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Oily sludge is a hazardouswaste stream of oil refineries that requires an effective process and an
environment-friendly route to convert and recover valuable products. In this study, the pyrolytic
conversion of the wet waste oil sludge was implemented in an autoclave pyrolyzer and a
thermogravimetric analyzer (TGA) at 5°C/min, 20°C/min, and 40°C/min, respectively. The kinetic
analysis was performed using model-free methods, such as Friedman,
Kissenger–Akahira–Sunose (KAS), and Ozawa–Flynn–Wall (OFW) to examine the complex
reaction mechanism. The average activation energy of wet waste oil sludge (WWOS) estimated
from Friedman, KAS, and OFWmethods was 198.68 ± 66.27 kJ/mol, 194.60 ± 56.99 kJ/mol,
and 193.28 ± 54.88 kJ/mol, respectively. The activation energy increased with the conversion,
indicating that complex multi-step processes are involved in the thermal degradation of WWOS.
An artificial neural network (ANN) was employed to predict the conversion during heating at
various heating rates. ANN allows complex non-linear relationships between the response
variable and its predictors. nH, ΔG, and ΔS were found to be 191.26 ± 2.82 kJ/mol, 240.79 ±
2.82 kJ/mol, and −9.67 J/mol K, respectively. The positive values of ΔH and ΔG and the slightly
negative value of ΔS indicate the endothermic nature of the conversion process, which is non-
spontaneous without the supply of energy.
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1 INTRODUCTION

Economic and social growth are linked to the demand for energy (Gai et al., 2021; KumarMishra and
Mohanty, 2021). Carbon is one of the sources mainly obtained from fossil fuel, which serves as the
primary source of energy and feedstock for the petrochemical industry (Mishra and Mohanty,
2020a). The exploitation of fossil fuel by refining generates a large quantity of oily sludge (Collin
et al., 2020). Waste oil sludge (WOS) is a heterogeneous mixture of solids and oil (Cheng et al., 2017),
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which is accumulated in oil tanks, in slop oil emulsion tanks, in
oil/water phase separators, and open ponds for different
treatments in a petroleum refinery (Gao et al., 2020). It is a
heterogeneous mixture containing organic and inorganic
constituents (Verma et al., 2010), such as waste oil, water, and
minerals (Chen et al., 2020). The disposal of WOS is
environmentally challenging due to the presence of cyclic
hydrocarbons (Heidarzadeh et al., 2009) such as benzene,
phenols, and anthracene as well as heavy metals (Lin et al.,
2018) and various other toxic materials (Liu et al., 2018). As a
common practice, WOS ends up in a landfill or is burnt in the air.
WOS is an unstable composition of cyclic hydrocarbons along
with heavy metals. Its usage in landfilling could contaminate the
underground water and burning causes serious air pollution.

Due to these problems, Resource Conservation and Recovery
Act (RCRA) designated WOS as a hazardous compound (Gaur
et al., 2020; Ghazizade et al., 2020). There is not a single method to
treat the oily sludge. A combination of physical and chemical
processes is used to treat it, and some of the treatments involve
solvent extraction (Zhao et al., 2020), centrifugal separation
(Wang et al., 2018), oil recovery using surfactants (Ramirez
and Collins, 2018), oil recovery using ultrasonic field (Luo
et al., 2020), freezing and thawing cycles (Hu et al., 2015),
microwave (Tan et al., 2007), and ultrasonic irradiation (Xu
et al., 2009). Each method has its own merits and demerits,
but overall, the treatment or disposal of oily sludge is expensive
owing to the costs of reagents and operating processes containing

complex schemes and arrangements of the equipment. Oil
recovery using surfactants presents another challenge as the
effluents from the treatment process are often toxic and thus
rendered as an additional source of pollution. Oily sludge
disposal and recovery technologies were discussed in the
literature. However, its effective utilization strategies toward
green energy and a safer environment still require a
comprehensive study.

Environment-friendly treatment of hazardous waste has
attracted the attention of the scientific community in recent
times. Pyrolysis is considered a promising option for waste
treatment, owing to the conversion of biomass into various
forms of energy (Mishra et al., 2020a). Pyrolysis is a simple
and the least environmentally polluting process (Assad Munawar
et al., 2021), which has shown its effectiveness in converting
complex waste materials into volatiles and biochar (Hameed
et al., 2020; Tang et al., 2020). Some of the previous works
involving pyrolysis (Chang et al., 2000; Conesa et al., 2014;
Mishra et al., 2019; Mishra and Mohanty, 2020b) focused on
the quality and yield of the bio-oil (Gong et al., 2018) as a function
of the pyrolysis temperature (Yang et al., 2019) and use of
different additives (Cheng et al., 2017) and catalysts (Sikander
et al., 2019). WOSmay vary significantly from refinery to refinery
and within a refinery in terms of the type of crude oil used,
schemes of refinery operations, and the selection of different
substances in different treatment processes such as coagulants
(Verma et al., 2010), oxidizers (González et al., 2018), and electro-
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kinetic systems for oily sludge demulsification (Fellah Jahromi
and Elektorowicz, 2018). The number of hydrocarbons may vary
significantly (Hu et al., 2013) from 5 to 86% with wastewater
(González et al., 2018) and minerals (Naqvi et al., 2018a). The
variation in the composition poses a greater challenge to the
industrial operations for its treatment.

The research needs to focus on the solid-state reaction
mechanism of the complex-natured wet oily sludge. Extensive
literature reviews suggested a lack of the WOS thermo-kinetic
study with model-free methods. The combination of WOS with
thermodynamics and machine learning in a slow pyrolysis
process was not available. Therefore, this work aims to
elucidate the process behavior by employing iso-conversional
methods to estimate the activation energy of wet oil sludge.
Pyrolysis experimentations were performed using an autoclave
pyrolyzer unit to determine the pyrolysis’ product yield and oil
composition. To the best of our knowledge, studies were scarce
for identifying the multiple or single-step reaction scheme of
hazardous oily complex compounds. This study also provides
insight into the oily sludge conversion process and a multi-step
complex reaction scheme. The pre-exponential coefficient was
calculated from ASTM E1641-16 international standards. The
thermodynamic properties (ΔH, ΔG, and ΔS) were obtained
from the kinetic parameters (Ea, n, A). As aforementioned, there
is no Artificial Neural Network (ANN) study on the hazardous
oily complex compound found in the literature. This study
provides the successful implementation of ANN models on
mass loss data to study the slow pyrolysis process of WOS.

2 MATERIALS AND METHODS

The wet waste oil sludge (WWOS) from the filter press at the
bottom of the oil separating tank in a Pakistani oil refinery was
collected. The received samples were tested for proximate and
ultimate compositions. The ASTM international standard
methods were followed to estimate the volatile matters, fixed
carbon, and ash contents (Naqvi et al., 2019b). Elemental analysis
was carried out using a PerkinElmer’s CHNS element analyzer
(2400II, United States), whereas a higher heating value (HHV)
was obtained from a bomb calorimeter (proximate analysis). The
thermal behavior was envisaged in a thermogravimetric analyzer
(TGA) (SDT Q600). An inert atmosphere was created inside the
TGA by purging a continuous flow of 60 ml/min of N2 gas while
heating from 25°C to 1,000°C at different constant heating rates of
5°C, 20°C, and 40°C/min.

2.1 Thermogravimetric Analysis
The TGA is an essential device for a precise measurement of the
mass loss of a substance with changing numerous temperature
values. The kinetic analysis was performed by the relative mass
loss data at altering temperature values with respect to time.

2.1.1 Kinetic Analysis
The rate equation (Eq. 1), dα

dt , is equal to the product of the rate
constant, k(T), and the reaction model in the differential
form, f(α).

dα
dt

� k(T)f(α), (1)

where α is the extent of conversion and is defined in terms of mass
variations presented in Eq. 2

α � m0 −mt

m0 −m∞
, (2)

where m0 is the starting mass of the sample, m∞ is its remaining
mass, and mt is the mass at some instant in time (t). The rate
equation can be expanded by defining a heating rate, β � dT/dt,
and the dependence of rate constant on temperature from the
Arrhenius law (Eq. 3).

dα
dt

� β
dα
dT

� A exp(−Ea

RT
)f(α), (3)

where R is the gas constant and Ea is the activation energy.
Integration is proceeded after the rearrangement of the

variables to deliver a reaction model in the integral form, g(α)
as depicted in Eq. 4.

g(α) � ∫
α

0

dα
f(α) �

A

β
∫
T

T0

exp(−Ea

RT
) dT. (4)

The right-hand side of the equation is not straightforward to
work with. Several methods such as Friedman (Friedman, 1964),
Kissinger–Akahira–Sunose (KAS) (Kissinger, 1957), and
Ozawa–Flynn–Wall (OFW) (Takeo, 1965) use certain
approximations (Flynn and Wall, 1966). Friedman,
Kissinger–Akahira–Sunose (KAS), and Flynn–Wall–Ozawa
(FWO) are model-free methods to evaluate the trend of
activation energy during conversion (Mishra et al., 2019;
Mishra et al., 2020b). Model-free methods are often employed
as they don’t require a pre-assumption of the reaction
mechanism. Friedman (Eq. 5) is a differential and linearized
form of the rate equation whereas integral methods such as KAS
(Eq. 6) and FWO (Eq. 7) are approximate solutions of a rate
equation (Eq. 4). The Friedman method, in its true sense, is a
better representative than the rest; however, the derivative in
Friedman’s linear equation makes it sensitive to data noise which
is the reason why other non-sensitive integral methods are
necessary to subside the variations caused by the data noise.

Friedman : ln(dα
dt
)

αi

� const − Eαi

RTαi

, (5)

KAS : ln( βi
T2
αi

) � const − Eαi

RTαi

, (6)

OFW : ln βi � const − 1.052
Eai

RTαi

, (7)

where (dαdt)αiTαi and Eαi are the conversion rate, temperature, and
activation energy corresponding to αi, whereas βi is one of the
heating rates at which the experiments are conducted.

The apparent activation energy, Eα, can be calculated from the
slopes of the lines if the experiment is performed at different
heating rates. The above methods are referred to as non-
isothermal methods. Pre-exponential coefficient (A) is
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obtained from ASTM E1641-16 considering the first-order
reaction mechanism.

2.1.2 Thermodynamic Analysis
The changes in the enthalpy (ΔH) (Naqvi et al., 2019b; Naqvi
et al., 2019a), Gibbs free energy (ΔG) (Tahir et al., 2019), and
entropy (ΔS) (Tahir et al., 2020) can be determined from the
activation energy Ea and pre-exponential coefficient A by using
these given equations (Eqs 8–10):

ΔH � Ea − RTp, (8)
ΔG � Ea + RTp ln(kB Tp

h A
), (9)

ΔS � ΔH − ΔG
Tp

, (10)

where kB represents the Boltzmann’s constant whose value is
1.381 × 10–23 J K−1, h represents the Planck’s constant whose
value is 6.626 × 10–34 J s, and Tp is the DTG peak temperature.

2.2 Autoclave Pyrolyzer Unit
The pyrolysis tests of WWOS samples were carried out in a
single-mode autoclave pyrolyzer unit at different temperatures
(350°C, 450°C, and 550°C) by keeping all other conditions
(pressure and amount of sample) constant for each run. The
autoclave pyrolyzer unit consisted of a 360 ml vessel made up of
stainless steel (SS) material with 1 dm3 capacity. An amount of
150 g of wet, oily sludge sample was kept in the vessel (20.32 cm
length × 10.16 cm I.D), which was airtight. The experimental
setup in terms of a schematic diagram is shown in Figure 1.

The system was heated at 10°C/min to the required
temperature and sustained for 0.5 h to provide sufficient time
for thermal degradation. Then, the release of pyrolysis products
from the autoclave pyrolyzer unit was manually stopped. The vapor
produced in the vessel evolved from the top of the vessel and was
directed into the condenser, where the liquid products were
condensed and collected. The non-condensable gases were usually
expelled either into the atmosphere or collected in gas-sampling bags

for analysis and characterization. The pyrolyzed solid product was
collected from the bottom of the autoclave vessel after completing
each experimental run. The yield of solid char and pyrolysis liquid
was determined in each experiment by weighing products and the
sample used in each experimental run whereas the yield of gases by
the difference. The yield of the product is obtained by using Eq. 11.

Yield (%) � amount of product
amount of sample

× 100. (11)

2.3 Predictive Model Development Using
Feed Forward Neural Network
A multilayer perceptron (MLP) based feed-forward back
propagation neural network (FFBPN) was employed in this study
to simulate the mass loss of WWOS obtained from the pyrolysis
experiments conducted in TGAbymaintaining an inert atmosphere.
The variation in mass and conversion rates at different temperatures
and under different heating rates has been modeled using an ANN.
The ANN has been developed for a long time (Klemeš and Ponton,
1992) with many variations (Ponton and Klemeš, 1993; Shahbaz
et al., 2020; Rashid et al., 2021). The FFBPN model has been widely
used in the literature owing to its good pattern classifier and overall
efficiency capability (Hafeez et al., 2020; Arshad et al., 2021). The
proposed feed-forward network is a supervised learning technique
comprised of three-layered architecture for data prediction, that is,
the input, the hidden, and the output layers [(Naqvi et al., 2019a;
Naqvi et al., 2018b) Naqvi, 2019 #65]. Each layer is connected
through weights and biases. The nonlinear function can be adjusted
using the weights and biases in the hidden layer.

For the development of the feed-forward neural network (FFNN),
the input layer was fed with heating rate and temperature. The output
layer was fed with weight loss (%). The data has been normalized in
the range of [0–1] to improve network performance. 70% of the data
was used to train the network, while 30% of the remaining data was
divided equally in the validation and testing of the network. The
number of neurons in the hidden layer has been adjusted iteratively to
achieve the minimum mean square error (MSE) and maximum R2

FIGURE 1 | Autoclave pyrolysis unit.
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values (Naqvi et al., 2020). For the training of the network,
Levenberg–Marquardt (LM) function has been used. Back
propagation (BP) is widely used in neural network modeling. It is
generally known as a supervised learning technique, which is used for
nonlinear mapping. Therefore, it has been used in this study. Table 1
shows the various parameters used for the training of the feed-forward
BP network to predict the mass loss (%) of wet oily sludge.

The mass loss (%) of WWOS at various heating rates was
simulated using 10 different models for the heating rate of 5°C/
min by changing the number of neurons in the hidden layers. This
study has also been conducted with two other heating rates (20 and
40°C/min).Table 2 shows the network performance results based on
MSE and R2 for the mass loss (%) prediction at the heating rate of
5 °C/min for different topologies. It can be witnessed that the values
of MSE and R2 for training, validation, and testing be varied by
changing the number of neurons in the hidden layer from 1 to 10.
Theminimum value ofMSE and themaximum value R2 were found
to be [6.22 e−05 5.34 e−05 1.20 e−04] and [9.99 e−01 9.99 e−01 9.99 e−01]
for training, validation, and testing, at 9 neurons in the hidden layer
and 9 neurons was selected for the hidden layer in the network. The
selected network architecture was found to be [2 × 9 × 1].

3 RESULTS AND DISCUSSION

3.1 Material Characterization
The freshly received WWOS had 34.27% of moisture content.
The sludge’s oil content was 24%, with a volatile matter of 40.73%
and HHV of 15.65 MJ/kg. The amounts of carbon, hydrogen, and

oxygen were 35.78, 3.10, and 59.58%. The oily sludge’s
physicochemical composition makes it suitable for
thermochemical conversion with 14.5% of ash, reducing the
requirement of the catalyst during the conversion process.

3.2 Thermal Behavior
The thermograms (TG and DTG curves) of WWOS under an
inert atmosphere are illustrated in Supplementary Figure S1. It
shows the variation in mass and conversion rates at different
temperatures and under different heating rates. The mass loss
started at a reasonably low temperature owing to the vaporization
and evaporation of low boiling volatiles and water. A slight shift
in the peaks toward high temperatures can be identified with a
significant increase in the degradation rate of WWOS at a higher
heating rate. The shift of the peak toward higher temperature
indicates the delay in the escaping of the gases from the material
structure. The thermal characteristics of WWOS at different
heating rates were obtained from (DTG) the curves in
Supplementary Figures S2(A–C) at 5, 10, and 20°C/min. The
obtained values are reported in Supplementary Table S1 and
plotted in Supplementary Figure S2D. It is evident that Ti, Tp,
and (dαdt)p increased with the increasing heating rates. Tf

increased significantly when the heating rate was increased
from 5 to 20 °C/min. This value was slightly decreased
indicating a delay in completing the mass loss.

3.3 Iso-conversional Methods
The Friedman, KAS, and OFW methods rely on linear curve
fittings for a specific conversion (iso-conversion) at various
heating rates. Ea of WWOS at different extents of conversion
can be estimated from the linear fitted line as shown in
Figures 2A–C.

Table 3 summarizes the evolution of Ea with the extent of
conversion, while Figure 3 shows it in a graphical form. The R2

values of 0.95 and above are an indicator for the effective
estimation of Ea for the conversion between 0.2 and 0.6. The
Ea from different methods coincide well until 50%, which is also
indicated by the values of R2 close to 1 and a lower standard
deviation in Figure 3. The Ea values were increased from
119.35 kJ/mol to 364.41 kJ/mol when estimated using the
Friedman method. The increase in the activation energy
shows that a multi-step complex process is involved in

TABLE 1 | Key parameters for the development of the feed-forward neural
network (FFNN) model.

Parameter Values

Type of network Feed-forward neural network
Performance function Mean square error (MSE)
No. of inputs 2 [temperature, heating rate]
No. of outputs 1 [mass loss (%)]
No. of hidden layer 1
No. of neurons in the hidden layer 9
Data division Training 70%, testing, 15%, and

validation 15%.
No. of epochs 1,000
Training function Levenberg–Marquardt (LM)

TABLE 2 | Neural network performance by varying the number of neurons in the hidden layer.

No. of
neurons

Training Validation Testing Training Validation Testing

MSE R2

1 2.07165E+00 2.06526E+00 1.97557E+00 9.97703E-01 9.97547E-01 9.97660E-01
2 7.23593E-01 6.99559E-01 6.70032E-01 9.99162E-01 9.99222E-01 9.99307E-01
3 2.71247E-01 1.12846E+00 2.44930E-01 9.99730E-01 9.98765E-01 9.99734E-01
4 1.46056E-02 1.44231E-02 1.45794E-02 9.99983E-01 9.99985E-01 9.99982E-01
5 1.57726E-02 1.72105E-02 1.67912E-02 9.99982E-01 9.99980E-01 9.99998E-01
6 1.5254E-02 1.5878E-02 1.4006E-02 9.99982E-01 9.99982–1 9.99983E-01
7 1.0464E-03 9.9964E-04 2.7941E-01 9.99998E-01 9.99998E-01 9.99696E-01
8 3.3301E-04 3.7962E-04 3.9425E-04 9.99999E-01 9.99999E-01 9.99999E-01
9 6.2190E-05 5.3418E-05 1.2044E-04 9.99999E-01 9.99999E-01 9.99999E-01
10 3.2977E-04 3.6425E+004 3.6556E-04 9.99999E-01 9.99999E-01 9.99999E-01
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converting the oil sludge under pyrolytic conditions. The
variation in Ea indicates the variation in the composition and
complexity of the feedstock. A similar trend in the activation
energy during conversion has been reported in a recent study
(Ma et al., 2019). Lower Ea values at initial stages can be related
to the physical devolatilization of water and lower molecular
weight hydrocarbons. The increase in the Ea values at higher
conversion (Serio et al., 1987) or temperature can be attributed
to the chemical transformation such as cracking (Siddiqui,
2010). The A values were increased from 1.67E07 s−1 to
1.04E09 s−1, when the conversion increased from 0.2 to 0.6.
Table 3

A summary of the kinetic studies performed on the oily
sludge is given in Supplementary Table S2. The average
activation energy of WWOS in this study was higher than
the earlier reported values in the literature. Ma et al. (2019)
reported a similar trend in the activation energy. The authors

attributed the increase in the activation energy at a greater
extent of conversion to the complex thermal conversion and
variability in the composition, which is normally associated with
WWOS obtained from oil refineries.

3.4 Thermodynamic Analysis
The constants Ea and A obtained from the kinetic analysis
were used to evaluate the thermodynamic characteristics of the
conversion process. A summary of the thermodynamic
parameters is provided in Table 4. Enthalpy, nH, of the
process, remained positive, indicating the endothermic
nature of the reaction. A difference of 49.5 kJ/mol between
Ea and nH indicates some potential of forming activated
complexes during the conversion. Positive ΔG and negative
ΔS indicate that the reaction remains reactant-favored and
non-spontaneous at all temperatures (Naqvi et al., 2018c;
Naqvi et al., 2020).

FIGURE 2 | Iso-conversional plots of (A) Friedman; (B) KAS, and (C) OFW at various conversions and three heating rates of wet waste oil sludge.
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3.5 Yield and Oil Composition
The yield of liquid, solid, and gaseous products obtained
from the pyrolysis of WWOS at various isothermal
temperatures of 350°C, 450°C, and 550°C are depicted in

Figure 4. The calculated values shown in the table are the
mean values and the standard deviations of at least three
pyrolyses operated at the specific temperature. It was found
that as the pyrolysis temperature increased, the yield of pyrolysis
liquid increased (30.67–39.00 wt%), the gas yield increased
(16.98 wt%–19.84 wt%), and the solid yield decreased
(52.35–41.16 wt%). The higher yield of pyrolysis liquid and
gas occurred owing to secondary cracking at higher
temperatures. The solid yield decreased at elevated
temperatures, which was also confirmed by the
thermogravimetric analysis (Tang et al., 2019). Similar
observations were observed in the literature (Gong et al.,
2020). Lin et al. (2018) investigated the oily sludge in the
U-shaped reactor for saturation-enriched light oil production.
It was observed that temperature played a significant role in
maximum liquid production. Song et al. (2019) reported
different properties of the products obtained from the
pyrolysis of oily sludge carried out in a pyrolysis-magnetic
separation reactor. The pyrolysis liquid was composed of
water and tar. Pyrolysis product yields were observed at
different temperatures. It was also reported that the
pyrolysis temperature increased the yield of water, tar, and
gas, while a corresponding decrease in the yield of solids was
also reported. These studies conclude that 550°C was the
optimum temperature to obtain the maximum liquid yield
using pyrolysis.

GC–MS obtained the composition of oils produced from
pyrolysis of wet oily sludge at different temperatures: 350°C,
450°C, and 550°C. The elements acknowledged in the fractions
analyzed have been classified into six aliphatic groups, methyl
aliphatic, aromatic and polycyclic aromatic compounds,
nitriles and amides, alcohols, and oxygen-containing
compounds such as carboxylic acids, esters, and ketones.
Supplementary Table S3 shows the distribution according to
the percentage area of various compounds. These main

TABLE 3 | Activation energies obtained from the Friedman, KAS, and OFW methods and pre-exponential coefficients estimated from the ASTM E1641-16 method
considering the first-order reaction mechanism at 20°C/min of wet waste oil sludge.

Conversion (%) Ea( kJ
mol)

Friedman
R2 Ea( kJ

mol)
KAS

R2 Ea( kJ
mol)

OFW
R2 A (s−1)

20.0 119.35 0.99 126.24 0.99 127.15 0.99 16766934.19
22.5 126.57 0.99 131.08 0.99 131.90 0.99 18985124.73
25.0 135.00 0.99 136.62 0.99 137.32 0.99 22934120.88
27.5 142.62 0.99 143.29 0.99 143.81 0.99 33087817.51
30.0 150.94 0.99 150.25 0.99 150.57 1.00 47186138.21
32.5 158.44 1.00 157.93 1.00 158.01 1.00 64499895.40
35.0 167.62 1.00 166.14 1.00 165.95 1.00 83307956.98
37.5 174.52 1.00 174.32 1.00 173.86 1.00 107869631.11
40.0 184.23 1.00 183.28 1.00 182.51 1.00 142074328.12
42.5 194.53 1.00 192.25 1.00 191.18 1.00 175404646.87
45.0 202.91 1.00 201.45 1.00 200.06 1.00 208,763,129.10
47.5 215.22 1.00 212.56 1.00 210.77 1.00 272,033,150.11
50.0 226.76 1.00 224.65 1.00 222.40 1.00 349,268,571.37
52.5 246.93 1.00 239.63 1.00 236.79 1.00 450,750,398.99
55.0 267.50 0.99 258.53 0.99 254.91 0.99 571,179,746.17
57.5 300.10 0.98 284.31 0.98 279.59 0.99 793,167,244.03
60.0 364.41 0.95 325.60 0.96 319.02 0.96 1,028,720,967.59

Average 198.68 (±66.27) - 194.60 (±56.99) - 193.28 (±54.88) - 2.58E8 (±2.96E8)

FIGURE 3 | Variation of the activation energy of wet waste oil sludge
(WWOS) with conversion estimated from different methods.

TABLE 4 | Thermodynamic parameters of wet oil sludge using the activation
energy obtained from the Friedman, KAS, and OFW methods and A
calculated from the ASTM E1641-16 method considering the first-order reaction
mechanism at 20°C/min.

Methods ΔH( kJ
mol) ΔG( kJ

mol) ΔS( J
mol K)

Friedman 194.427 243.950 −9.669
KAS 190.338 239.860 −9.669
OFW 189.024 238.547 −9.669
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compounds consisted of hydrocarbons, such as alkanes,
aromatics, oxygenates, and others. The aliphatic compounds
included alkanes, alkenes, alkynes, their derivates, and
compounds with a carbon number from C5 to C20 like
trichloromethane, pentadecane, cetane, hexadecane, nonene,
and nonadecane. The aromatic and polycyclic aromatic
compounds included phenol, toluene, styrene, pyrrole,
benzene, acetonitrile, pyridine, methylpyridine, phenols,
benzene propane nitrile, indole, and p-cresol. The alcohol
group contained compounds having an OH group attached,
for example, 2-Furanmethanol and 1-Dodecanol. The
carboxylic acids (O=C-OH), esters (O-C=O), nitriles (C≡N),
and amides (O=C-NH2) were heavy compounds linked with
long aliphatic chains with carbon atoms up to 20. As the
temperature increased from 350°C to elevated temperatures
such as 450°C and 550°C, the area percentage of alkanes was
the most abundant in the following order: 75.48% > 76.41% >
76.92%. The higher temperature facilitated the formation of
aromatics, polycyclic aromatics, alcoholic compounds, and
heavy compounds.

3.6 Neural Network Modeling
In this study, the predictive modeling based on the neural
network has been successfully proposed for the TGA of
WWOS at different heating rates of 5°C/min, 20°C/min, and
40°C/min. The model results for TGA at a heating rate of 5°C/
min, such as training performance, error histogram, and
regression plots, have been discussed in this section.
However, the results obtained from the predictive modeling

of TGA at a heating rate of 5°C/min, 20°C/min, and 40°C/min are
shown in Figures 5A–C; Supplementary Figures S3A–C;
Supplementary Figures S4A–C). As mentioned earlier, the
best neural network architecture was found to be [2 × 9 × 1]
with a minimum training MSE of 6.219e−5 and a maximum R2

value of 99.99.
The model performance, training, and regression plots are

shown in Figure 5. The error histogram is shown in Figure 5A,
representing the normal distribution of errors across zero.
Figure 5A shows that the error between the experimental and
simulated mass% lies in the range of [−0.06 to +0.06]. Since the
errors between actual and predicted values are low, it depicts
that the model is well trained and can be further utilized. For
the prediction of new output data, Figure 5B shows the
performance plot using MSE for mean square error for
training, validation, and testing of a network with 9 hidden
neurons in the hidden layer. It can be observed that the
minimum error has been achieved at 253 epochs. Figure 5C
shows the training, validation, and testing regression plots. It
can be observed that very few errors have been obtained
between the target and output values, which demonstrates a
strong correlation. The results show that the value of R2 in all
the training, validation, and testing plots is close to 1. A good
fit between the experimental and predicted data was achieved,
as shown in Figure 6. The results explained that the proposed
network is in good agreement with the experimental results
and could be extensively applied to predict TGA for various
waste sludge with nonlinear nature (Bong et al., 2020;
Prabhakaran et al., 2020).

FIGURE 4 | Yield of pyrolysis products.
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FIGURE 5 | Error Histogram (A), training performance (B), and regression plots (C) of TGA for wet oily sludge at 5°C/min.
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4 CONCLUSION

Pyrolysis characteristics of industrial wet oil sludge in an inert
atmosphere of nitrogen were investigated using a
thermogravimetric analyzer at 5°C/min, 20°C/min, and 40 °C/
min. Activation energies at different conversion levels were
estimated from Friedman, KAS, and OFW methods.
According to Friedman, KAS, and OFW methods, the average
activation energy was 198.68 kJ/mol, 194.60 kJ/mol, and
193.28 kJ/mol. The increase in the activation energy on
conversion showed that the conversion process might have
followed a multi-step complex reaction scheme. Positive nH
and ΔG with negative ΔS indicate the endothermicity and
non-spontaneity of the reaction. The maximum liquid yield
using pyrolysis was obtained at 550°C containing aliphatic,

methyl aliphatic, aromatic, and polycyclic aromatic
compounds, nitriles and amides, alcohols, and oxygen-
containing compounds such as ketones and aldehydes. The
proposed ANN that was developed showed a good agreement
with experimental results to predict complex compounds’
decomposition behavior. The R2 in all training, validation, and
testing plots was close to 1. This study provides an effective
strategy to convert complex hazardous fuels into valuable energy
products.
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