systems. The overloading state is considered to fill the gap
between the normal state and failure state, which is more in
accordance with the transmission line change of the operation
state. From the results of cascade failure simulation, the method
performs better in the identification of vulnerable lines, in which
the load loss of the vulnerable lines identified by the electrical DR

algorithm is relatively higher, and cumulative probability of load
loss is higher under the conditions with the same load loss
percentage. The electrical DR algorithm can be used not only
for identification of vulnerable lines but also for identification of
vulnerable nodes. The algorithm proposed in this article enriches
and develops the vulnerability assessment for power systems,
which shows extensive potential applications for effectively
preventing cascade failure caused by weak lines.
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