
Power Consumption Predicting and
Anomaly Detection Based on
Transformer and K-Means
Junfeng Zhang1, Hui Zhang2, Song Ding3* and Xiaoxiong Zhang2

1Data Mining Laboratory, College of Mathematics and Information Technology, Hebei University, Baoding, China, 2The Sixty-
Third Research Institute, National University of Defense Technology, Nanjing, China, 3School of Economics, Zhejiang University of
Finance and Economics, Hangzhou, China

With the advancement of technology and science, the power system is getting more
intelligent and flexible, and the way people use electric energy in their daily lives is changing.
Monitoring the condition of electrical energy loads, particularly in the early detection of
aberrant loads and behaviors, is critical for power grid maintenance and power theft
detection. In this paper, we combine the widely used deep learning model Transformer
with the clustering approach K-means to estimate power consumption over time and
detect anomalies. The Transformer model is used to forecast the following hour’s power
usage, and the K-means clustering method is utilized to optimize the prediction results,
finally, the anomalies is detected by comparing the predicted value and the test value. On
real hourly electric energy consumption data, we test the proposed model, and the results
show that our method outperforms the most commonly used LSTM time series model.
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1 INTRODUCTION

Modern power systems are evolving in a more sustainable path. The load demand for domestic electrical
energy is gradually increasing as the number of household appliances and electric cars increases. Statistics
show that residences and commercial buildings account for three-fifths of global electricity use (Desai,
2017). The power system has grown in complexity and intelligence, and more modern information
transmission technology has been implemented, making grid processing more convenient and secure
(Bayindir et al., 2016).Moreover, electric energy consumption in everyday living is also difficult and variable.
Electric energy usage, for example, may vary significantly depending on the season, and consumption on
working days andworking dayswill fluctuate. At the same time, therewill be anomalies in the electrical load,
such as forgetting to turn off electrical appliances, failure of electrical appliances and even the theft of
electricity, and so on, resulting in amuch larger electrical demand than typical. As a result, detecting unusual
consumption data is critical.

Abnormal detection can enhance abnormal electric energy consumption to achieve energy
savings, remind users to discover malfunctioning electrical appliances or modify bad electricity
usage patterns, lower users’ energy consumption expenses, and promote electricity consumption
safety awareness. The most crucial factor is that you can locate the source of the power theft
(McLaughlin et al., 2009). According to the survey, power theft accounts for about half of the energy
lost in some developing countries (Antmann,2009), and anomaly detection technologies can
successfully combat this scenario.

Anomaly detection, as the name suggests, is the method of recognizing data that differs from the
usual. Anomalies in data are situations that do not follow the specified usual behavior pattern
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(Chandola et al., 2009). Anomalies are classified into three types:
point anomalies, aggregate anomalies, and context anomalies. A
point anomaly occurs when one point in the data is excessively
high or too low in comparison to other points. The anomalous
phenomena of a group of data compared to the full data set is
referred to as a collection anomaly, and it only happens in the
data set with the correlation between the data. Contextual
abnormality refers to the abnormality when the data is
combined with the context in the data set (Chandola et al.,
2009). In this paper, abnormal power consumption means that
if the difference between the power consumption predicted by the
model and the real power consumption in a certain hour is
greater than the threshold we set through the experiment, the
current hour power consumption is considered abnormal, so the
main task of this paper is to detect point anomalies.

Because the characteristics of variables are various, traditional
models primarily focus on univariate prediction and anomaly
detection (Hu et al., 2018). Univariate models are typically
utilized in cases where there are too many other features or
when vectorization is difficult, such as stock prediction (Hsieh
et al., 2011). Various industries, such as speech recognition (Graves
et al., 2013) and NLP (Natural Language Processing) (Nadkarni
et al., 2011), have adopted deep learning technology and achieved
remarkable success as a result of the rapid development of the field
of deep learning. Time series analysis (Kuremoto et al., 2014), of
course, has also a significant advancement. Traditional statistical
methods such as ARIMA (Auto-Regressive Integrated Moving
Average) (Yuan et al., 2016) and SARIMA (Seasonal ARIMA)
(Ahn et al., 2015) were defeated by the proposed LSTM (Long and
Short-Term Memory network) (Hochreiter and
Schmidhuber,1997). For energy consumption prediction and
anomaly detection, a lot of work on LSTM has been done.

However, with the introduction of Google’s Transformer model
(Vaswani et al., 2017), this model was first successfully used to the
field of machine translation, and then it spread to other significant
fields such as speech recognition (Wang et al., 2020), and so on. Since
machine translation technology involves the processing of time
series, we seem to be able to use the Transformer model for time
series forecasting tasks. Transformer uses self-attention and multi-
head self-attention for semantic extraction. When it comes to the
long-distance dependence of features in time series, self-attention
can naturally solve this problem, because there are connections
between all features of time series when integrating features, and the
relative position information between the input time series features is
preserved through sinusoidal position encoding. It is not like RNN
(Recurrent Neural Network) that needs to be gradually passed to the
back through hidden layer node sequences, nor is it like CNN
(Convolutional Neural Networks) that needs to be captured long
distance features by increasing the network depth, Transformer has
some advantages in processing time series features.

As a result, in this paper, we propose a new power
consumption prediction and anomaly detection model that
combines deep learning and clustering methods. The following
are the contributions:

1) For time series prediction of power consumption, we merged
the current popular Transformer deep learning model with

K-means clustering. We reasoned that the historical time data
contributes differentially to the expected value due to the
regular behavior of household users. The K-means method
can be used to locate data clusters that contribute more to the
projected value, allowing the Transformer model prediction
value to be optimized further.

2) In the experiment, we employed multi-dimensional data. The
data dimension also incorporates auxiliary information data
such as voltage, current, and the power consumption of
various household appliances, in addition to the
fundamental power consumption.

3) We compared the proposed method to the LSTM and only
Transformer model’s prediction performance. Experiments
have revealed that the proposed combination method’s error
between predicted and true values is lower than those of
LSTM and single Transformer.

4) To demonstrate the proposed method’s superior performance
in anomaly detection, we manually added anomalous data
into the test data and treated it as a true anomaly.

The following is how we organize this paper. We introduce
relevant research on power consumption and anomaly detection
in Section 2. The data set used in the experiment, as well as the
data set’s preparation approach, are shown in Section 3. We
describe our model’s implementation approach and procedure in
detail in Section 4. We compare the performance of model
prediction and anomaly detection with different models in
Section 5. This paper was summarized in the last section.

2 RELATED WORKS

Researchers have done a lot of research since power consumption
prediction and anomaly detection are so crucial in the power
energy system. Box et al. (2015) developed time series forecasting
approaches like as Auto-Regressive (AR), ARIMA (Auto-
Regressive Integrated Moving Average), and SARIMA
(Seasonal ARIMA) in the economic sphere, and they had good
results. To predict the value at a specific moment in the time
series, the AR model primarily uses the weighting of all values
preceding that time. ARIMA primarily employs the point before
to the time to add a random vector in order to forecast the value at
that time. SARIMA is mostly used for time series data with
obvious seasonal differences. Ouyang et al. (2019b) improved the
performance of wind power ramp prediction by combining the
advantages of ARmodels andMarkov chain. To detect anomalies,
Yan et al. (2014) integrated the AR approach with SVM (Support
Vector Machine) Ma and Guo (2014). ARIMA was used by
Ediger and Akar (2007) to forecast fuel energy use in Turkey.
The time series of ARIMA power consumption was utilized by
Alberg and Last (2018) to estimate future power consumption,
and Krishna et al. (2015) employed ARIMA for half-hour
granular power consumption data. SARIMA was applied by
Ahn et al. (2015) for long-term and mid-term load
forecasting. The unsupervised K-means approach Münz et al.
(2007) groups the data to identify anomalies that are outside of
the cluster. Simultaneously, the autoencoder model has been a

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7795872

Zhang et al. Power Predicting and Anomaly Detection

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


huge success. The data is analyzed using unsupervised methods.
The difference between input and output is utilized to detect
whether the data is aberrant, from compression and abstraction
to recovery and rebuilding. For anomaly detection, Al-Abassi
et al. (2020) presented unsupervised stacked autoencoders for
smart cyber-physical grids. Deb et al. (2015) developed an
artificial neural network for predicting building energy usage
in Singapore, and it was shown to be accurate.

The advancement of deep learning has improved the accuracy
and performance of large data processing and prediction. Deep
learning was used extensively in wind speed prediction (Khodayar
et al., 2017), stock prediction (Rather et al., 2015), automated
Vehicles (Shen et al., 2020) and other researches, and power grid
technology has also incorporated the nerve of deep learning. The
network is used to forecast and detect how much energy the user
consumes. Ouyang et al. (2019a) proposed the use of Deep Belief
Network (DBN) to predict hourly power load. According to Shi et al.
(2017), predicting the electricity usage of a single customer in Ireland
is the same as using a deep recursive network. For time series, LSTM
can forecast and detect anomalies (Malhotra et al., 2016; Siami-
Namini et al., 2018). Wang et al. (2019) proposed combining
seasonal features with LSTM for power load forecasting and
anomaly detection. However, because ARIMA requires time series
data to be stationary and it can only capture linear relationships, but
not non-linear relationships. For the LSTM model, its output at the
current time requires not only the input at the current time, but also
the output at the previous time. This makes the LSTMmodel unable
to parallelize operations, resulting in too long training time when
processing time series features. On the other hand, the Transformer
model has had a lot of success in the field of speech recognition and
natural language processing since it was introduced. As a result, we
propose in this paper that we utilize the transformer model to
estimate electric energy load, then apply the k-means approach to
further improve the prediction results, and then compare the
prediction results to the test data to look for anomalies.

3 DATASETS

For the experiment, we used hour-level electricity load data from a
French family for 1,440 days (2006-12-17 to 2010-11-25).We selected
3 h of data for display, as shown in Table 1, except for
“global_active_power” represents the total active power consumed
by the household, and other data includes “global_reactive_power”
representing the total reactive power consumed by the household,
“voltage” representing the average voltage per hour, “global_intensity”

representing the average current intensity, “sub_metering_1”
representing the active electrical energy of the kitchen,
“sub_metering_2” representing the active energy of the laundry,
“sub_metering_3” representing the active energy of the climate
control system, “sub_metering_4” representing other active energy.
The hourly power load change diagram for 3 days which are all
weekdays is shown in Figure 1. It can be seen that power
consumption has increased significantly in the morning, noon and
evening, and electricity consumption conforms to the law of electricity
consumption in French households during workdays. To make the
data more stable, we apply the Min-Max Normalization procedure.
This will make the model’s training easier and its convergence faster.
We designed the model supervision task to estimate the following
hour’s electric energy usage based onmultivariate data collected every
23 h, and we implemented it by using a 23-hour sliding window.

4 METHODOLOGY

We partitioned the data into 24-hour groups using a sliding
window, then trained k-means clustering for the first 23 h of each
group of real test data into k clusters, while also used the 23-hour
real load data training Transformer model predicts the next
hour’s load data, then through the trained K-means to get the
appropriate centroid as the final prediction result. Figure 2
depicts the framework of our model.

4.1 Transformer Model
Initial and foremost, Positional Encoding is the first phase in the
Transformer model utilized in this essay. Because Transformer
does not have a cyclic structure like LSTM, it presents a new
positional encoding strategy to capture the input time series
information, as indicated in Eqs 1, 2. The basic idea is to add
sine and cosine functions of various frequencies as position codes
to the normalized input sequence, allowing the Transformer
model’s multi-head attention mechanism to fully capture time
series data with more dimensions.

PE(pos,2i) � sin(pos/100002i/dmodel ) (1)

PE(pos,2i+1) � cos(pos/100002i/dmodel ), i ∈ [0, . . . , dmodel/2) (2)

where pos is the vector position of each time. For example, in the
time series data in this paper, the pos of the first hour of each
group is 0, and the pos of the second hour is 1, 2i and 2i + 1
respectively represent the even position and the odd position.

TABLE 1 | Sample display of the data set used in this paper.

Datetime Global_active_power (kW) Global_reactive_power (kW) Voltage (V) Global_intensity (A)

2006-12-17 00:00:00 112.95 6.14 240.96 487.60
2006-12-17 01:00:00 200.96 8.22 240.45 854.80
2006-12-17 02:00:00 95.24 4.69 245.82 412.20

Sub_metering_1 (Wh) Sub_metering_2 (Wh) Sub_metering_3 (W)h Sub_metering_4 (Wh)

0.0 28.0 0.0 1854.47
0.0 1,514.0 0.0 1835.40
0.0 34.0 0.0 1,553.27

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7795873

Zhang et al. Power Predicting and Anomaly Detection

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


dmodel represents the length of the feature vector per hour. Next,
we use X � [x1, x2, . . ., xn] to represent the input sequence
combined with position encoding, and pass the multi-head self-
attention of the Transformer model:

MultiHead(Q,K,V) � Concat(head1, . . . , headi)Wo (3)

headi � Attention(QWQ
i , KW

K
i , VW

V
i ) (4)

In the above formula, Q � q1wq1 , K � k1wk1 , V � v1wv1 , q1 �
k1 � v1 � X. In the Transformer model, the Attention module first
undergoes a linear transformation of Q (Query), K (Key), and V

(Value). Each time Q, K, and V perform the linear
transformation, the parameter W is different, and then input
to Scaling dot product attention, the formula is as (5), note that it
is necessary to do i times here, in fact, it is the so-called multi-
head, and each time counts as one head. Then concatenate the
attention results of the i times of scaling dot product, and then
perform a linear transformation to obtain the value as the result of
the multi-head attention. The advantage of this is that it allows
the model to learn relevant information in different
representation subspaces. The calculation of the Attention
module uses Scaled Dot-product:

FIGURE 1 | Hourly household electric energy consumption change diagram for 3 consecutive days.

FIGURE 2 | The main framework of our model.
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Attention(Q,K, V) � softmax
QKT��
dk

√( )V (5)

where dk is the last dimension of the shape of Q, K, V, divided by��
dk

√
to prevent dk from being too large and the softmax function’s

gradient becoming too tiny when QKT is too large. The residual
connection structure is then used to narrow the network’s
attention to solely the differences. In multi-layer network
structures, it is frequently used:

L � LayerNorm(X +MultiHead(Q,K,V)) (6)

where LayerNorm is Layer Normalization, which normalizes
each neuron and adjusts the mean and variance of the input
data to be the same, which will speed up the convergence.
Then input L into the FeedForward layer, which is composed
of two fully connected layers, the first layer uses the Relu
activation function, and the second layer does not use the
activation function:

s � max(0, LW1 + b1)W2 + b2 (7)

Similarly, use residual connection and Layer Normalization
again to get the output SE:

SE � LayerNorm(L + s) (8)

Our experiment uses a 2-layer Transformer multi-head
attention module, which means that the output SE needs to be
re-input to the structure output SE2 described above. Finally, the
output will be decoded and dimensionality reduction operations
through the fully connected layer:

K � W3SE2 (9)

4.2 K-Means Clustering Method
Clustering is the division of a sample set into several disjoint
subsets (sample clusters), which is a typical unsupervised
machine learning algorithm. When using clustering to
classify samples, Euclidean Distance is used as the

measurement criterion of sample similarity. The higher the
similarity, the smaller the Euclidean Distance of the sample.
K-means clustering is a well-known algorithm among clustering
algorithms. It needs to determine the number of clusters k first
when clustering, and k is given by the user. Each cluster passes
through its centroid (the mean value of all elements in the
cluster). The workflow of k-means is also very simple. First,
randomly select k initial points as the initial centroids of each
cluster, and then assign each point in the data set to the cluster
closest to it. The distance calculation uses the Euclidean
Distance mentioned above. The algorithm of k-means is
shown in Algorithm 1:

Algorithm 1. K-means algorithm.

4.3 Model Development
First, we divide the data set into a training set and a test set. Since
the data set contains a total of 1,440 days of hourly data, we
choose 1,240 days of data as the training set and 200 days of data
as the test set. For the Transformer model, we choose two
consecutive layers of multi-head self-attention modules, and
each multi-head attention is set to 4 attention heads. The
input data shape is 23 time steps and 8 features. For K-means
clustering, we experimented with k � 2, 5, 8, 10, 11, and 15
respectively, and finally selected the cluster with k � 10. We
choose the mean-square error of the predicted data and the
original data, that is, MSE (Mean-Square Error) as the loss
function, and Adam as the optimizer of the model. And set
the epoch of the training model to 300, and the batch size to 200.

4.4 Model Prediction and Evaluation
We believed that the nearest neighbor of the real training data has the
most impact on the forecast value, thus in the first 23 h of each group,
we trained k-means clustering, partitioned the data into k categories,
and provided the load K predicted by the Transformer model for the
next hour as the final prediction output, then found the centroid in the
trained K-means cluster. We analyzed the model’s prediction ability
by fitting the predicted value to the test value and calculating the
RMSE (Root Mean Squard Error) of the forecasted value and the test
value to measure the prediction’s accuracy, and we compared it to the
commonly used LSTM model.

4.5 Anomaly Detection
Because the model calculates the anticipated value based on a huge
quantity of historical data, the forecasted values will generally follow
the data’s trend. If the test value differs significantly from the projected
value, it indicates that the test value has deviated too far from the data
trend and may be abnormal. The score between the predicted value

FIGURE 3 | Train and test loss over the 300 epochs of our model.
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and the test value obtained after the Transformer model and k-means
clustering is calculated in this research. The formula can be found in
Eq. 10. In order to better analyze the difference, we normalized the
score, the formula is as Eq. 11. The value of score collected from
several experiments was used to determine a threshold. When the
score between the predicted value and the test value exceeds the
threshold, the test value is considered abnormal. The experiment can
also evaluate whether the user is prone to having electricity theft by
setting a time series window and a threshold for the number of
anomalies. If the number of abnormalities in the time series data in a
window is greater than the threshold, itmeans that the time series data
are abnormal, and the user may have the suspicion of steal electricity.
To better compare the accuracy of anomaly detection, we manually
insert abnormal data points in the test data and compare our model
with K-means and LSTM.

scoret � |predictedt − testt|
avgi∈T(|predictedi − testi|) (10)

~scoret � scoret −min(score)
max(score) −min(score) (11)

5 EXPERIMENT RESULTS

5.1 Consumption Prediction
We opted to compare the model against the most popular LSTM
model for time series data prediction in order to test its
performance. The LSTM is a variant of the recurrent neural
network RNN. It is a unique RNN that incorporates three
different types of gating to address the problem of gradient
disappearance and explosion during lengthy sequence training.
Simply put, LSTM outperforms standard RNNs in longer
sequences, making it ideal for time series forecasting jobs.

Figure 3 shows how the training and test loss of the Transform
model used in this paper changes at 300 epoch. It can be observed
that the model converges quickly, and the figure shows that there
is no overfitting in the model. All of this is achievable because of
the Transformer model’s benefits in time series processing.

FIGURE 4 | Comparison of our model and LSTM predicted value fitting real data.

FIGURE 5 | Scores and anomalies exceeding the threshold for 2,500 h.

TABLE 2 | Comparison with some methods.

Method Accurary Precision Recall F1 RMSE(prediction)

K-means 0.96 0.82 0.28 0.42 —

LSTM 0.97 0.74 0.60 0.66 0.91
Our method 0.97 0.80 0.66 0.72 0.74
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Figure 4 depicts the test set’s real-time power consumption
data over 3 days, as well as a comparison of our model’s and the
LSTM model’s prediction results on the test set. The blue line
represents the actual data, the red line represents our model’s
predicted value, the green line represents the LSTM model’s
predicted value, and the purple line indicates the lone
Transformer’s predicted value. Our model’s forecast data is
more in accordance with the real test data, as can be shown.
The RMSE of the model, on the other hand, are used to assess
the model’s fit. Our model has an RMSE of 0.73, the
Transformer has an RMSE of 0.77, and the LSTM has an
RMSE of 0.86. In terms of prediction accuracy, our model
outperforms LSTM by 15%, while Transformer outperforms
LSTM by just 10%. After our analysis, because the
dimensionality of the feature vector of each time series in
our time series data is too small, which leads to the failure of
the full performance of the Transformer model.

5.2 Anomaly Detection
After a lot of testing and tweaking, we ultimately settled on
0.45 as the threshold. This means that any point with a score
higher than 0.45 will be considered anomalous. The change in
score data over 2,500 h is presented in Figure 5, with the red
dashed line representing the threshold and the purple point
representing the abnormal point. The data scores are primarily
focused between 0 and 0.3, and there are relatively few aberrant
spots, as can be shown. In practical applications, we can adjust
the threshold size based on the scene being used, and lower or
increase the threshold size based on the strictness of anomaly
detection, a lower threshold is more stringent, allowing for the
detection of more anomalies, on the other hand, a higher
threshold is more tolerant, allowing for the detection of fewer
anomalies.

We utilized the strategy of randomly inserting abnormal
points in the test data to better compare and assess the
model’s anomaly detection capabilities because this
experimental data set does not mark aberrant time points. In
the 200 days (4,800 h) of the test set, we randomly selected a value
every day and double it, and assume it is an outlier, so there are
200 outliers in the 4,800 data in the test set. For comparison, we
separately used the clustering method K-means and the most
popular depth method LSTM to detect abnormal points. Using
the K-means approach, we discovered a total of 68 abnormal
points, of which only 56 were the abnormal points we manually
inserted into the data set. Using the LSTM model, we retrieved a
total of 162 anomalies, 120 of which were the anomaly points we
manually inserted into the data set. Our combined Transformer
and K-means model found 165 anomalies, 132 of which were the
abnormal points wemanually added to the data set. The accuracy,

precision, recall, and F1 of the three models are shown in Table 2.
The predicted RMSE of LSTM and our model are also shown in
the table.

6 CONCLUSION

The prediction of electric energy consumption and the identification
of anomalies are critical in the functioning of the power grid, and the
processing of multi-variable time series is a difficult challenge. We
present a model that combines Transformer and K-means
approaches in this article. Every 23 h of training data is separated
into k clusters using K-means clustering. At the same time, this
training data are used to train the Transformer model to predict the
following hour’s power usage, with the predicted value being placed
into the trained K-means cluster and the cluster’s centroid serving as
the final predicted value. Finally, look for anomalies by comparing
the anticipated value to the actual test results. The experimental
results prove that the model achieves prediction accuracy with less
error and high anomaly detection performance. In the future, we’ll
strive to improve prediction and anomaly detection accuracy, as well
as study the differences between power consumption prediction and
anomaly detection in different seasons, environments, and other
scenarios, and other issues that need to be addressed.
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