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The search for stable and highly efficient solar cell absorbers has revealed interesting
materials; however, the ideal solar cell absorber is yet to be discovered. This research aims
to explore the potentials of dimethylammonium lead iodide (CH3NH2CH3PbI3) as an
efficient solar cell absorber. (CH3NH2CH3PbI3) was modeled from the ideal
organic–inorganic perovskite cubic crystal structure and optimized to its ground state.
Considering the spin-orbit coupling (SOC) effects on heavy metals, the electronic band
structure and bandgaps were calculated using the density functional theory (DFT). In
contrast, bandgap correction was achieved by using the GW quasiparticle methods of the
many-body perturbation theory. The optical absorption spectra were calculated from the
real and imaginary dielectric tensors, which are determined by solving the Bethe–Salpeter
equations of the many-body perturbation theory. Spin-orbit coupling induces band
splitting and bandgap reduction in both DFT and GW methods, while the GW method
improves the DFT bandgap. We report a DFT band gap of 1.55 eV, while the effect of spin-
orbit coupling reduces the bandgap to 0.50 eV. Similarly, the self-consistent GW
quasiparticle method recorded a bandgap of 2.27 eV, while the effect of spin-orbit
coupling on the self-consistent GW quasiparticle method reported a bandgap of
1.20 eV. The projected density of states result reveals that the (CH3NH2CH3PbI3) does
not participate in bands around the gap, with the iodine (I) p orbital and the lead (Pb) p
orbital showing most prominence in the valence band and the conduction band. The
absorption coefficient reaches 106 in the ultraviolet, visible, and near-infrared regions,
which is higher than the absorption coefficient of CH3NH3PbI3. The spectroscopic limited
maximum efficiency predicts a highmaximum efficiency of about 62% at room temperature
and an absorber thickness of about 10–1 to 102 μm, suggesting that (CH3NH2CH3PbI3)
has an outstanding prospect as a solar cell absorber.
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1 INTRODUCTION

The ability to explore materials for different technological
applications allows us to improve the efficiency of various
materials. Amongst these applications, materials are
engineered to have a high figure of merits for viable
thermoelectric generators (He et al., 2015; Adebambo et al.,
2021; Jouhara et al., 2021), which can efficiently convert heat
energy to electricity. Similarly, material engineering has the
potential of discovering catalysts (Zhao et al., 2021a; Wang
et al., 2021) which will reduce the activation barrier and speed
up the rate of chemical reactions. For solar cell applications,
materials could be engineered to scale up the power conversion
efficiency. In all of these applications, the stability of these
materials at varying temperatures, humidity, and other
environmental conditions needs to be improved to withstand
varying environmental conditions and enhance longevity (Aftab
and Ahmad, 2021; Baranowska-Korczyc et al., 2021; Cha andWu,
2021). For decades, a lot of success has been achieved from
experimental and theoretical research in power generation from
solar cells. Among these successes is the increased power
conversion efficiency, from 4% to a maximum efficiency of
38.9% (Mancini et al., 2016; Akman et al., 2021; Zhao et al.,
2021b; Zhang et al., 2021). A fascinating family of materials that
plays a significant role in the increment of solar cell efficiency is
the perovskite material (Park, 2016; Akman et al., 2021; Zhao
et al., 2021a; Zhang et al., 2021). Alongside perovskites’ increased
power conversion efficiency, inorganic and hybrid perovskites
with a general formula, ABX3, have hundreds of thousands of
members as the A and B sites are filled with monovalent and
divalent cations, while the X site is filled with either oxides or
halides, allowing experimental and computational screening of
potentials materials for solar cell absorbers and other
technological applications. The success of perovskite materials
is primarily attributed to the high carrier mobility, strong
broadband absorption, long electron-hole diffusion length,
design flexibility, and bandgap tunability of the absorbing
materials (Kojima et al., 2009; Stoumpos et al., 2013; Snaith
et al., 2014; Yin et al., 2014; Christians et al., 2015; Snaith and
Hacke, 2018). Bandgap engineering is a well-demonstrated
approach for modulating the power conversion efficiency of
hybrid perovskites by substituting the X site element with
other halides to form a mixed halide alloy (Hao et al., 2014;
Ogomi et al., 2014; Mancini et al., 2015). Conversely, altering the
A-site composition in a stoichiometric approach enhances the
bandgap (Eperon et al., 2014). However, efforts to replace the A
site in the ABX3 perovskite compound (Im et al., 2012; Stoumpos
et al., 2015) have served as a playground for further insights into
the search for highly efficient perovskite materials. Lately, the
quest for a stable andmore efficient solar cell absorber has birthed
the use of (CH3)2NH+

2 in the A site of ABX3 perovskite
compounds. At room temperature, CH3NH2CH3PbI3
crystallizes into a hexagonal crystal structure with space group
P63/mmc. Furthermore, at 250K, it changes into the monoclinic
crystal structure with space group P21/c due to first-order phase
transition (García-Fernández et al., 2017). Similarly, previous
experimental studies of dimethylammonium lead iodide

(CH3NH2CH3PbI3) reported the room temperature phase with
the hexagonal crystal structure having space group P63/mmc and
lattice parameters a � 8.769 �A and b � 8.188 �A (Mancini et al.,
2016). The hexagonal-structured (CH3)2NH2PbI3 reported an
optical bandgap of 2.39 eV and 2.59, calculated by extrapolating
the linear part of the Kubelka–Munk function (Mancini et al.,
2016; García-Fernández et al., 2017). Percentage doping of the
(CH3)2NH+

2 cation with cesium atoms (Cs) in the A site to form
CsxDMA1 − xPbI3 thin-film yields a power conversion efficiency
of up to 16.6% (Wang et al., 2019). Similarly, doping CsPbI3 with
up to 25% (CH3)2NH+

2 results in improved stability, although
(CH3NH2CH3)x−1CsxPbI3 has a lower bandgap than the parent
compound (CsPbI3) (Marshall et al., 2021). Also, doping
(CH3NH2CH3)

+ with Cs+ in the A site causes octahedra tilt,
which induces bandgap increment and improves the resulting
perovskite solar cell stability (Eperon et al., 2020). To improve
stability and preserve power conversion efficiency, (CH3)2NH+

2 is
partially substituted in the A site of CH3NH3PbI3, changing the
tetragonal crystal structure to a cubic structure when exposed to
humidity, further exposure to humidity resulting in phase change
into a hexagonal structure (Thomas et al., 2021). The
spectroscopic limited maximum efficiency (SLME) is aimed at
screening materials based on their intrinsic properties such as the
bandgap, the absorption spectra, and the non-radiative
combination loss (Yu and Zunger, 2012). Unlike the bandgap-
dependent Schockly–Queisser efficiency limit (Shockley and
Queisser, 1961), which predicted a maximum efficiency of
33.7% at the best bandgap of 1.34 eV, the spectroscopic
limited maximum efficiency varies for materials with the same
bandgap depending on the optical type of the bandgap (direct
allowed, direct forbidden, and indirect allowed) and the
absorption coefficient (Yu and Zunger, 2012). CuInSe2,
CuGaSe2, and CuInS2 with a high spectroscopic limited
maximum efficiency of about 28% are found experimentally to
be good absorbers, showing that the SLME is an excellent
criterion to select good potential photovoltaic absorbers (Yu
and Zunger, 2012). In this study, we present the electronic
structure and the optical absorption spectra of the high-
temperature cubic crystal structure of (CH3NH2CH3PbI3) with
and without the effect of spin-orbit coupling. The density
functional theory (Hohenberg and Kohn, 1964; Kohn and
Sham, 1965) and the GW quasiparticle method (Marini et al.,
2009; Sangalli et al., 2019; Rangel et al., 2020) were used to
calculate the electronic structure, while the Bethe–Salpeter
equation method of the many-body perturbation theory
(Marini et al., 2009; Sangalli et al., 2019; Rangel et al., 2020)
was used for the optical absorption spectra.

2 COMPUTATIONAL PROCEDURE

The CH3NH2CH3PbI3 structure was modeled after the ideal cubic
perovskite structure, where the lead (Pb) atom occupies the (0.0,
0.0, 0.0) position, the iodine (I) atoms occupy the (0.5, 0.0, 0.0),
(0.0, 0.5, 0.0), and (0.0, 0.0, 0.5) positions in units of lattice
vectors, while the dimethylammonium cation (CH3NH2CH3)

+

was placed in the middle of the cubic cage at (0.5, 0.5, 0.5)
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(Agbaoye et al., 2020; Agbaoye et al., 2021). The final structure is
such that the NH2 points toward the upper part of the cubic cage,
while the two CH3 arms point downward toward the sides of the
cubic cage. In order to describe the dispersion forces, energy, and
structure of the system accurately (Barone et al., 2009), the van
der Waals interaction between the dimethylammonium molecule
and the cubic cage was treated with the grimme-d2 semiempirical
van der Waals correction (Grimme, 2006; Barone et al., 2009).
The stable crystal structure of (CH3)2NH2PbI3 was achieved by
optimizing the cut-off for the wavefunction to 115 Ry, and then
kpoint optimization shows that the 16 × 16 × 16Monkhorst–Pack
kpoint mesh (Monkhorst and Pack, 1976) is sufficient to describe
the system, while at minimum energy, a lattice parameter of
6.20 Å was achieved. The most stable pseudo-cubic structure is
achieved using the Broyden–Fletcher–Goldfarb–Shannon quasi-
newton algorithm (Shanno, 1970), which relaxed the position of
atoms and the size of the lattice. The density functional theory
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965) and the GW
quasiparticle (Marini et al., 2009; Sangalli et al., 2019; Rangel
et al., 2020) band structure were performed using the
Perdew–Burke–Enzenhoff (Perdew et al., 1992; Perdew et al.,
2008) exchange-correlation functional of the generalized gradient
approximation (Perdew and Yue, 1986; Perdew et al., 1996) as
implemented in the quantum espresso package (Scandolo et al.,
2005; Giannozzi et al., 2009). The band structures are calculated
along the Gamma (0.00, 0.00, 0.00); X (0.00, 0.50, 0.00); M (0.50,
0.50, 0.00); G (0.0, 0.0, 0.0); R (0.50, 0.50, 0.50); and X (0.00, 0.50,
0.00) high symmetry points, while the projected density of states
was calculated using the tetrahedra method (Blöchl et al., 1994). A
denser Monkhorst–Pack kpoint mesh of 20 × 20 × 20 and 12 ×
12 × 12 was used to calculate the density of states in the non–spin-
orbit calculation and the spin-orbit calculations, respectively
(Monkhorst and Pack, 1976). The non–spin-orbit and the
spin-orbit coupling–based calculations (lattice optimizations,
variable cell relaxation, electronic band structures, density of
states, and optical absorption spectra) were carried out using
the norm-conserving Troullier–Martins (Troullier and Martins,
1991a; Troullier and Martins, 1991b) scalar relativistic
pseudopotentials (Pb.pbe-n-nc.UPF, I.pbe-n-nc.UPF, C.pbe-
nc.UPF, H.pbe-n-nc.UPF, and N.pbe-nc.UPF) and the fully
relativistic pseudopotentials (Pb.rel-pbe-n-nc.UPF, I.rel-pbe-n-
nc.UPF, C.rel-pbe-nc.UPF, H.rel-pbe-n-nc.UPF, and N.rel-pbe-
nc.UPF) (Hamann et al., 1979; Kresse and Hafner, 1994; Dal
Corso, 2014) (Hamann et al., 1979; Kresse and Hafner, 1994; Dal
Corso, 2014), respectively. For both non–spin-orbit and spin-
orbit coupling GW band structures, the ground state calculation
was carried out using a 6 × 6 × 6Monkhorst–Pack kpoint grid and
a cut-off for a wavefunction of 30 Ry, and the number of Gvectors
in the exchange term was optimized to 40 Ry and 30 Ry for
non–spin-orbit coupling and spin-orbit coupling–based
calculations, respectively. In comparison, the number of
Gvector blocks in the dielectric constant was optimized to 5
Ry and 6 Ry for non–spin-orbit coupling and spin-orbit
coupling–based calculations. The number of bands in the
independent response function was optimized as 90 bands and
100 bands for non–spin-orbit coupling and spin-orbit
coupling–based calculations. The GW band structures were

calculated with six (6) empty and six (6) filled bands for
non–spin-orbit coupling–based calculations, while seven (7)
empty and seven (7) filled bands were used for the spin-orbit
coupling–based calculations as implemented in the YAMBO code
(Marini et al., 2009; Sangalli et al., 2019; Rangel et al., 2020). The
Bethe–Salpeter equation optical properties were carried out with
the 4 × 4 × 4 and 6 × 6 × 6 Monkhorst–Pack kpoint grid to
determine the effect of kpoint optimization on the optical
absorption spectra. The macroscopic dielectric matrix was
calculated with eight (8) occupied and seventeen (17)
unoccupied bands for the non–spin-orbit coupling calculation
and fourteen (14) unoccupied and ten (10) occupied bands for
spin-orbit coupling–based calculations as implemented in the
YAMBO code (Marini et al., 2009; Sangalli et al., 2019; Rangel
et al., 2020). Furthermore, the absorption and extinction
coefficients, transmittance, reflectivity, refractive index, and
absorbance were calculated from the real and imaginary parts
of the dielectric tensor. We also determine the spectroscopy
limited maximum efficiency, which could screen potential
photovoltaic absorbers based on intrinsic properties such as
absorption coefficient, temperature, direct and indirect allowed
gap, and thickness of the absorber (Yu and Zunger, 2012).

3 RESULTS

3.1 Structure of CH3NH2CH3PbI3
The structure of the perovskite cubic cage is similar to the
conventional perovskite structure modeled in previous articles
(Filip and Giustino, 2014; Lang et al., 2014; Agbaoye et al., 2020;
Agbaoye et al., 2021), with the Pb atom placed at the edge of the
crystal, forming an octahedra with the I3 atoms and the organic
cation placed in the middle of the cubic cage (Filip and Giustino,

FIGURE 1 | Cubic crystal structure of (CH3)NH2CH3PbI3.
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2014; Lang et al., 2014). At the same time, the
dimethylammonium ion (CH3NH2CH3)

+ is optimized such
that the amino group (H-N-H) and the methyl group (H-C-
H2) have a bond angle of 109.40 and 109.50, respectively. Thus,
the H-N and H-C bond length is reported as 1.15 �A and 1.18 �A,
similar to the experimental study of (AndrewE_R_and Canepa,
19691972), which reported the H-N and H-C bond length of
1.02 �A and 1.10 �A with a tetrahedra bond angle for the amino
group (H-N-H) and the methyl group (H-C-H2).

In this study, the CH3NH2CH3PbI3 crystal displayed in
Figure 1 is optimized such that the lattice size and the atomic
positions are at the ground state. The variation in the lattice
parameter reported in this study and in the work of Kim et al.
(Kim et al., 2017), shown in table 1, is within about 5% agreement
with the theoretical study of Kim et al. (2017); this slight variation
could be a result of lattice size and atomic position being in a local
minimum and the difference in the Perdew–Burke–Enzenhoff
exchange-correlation functional used in this study and the
refitted Perdew–Wang 86 exchange-correlation functional used

by Kim et al. (2017) and Shastri and Pandey (2018). However, the
slight difference in the lattice parameter tends to affect the
bandgap, magnetic properties, and other superconducting
properties (Bagayoko and Callaway, 1983; Wang et al., 1996;
Kim et al., 2017).

3.2 Electronic Structure
The density functional theory band structure has its maximum
valence band and its minimum conduction band at the R high
symmetry point, resulting in a direct bandgap of 1.55 eV as
shown in Figure 2. The DFT band structure calculated
without spin-orbit coupling shows a dense band around 2 eV
along the Γ−X−M−Γ−R−X high symmetry point in the valence
band, but less dense bands were noticed along the
Γ−X−M−Γ−R−X high symmetry point in the conduction band,
as shown in Figure 2. The density of states calculated without
spin-orbit coupling shows a similar amount of available states,
which results in sharp peaks around the 2 eV of the valence band,
while smaller peaks that result from fewer states and relate to
fewer bands in the band structure are reported in the total density
of states. The projected density of states indicates that the iodine
(I) p orbital is most responsible in the valence band, while the lead
(Pb) p orbital shows dominance in the conduction band, which is
in agreement with previous studies (Crespo, 2019; Agbaoye et al.,
2020; Agbaoye et al., 2021). Hybridization of other orbitals
accounts for the other available states as reported for the
non–spin-orbit coupling– and the spin-orbit coupling–based
density of states. The dimethylammonium cation does not

TABLE 1 | Lattice parameters of pseudo-cubic CH3NH2CH3PbI3.

a(�A) b(�A) c(�A) α(°) β(°) γ(°)

This work 6.26 6.25 6.52 95.7 97.1 85.7
Kim et al. (2017) 6.61 6.57 6.55 88.1 85.8 80.5
Kim et al. (2017) 6.59 6.60 6.57 82.7 98.0 94.6
Kim et al. (2017) 6.59 6.58 6.58 86.2 98.4 96.6
Kim et al. (2017) 6.79 6.47 6.46 88.2 93.9 95.0

FIGURE 2 | DFT band structure and density of states of pseudo-cubic CH3NH2CH3PbI3. (A) DFT band structure of CH3NH2CH3PbI3. (B) DFT density of states of
CH3NH2CH3PbI3. (C) DFT + SOC band structure of CH3NH2CH3PbI3. (D) DFT + SOC density of states of (CH3)NH2CH3PbI3.
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contribute significantly to the band edges at the maximum
valence band and the minimum conduction bands as shown
in the available state of the projected density of states in
agreement with previous studies (Filip and Giustino, 2014; Im
et al., 2015; Crespo, 2019). The spin-orbit coupling–based DFT
band structure recorded a lower bandgap of 0.50 eV at R high
symmetry; band splitting inherent to spin-orbit coupling is
noticed in the spin-orbit–based DFT band structure. The spin-
orbit coupling effect creates a gap between the first and the second
band in the conduction region at R and M high symmetry points
for both DFT-soc and GW-soc band structure calculations.

The DFT method underestimates the bandgap of
semiconductors and insulators as a result of self-interaction
error (Einollahzadeh et al., 2016; Morales-García et al., 2017;
Crespo, 2019), while materials with d and f orbitals require more
advanced formalism like DFT + U for accurate bandgaps
(Morales-García et al., 2017). Although DFT + U improves
semiconductors’ bandgaps, they sometimes fail due to the
parameterization of the Hubbard parameter (U) and the fact
that U is sometimes fitted to the experimental bandgaps
(Morales-García et al., 2017). Furthermore, hybrid functionals
which mix a portion of the Fock exchange with DFT functionals
are often used to improve the bandgaps of semiconductors, but
the material dependence of hybrid functionals and the associated
high computation cost count as its demerit (Morales-García et al.,
2017). This study also performs the self-consistent GW
calculations on the system’s eigenvalues for both G and W.
This method is known to reproduce the experimental bandgap
of materials accurately (Morales-García et al., 2017). Although
self-consistent GW calculations can be calculated on both the
eigenvalues and the wavefunctions, the eigenvalue-based self-
consistent GW calculations give results that are comparable to

those of experimental studies since DFT calculations produce
good wavefunctions. The GW and GW-soc band structures
shown in Figure 3 also show identical bands, comparable with
the DFT band structures. The G0W0 and the spin-based G0W0-
soc band structure reported a bandgap of 2.25 and 1.10 eV,
respectively, while self-consistent GW and GW-soc
calculations reported a direct gap of 2.27 eV for G1W1, 1.18 eV
for G1W1-soc, and 1.20 eV for G2W2-soc at the R high symmetry
point as shown in Table 2. The self-consistent GW and GW-soc
calculations reported bands at a similar energy range in the
valence band region, while the effect of the GW self-
consistency was noticed in the conduction band, as shown in
Figure 3.

The self-consistent GW method improves the GW bandgaps
by increasing the G0W0 bandgap by up to 0.5 eV (Filip and
Giustino, 2014). In this work, the results suggest that the self-
consistency in the GW method improves the G0W0 bandgap
without spin-orbit by 0.02 eV, while the bandgap with spin-orbit
coupling improves by 0.1 eV in agreement with Filip and
Giustini’s findings (Filip and Giustino, 2014; Katan et al.,
2015). Alongside the band splitting, the spin-orbit coupling
also reduces the bandgap gap by pushing the valence bands
upward in the DFT band structure as shown in Figure 2, but
both the valence band and the conduction band are pushed
downward in the GW band structure calculation as shown in
Figure 3. In the DFT band structure, the spin-orbit effect reduces
the bandgap of CH3NH2CH3PbI3 by 0.94 eV (65%), in agreement
with previous studies (Filip and Giustino, 2014; Agbaoye et al.,
2020; Agbaoye et al., 2021). Similarly, the effect of spin-orbit
reduces the bandgap of the GW band structure by 1.15 eV (51%),
similar to the bandgap difference of 1.18 eV reported by Filip and
Giustino (Filip and Giustino, 2014). Hence, the accurate bandgap

FIGURE 3 | GW band structure of pseudo-cubic CH3NH2CH3PbI3. (A) GW band structure of CH3NH2CH3PbI3. (B) GW + SOC band structure of
CH3NH2CH3PbI3.
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of perovskites requires fully relativistic spin-orbit correction
coupled with the GW quasiparticle method (Filip and
Giustino, 2014). The DFT, DFT-soc, GW, and GW-soc band
structures recorded similar band curvature, which indicates that
although the DFT band structure underestimates the bandgap, it
gives accurate band curvature. The DFT bandgap reported in this
study is lower than the bandgaps reported by Crespo (2019) and
Kim et al. (2017), as shown in table 2. The difference in the
bandgaps reported in this study and the work of (Crespo, 2019)
could be a result of the difference in lattice parameters and lattice
coordinates, which is known to produce variation in the value of
bandgaps (Bagayoko and Callaway, 1983; Wang et al., 1996; Kim
et al., 2017). Alternatively, the difference in the bandgaps reported
in this study and the study of Kim et al. (2017) may be associated
with the difference in the Perdew–Burke–Enzenhoff exchange-
correlation functional treated with the Grimme-d2 dispersion
correction used in this study and the projected augmented
wavefunction (PAW) formalism of the generalized gradient
approximation method and the refitted Perdew–Wang
86 exchange-correlation functional used by Kim et al. (2017).

3.3 Optical Absorption
Similar optical spectra were reported by the 6 × 6 × 6 and the 4 ×
4 × 4 Monkhorst–Pack kpoint scheme based Bethe–Salpeter
equation method (BSE) without spin-orbit coupling.
Furthermore, the 4 × 4 × 4 and 6 × 6 × 6 Monkhorst–Pack
kpoint mesh optical spectra also show similar spectra in the spin-
orbit coupling–based calculation. However, the optical spectra
calculated using the 6 × 6 × 6Monkhorst–Pack kpoint grid do not
agree completely with the 4 × 4 × 4 Monkhorst–Pack kpoint grid;
this could be a result of the kpoint convergence dependence in the
Bethe–Salpeter equation method. The spin-orbit coupling–based
optical spectra calculated with the 6 × 6 × 6 and 4 × 4 × 4 kpoint
mesh record a redshift compared to the non–spin-orbit
coupling–based optical spectra.

The 4 × 4 × 4 based optical spectra have sharper and more
prominent absorption peaks compared to the results of the 6 ×
6 × 6 optical spectra in both spin-orbit coupling and non–spin-
orbit coupling calculation. The non–spin-orbit
coupling–based optical spectra show higher and sharper
absorption peaks in the 6 × 6 × 6 and 4 × 4 × 4
Monkhorst–Pack mesh than the spin-orbit coupling–based
optical spectra. The optical absorption onsets in the real
dielectric tensor and refractive index were noticed from the
6 × 6 × 6 and 4 × 4 × 4 kpoint mesh–based BSE calculation
without spin-orbit coupling at 423 nm, 386 nm, 355 nm and
435 nm, 372 nm, and 349 nm, respectively. Alternatively, for

non–spin-orbit coupling–based BSE calculation of the
imaginary dielectric tensor, extinction coefficient,
reflectivity, and absorbance, we report absorption peaks at
412 nm, 375 nm, 338 nm, 306 nm and 420 nm, 359 nm, 333
nm, and 306 nm for 6 × 6 × 6 and 4 × 4 × 4 kpoint mesh
calculations, respectively. In the spin-orbit coupling–based
BSE calculations, the real dielectric tensor and reflectivity
have optical absorption peaks at 711 and 458 nm for the
4 × 4 × 4 kpoint mesh–based calculations and 793 nm, 567
nm, and 410 nm for the 6 × 6 × 6 kpoint mesh–based
calculations. Similarly, the imaginary dielectric tensor,
extinction coefficient, reflectivity, and absorbance have
absorption peaks at 658 nm, 600 nm, and 448 nm for 4 ×
4 × 4 kpoint mesh–based calculations and 687 nm, 538 nm,
and 394 nm for 6 × 6 × 6 kpoint mesh–based calculation. The
4 × 4 × 4 (color red) and 6 × 6 × 6 (color blue) kpoint
mesh–based spin-orbit coupling absorption coefficient of
CH3NH2CH3PbI3 increases from 103 to 106 within the
ultraviolet region. In contrast, the absorption coefficient
remains steady at 106 along the visible spectrum toward the
near-infrared region. The 4 × 4 × 4 (color black) and 6 × 6 × 6
(color green) kpoint mesh–based non–spin-orbit coupling
reported its absorption coefficient in the order of 106 cm−1

along the ultraviolet region and toward the visible spectrum.
The absorption coefficient attenuates to 103 cm−1 along the
visible and toward the near-infrared region. Similar
attenuation was reported in our previous study (Agbaoye
et al., 2020) and the result of silicon (Green and Keevers,
1995), shown in Figure 4F. The absorption coefficient of
CH3NH2CH3PbI3 calculated with and without spin-orbit
coupling recorded lower values at the ultraviolet region
than silicon’s absorption coefficient (Green and Keevers,
1995).

However, the absorption coefficient of CH3NH2CH3PbI3
recorded higher values along the visible and the near-infrared
region, in agreement with the result of previous studies (Agbaoye
et al., 2020; Agbaoye et al., 2021), and this compensates for the
lower value of the absorption coefficient along the ultraviolet
region, which suggests that CH3NH2CH3PbI3 could have
comparable solar cell efficiency with silicon. The absorption
onset at 418 nm from the absorption coefficient of the 6 ×
6 × 6 kpoint mesh–based BSE calculation agrees with the
absorption onset at 3 eV in the absorption coefficient reported
by Crespo (2019). The spin-orbit coupling–based transmittance
calculated with 6 × 6 × 6 (color blue) and 4 × 4 × 4 (color red)
kpoint mesh reports a blue shift of the non–spin-orbit
coupling–based transmittance and suggests that

TABLE 2 | DFT and self-consistent GW bandgaps of pseudo-cubic CH3NH2CH3PbI3.

DFT (eV) DFT + soc (eV) G0W0 (eV) G1W1 (eV) G0W0+soc (eV) G1W1+soc (eV) G2W2+soc (eV)

This work (PBE) 1.55 0.50 2.25 2.27 1.10 1.18 1.20
Crespo (2019) (PBE) 1.60
Kim et al. (2017) (GGA-PAW) 1.61
Kim et al. (2017) (GGA-PAW) 1.81
Kim et al. (2017) (GGA-PAW) 1.78
Kim et al. (2017) (GGA-PAW) 1.80
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CH3NH2CH3PbI3 will transmit only the short wavelength of the
ultraviolet region due to the transmittance result up to 100%
from 150 to 200 nm. Alternatively, the non–spin-orbit
coupling–based transmittance can only transmit in the visible
and the near-infrared region due to the exponential increase in
the transmission value from 0 to 80% within 450–800 nm. The
spectroscopic limited maximum efficiency predicted a maximum

efficiency of 30% at a thickness of 10–2 μm, which increases
linearly to 62.7% at a thickness of 10–1 μm, and then remains
constant as the thickness increases, as shown in Figure 5. These
interesting maximum efficiency limits are calculated at room
temperature (293.15 K), a direct allowed bandgap of 1 eV, an
indirect allowed bandgap of 1.97 eV, and the BSE-soc absorption
coefficient reported in Figure 4.

FIGURE 4 |Optical spectra of pseudo-cubic CH3NH2CH3PbI3. (A) Real part of the dielectric tensor. (B) Imaginary part of the dielectric tensor. (C) Refractive index
(n). (D) Extinction coefficient (k). (E) Reflectivity. (F) Absorption coefficient. (G) Absorbance. (H) Transmittance.
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4 CONCLUSION

This study reveals the electronic structure and the optical
absorption spectra of CH3NH2CH3PbI3, the lattice parameters,
and the DFT bandgap of the pseudo-cubic ground state structure
were reported in agreement with previous studies (Kim et al.,
2017; Crespo, 2019). The spin-orbit coupling effect was
introduced to both the electronic structure and optical spectra
to cater for the presence of heavy metals such as lead (Pb); the
spin-orbit coupling effect causes band splitting and bandgap
reduction in agreement with the previous studies (Filip and
Giustino, 2014; Agbaoye et al., 2020; Agbaoye et al., 2021).
The projected density of states reveals that the
dimethylammonium cation does not contribute to the bands
around the maximum valence band and the minimum
conduction band, while the lead (Pb) p orbital and the iodine
(I) p orbital play the most significant roles in the conduction and
the valence band, respectively. The spin-orbit coupling–based
self-consistent GW bandgaps were calculated to correct the

deficiency of DFT bandgaps, giving a more accurate bandgap
of 1.20 eV, which is within the highest Schockly–Quisser
maximum efficiency limit of about 33% (Queisser, 2009; Sha
et al., 2015). The spin-orbit coupling–based optical spectra show a
redshift of the non–spin-orbit coupling spectra, while the size of
the kpoint mesh plays a significant role in the size and position of
the absorption peaks. The absorption coefficients were reported
in the order of 105 along the ultraviolet region, lower than silicon,
but increased absorption coefficients in the order of 106 higher
than silicon were recorded along the visible spectrum. The
spectroscopic limited maximum efficiency predicts an
attractive maximum efficiency of about 62.7% within 10–1 to
102 μm thickness, which affirms that CH3NH2CH3PbI3 will be a
highly efficient solar cell absorber.
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