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The polymer-matrix nuclear radiation shielding material is an important component of
nuclear power plants. However, its mechanical properties and shielding performance
gradually deteriorate due to the long-term synergy of nuclear radiation and thermal effects,
which brings hidden dangers to the safe operation of the device. Based on this problem,
this article makes a comprehensive review. First, the degradation of mechanical properties
and shielding performance of polymer-matrix nuclear radiation materials in service is briefly
described. Then, the research methods adopted by scholars to study the change law of
properties and performance are introduced, and the main existing difficulties encountered
by the study are summarized. Finally, the physical mechanism of the change of material
properties is explained in detail, and a reference approach to solving the problem is
proposed.
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BASIC PRINCIPLES OF MATERIAL MECHANICS AND SHIELDING
PROPERTIES

The polymer-matrix nuclear radiation shielding material is an important component of
nuclear power plants, and its mechanical properties and shielding performance determine
whether the device can operate safely. For polymer-matrix nuclear radiation shielding
materials, polyethylene, resins, rubber, etc. are often used as the matrix. By adding boron
carbide, lead, tungsten, and other reinforcing phase particles, they have good neutron and
gamma-ray shielding effects (Singh and Badiger, 2014; Wang et al., 2015; Kim et al., 2014). The
matrix material is a polymer structure with covalent bonds as the framework (Nambiar and
Yeow, 2012), and the reinforcing phase particles are mostly elements with a higher neutron
activation cross-section. When the material is in service in a nuclear power plant, its internal
nuclei and extranuclear electrons will interact with the rays. Figure 1 shows the schematic
diagram of the interaction of polymer-matrix nuclear radiation shielding materials with rays
and the resulting effects. The interaction between the nuclei and the rays will produce a nuclide
change, accompanied by the generation of secondary radiation (Alhajali et al., 2009; Trkov
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et al., 2009; Cai et al., 2018). The neutron activation reaction
is a typical case. On one hand, the activation reaction will
cause changes in the nuclides inside the material, and on the
other hand, it will generate instantaneous and delayed gamma
rays, making the shielding material a secondary radiation
source, which will lead to the change of the material shielding
effect. The direct or indirect interaction between extranuclear
electrons and rays may cause the breakage of the molecular
bonds of the matrix material (Zhang et al., 2000; Planes et al.,
2009). The broken molecular bonds form new molecular
chain structures through irradiation degradation and
irradiation cross-linking. Low-dose irradiation can improve
the mechanical properties of cross-linked polymer materials
(Planes et al., 2009), while high-dose irradiation may cause
the degradation of the mechanical properties of the material.
In addition, the breakage of the molecular bonds of the matrix
material can result in the generation of small-molecular-
weight volatile gases, which take away the substances in
the material and cause the degradation of the shielding
effect of the material. The accumulation of delayed gamma

rays generated by the reinforcing phase particles exacerbates
the covalent bond breakage of the matrix material.

At the same time, the temperature of the external environment
and the heat generated by the interaction between the rays and
the material will act on the material. On one hand, it will change
the cross-sections of the interaction between the thermal
neutrons and the nuclei (Trumbull, 2006; Zu et al., 2018), and
it indirectly affects the generation of secondary gamma rays. The
relationship between thermal neutron cross-section and
temperature is shown in Formula (1-1)

σf �
�������
295

273 + t
×

√
σf,0.0253. (1-1)

On the other hand, it will affect the reactions of irradiation
degradation and irradiation cross-linking which occur after the
molecular bonds are broken. Under the synergistic effect of
nuclear radiation and thermal effects, polymer-matrix nuclear
radiation shielding materials first experience the damage caused
by the interaction of atomic-scale rays with the material nuclei

FIGURE 1 | Schematic diagram of the interaction of polymer-matrix nuclear radiation shielding materials with rays and the resulting effects.
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and extranuclear electrons and then the evolution of the
molecular scale and mesoscopic scale, and finally, it shows the
change of macroscopic mechanical properties and shielding
performance of the material. As the materials serve in nuclear
power plants over time, the mechanical properties and shielding
effect of thematerial will gradually degrade or even fail, which will
result in hidden dangers to the safe operation of the nuclear
power plant.

THE HISTORICAL DEVELOPMENT AND
DIFFICULTIESOF THERESEARCHONTHIS
PROBLEM

TheHistorical Development of theResearch
on This Problem
In the early days, researchers adopted techniques combining
experiments with theoretical analysis to study the change law
of the mechanical properties of polymers under an irradiation
environment. For example, in 1953, the American Oak Ridge
National Laboratory released the change of the mechanical
properties of plastics and rubber with the dose of irradiation
and discussed the stability of the material in the irradiation
environment, which provided a reference for the safety
estimation of the material in service (Bopp and Sissman,
1953). In 1969, based on the study of the corresponding
relationship between multiple macroscopic property variables
of materials and irradiation dose, Hanks and Hamman
discussed the advantages and disadvantages of various
electrical insulating materials in terms of radiation resistance
and expanded the macroscopic property variables of the
irradiation stability evaluation of polymer materials (Hanks
and Hamman, 1969). Since 1979, the European Organization
for Nuclear Research has released a series of research reports on
the changes of mechanical properties of polymer materials under
different radiation environments. These reports include
commonly used thermosetting and thermoplastic polymers
(Schönbacher and Stolarz-Izycka, 1979a; Schönbacher and
Stolarz-Izycka, 1979b; Beynel and Schönbacher, 1982;
Schönbacher and Tavlet, 1989; Tavlet et al., 1998).

As the shielding materials in nuclear power plants are
required to be multifunctional and safe, they have also
evolved from monocomponent to composite materials
which use polymers as their matrix. Accordingly, scholars
made research on the irradiation stability of polymer-matrix
shielding materials, took into account the temperature factor
on the basis of ray irradiation, and discussed the change of the
mechanical properties of shielding materials under radiation
with different intensities at different temperatures. For
example, in 1989, Egusa S et al. explored the relationship
between the mechanical properties of six typical materials
and the absorbed dose at 77 K and room temperature (Egusa,
1988). In 2001, L. Vignoud et al. did research on influence of
electron irradiation on the mobility and on the mechanical
properties of DGEBA/TETA epoxy resins (Vignoud et al.,
2001a; Vignoud et al., 2001b). In 2006 and 2007, the
degradation of epoxy resins under high-energy electron

beam irradiation was researched by N. Longieras et al.
(Longiéras et al., 2006; Longiéras et al., 2007). In 2008,
V.P. Laricheva researched the effect of ionizing radiation
on epoxy oligomers of different structures and the
manufacture of new promising materials on their base
(Laricheva, 2008). In 2009, researchers from the Shanghai
Institute of Applied Physics summarized the research
progress of polymer high-temperature irradiation effects
(Tang et al., 2009). In 2015, researchers at Nanjing
University of Aeronautics and Astronautics studied the
performance of resisting irradiation damage and interface
stability of copper-nanographene composites at temperatures
of 300, 500, and 700 K (Huang et al., 2015). Besides, research
on the irradiation effect and irradiation stability of functional
composites based on nano/graphene modification is being
carried out (Jovanović et al., 2015; Kolanthai et al., 2015) so
that a large number of related research techniques have been
accumulated.

The changes in the mechanical properties of shielding
materials in service determine whether they can be used safely,
and the changes in shielding performance decide whether the
materials are still effective. During service, changes of nuclides
inside the material and secondary rays generated by activation
reaction will cause changes in the shielding performances of the
material. Some research on the calculation of material nuclide
changes has been carried out, such as the burnup calculation of
PWR components based on NECP-CACTI and UNICORN and
the burnup analysis calculation of the molten salt fast reactor
based on MCNP and Origen (Wan et al., 2017). In the research of
shielding material activation, researchers from Xi’an Jiaotong
University used MCNP6 to calculate and analyze the neutron
activation products and radioactivity of Fe, Al, and other
reinforcing phase particles under an irradiation environment.
According to the demand of D-T neutron source shielding
materials, we designed a series of low-activation, light, and
compact epoxy resin matrix nuclear radiation shielding
materials (Cai et al., 2018).

In recent years, the prediction of material performance in
an irradiation environment by adopting multi-scale evolution
techniques has become the focus of many scholars. For
example, multi-scale modeling and simulation of the aging
of polymer-matrix materials in a radiation environment were
added for the first time in the international conference on
multi-scale modeling and simulation of materials held by the
University of California, Los Angeles, in 2004. Through
analyzing the microscopic damage of the materials and
with the help of theoretical calculations at different scales,
the macroscopic properties of the materials were predicted
(Odette and Wirth, 2005). In 2011, the United States
announced the launch of the Material Genome Project,
establishing an accurate material performance prediction
model, and correcting the model based on theoretical and
empirical data is one of its important contents (Jain et al.,
2013). In 2012, NASA made it clear that the radiation damage
of polymer composite materials in the cosmic radiation
environment was a technical requirement in medium and
long-term planning and carried out some exploratory
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research using the multi-scale coupling technology (Piascik
et al., 2012). In the same year, Sandia National Laboratory in
the United States also regarded the irradiation damage of
neutrons and gamma rays to organic materials as an
important research project (White and Bernstein, 2012). In
China, researchers have also devoted themselves to analyzing
multi-scale modeling and simulation of materials. Liu CS
et al. used first principles to calculate the generation and
diffusion of hydrogen in tungsten materials under a radiation
environment (Kong et al., 2015). Liu H et al. used a multi-
scale modeling and simulation method to simulate the curing
reaction and the network structure of a typical epoxy resin
system (Liu et al., 2011). Li M et al. adopted a multi-scale
modeling and simulation method to study the interface
formation process of carbon fiber/epoxy composites (Li
et al., 2013).

The fractal method is an effective technique used in multi-
scale modeling, which is divided into regular fractal and random
fractal. Regular fractal methods have strict similarity, while
random modeling methods only have statistical similarity
(Kozlov et al., 2014). Radom fractal uses the fractal dimension
to evaluate the macroscopic performance of the material. The
fractal dimension can be obtained by fitting the relationship
between the length and the number of microscopic damage
small units through the box-counting dimension (Kozlov and
Yanovskii, 2014). Based on fractal methods, some scholars have
studied the macroscopic properties of composite materials. For
example, Gianluca adopted the fractal method to study the
effective thermal conductivity of salt/expanded graphite
composite materials (Gianluca and Massimiliano, 2015), and
on the basis of fractal theory, Xu Qiang et al. established a
multi-scale numerical simulation model of concrete material
performance (Xu et al., 2016).

The Difficulties of the Research on This
Problem
In summary, in response to different service environments
and backgrounds, researchers have carried out a lot of
research work on the performance changes of materials,
providing technical means and an experimental basis for
the performance evaluation of materials. However, for
polymer-matrix nuclear radiation shielding materials used
in nuclear power plants, due to the dual effects of nuclear
radiation and high temperature, the damage mechanism is
relatively complicated, and there is a large-scale span from
the starting point of material damage to the macroscopic
property change process, which involves many physical and
chemical processes. What is more, the gas generation during
the evolution of mechanical properties affects the shielding
performance of the material, and the problem of the
accumulation of delayed gamma rays during the evolution
of the shielding performance affects the mechanical
properties of the material. Therefore, there is relatively
little research on the modeling of the changing law of
mechanical properties and shielding performance of
polymer-matrix nuclear radiation shielding materials under

the synergistic effect of nuclear radiation and thermal effects,
which is rather challenging.

PHYSICAL MECHANISM FOR THE
CHANGE OF PROPERTIES AND
PERFORMANCE OF SHIELDING
MATERIALS AND ITS SOLUTION

In response to this complex problem, this section will analyze the
microscopic damage mechanism of the properties and
performance changes of the materials caused by the synergy of
nuclear radiation and thermal effects as shown in Figure 2. The
matrix material is a polymer structure with covalent bonds as the
framework. When the incident neutrons, gamma rays, and the
generated secondary rays interact with the extranuclear electrons
that form the covalent bond, the covalent bond breaks and forms
free radicals. The free radicals are active; thus, irradiation cross-
linking and irradiation degradation reactions will occur. In this
process, a new molecular structure is formed and radioactive
gases may be generated. The variation in molecular structure can
lead to changes in the mechanical properties of the matrix
material. During the interaction between the rays and the
materials, heat will be released. The released heat and the
external temperature will jointly affect not only the cross-
sections of interactions between the rays and the extranuclear
electrons of the matrix materials but also the irradiation cross-
linking and irradiation degradation reactions of free radicals.

The reinforcing phase particles are mostly elements with
high neutron activation cross-sections. After the neutrons
interact with the reinforcing phase particle nuclei, the
nuclides of the reinforcing phase particles will change,
accompanied by the generation of instantaneous and
delayed gamma rays. These physical processes, together
with the voids and volatilization of substances caused by
gas generation in the matrix material, will result in changes of
the shielding performance of the materials. Similarly, the
cross-sections of the interaction between the neutrons and
the reinforcing phase particles nuclei are also affected by the
heat generated by the interaction between the radiation and
the materials as well as the external environmental
temperature. In the research, only the processes that have
a greater impact on the properties and performance of the
materials are initially considered, such as the interactions
between the rays and the electrons that form covalent bonds
in the matrix materials and those between the rays and the
reinforcing phase particles’ nuclei. Processes such as the
interactions between the rays and the matrix material
nuclei, the photonuclear reaction of neutrons generated by
the interaction between gamma rays and materials, and the
changes in the mechanical properties of the reinforcing
particles after they interact with rays are considered as
influencing factors after modeling. The changes in the
mechanical properties of the materials are mainly caused
by the interactions between the matrix materials and the
rays, and the changes in the shielding performance of the
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materials mostly result from the interactions between the
reinforcing phase particles and the rays. Therefore, in the
modeling process, the matrix materials and the reinforcing
phase particles are initially considered in a separate way.
After establishing a certain relationship, these two factors are
combined through the equivalent physical property model of
the composite materials and other models.

Finally, a solution is proposed and specified as follows:
with regard to the changes of mechanical properties of
materials, first, the type of instantaneous secondary rays
and energy intensity generated by the interaction between
incident neutrons, gamma rays, and materials are simulated.
The relationship between the temperature and the interaction
cross-sections of the rays and the covalently bonded electrons
in the matrix materials is established. The energy equivalent
method is used to calculate the heat generated by the
interaction between the rays and the materials, and then,
combined with the external environment temperature, the
relationship is established between the temperatures and
probabilities of interactions between the incident neutrons,
gamma rays, instantaneous secondary rays, and the
covalently bonded electrons in the matrix material. After
that, by further considering the calculation results of the
delayed gamma rays generated by the reinforcing phase
particle activation reaction, the initial concentration, types,
and molecular structure information of free radicals can be
calculated. Multi-scale simulation software such as the
molecular dynamics method, Monte Carlo method, or
fractal method can be adopted separately in order to
establish the relationship between free radical information
and macroscopic mechanical properties of the shielding
materials at different temperatures. In terms of shielding
performance of the materials, the energy equivalent
method can be utilized to calculate the heat generated by
the interactions between the rays and the materials, and then,
combined with the external environment temperature, the
relationship is established between temperatures and cross-

sections of interactions between the nuclei of reinforcing
phase particles, the incident neutrons, and gamma rays at
different temperatures. The reinforcing phase material
nuclides change information, and generated secondary
gamma rays are calculated, including instantaneous
secondary gamma rays and delayed secondary gamma rays.
By combining with the volatile gas information generated by
the matrix material, the relationship between shielding
performance of the materials and the nuclide changes, the
amount of generated secondary gamma rays, and the volatile
gas generated by the matrix materials at different
temperatures is calculated. This research, on one hand, can
establish the mapping relations between the properties and
performance of the materials and their service environment,
composition, and molecular configuration. Therefore, it can
provide technical measures for the methodological study on
material properties and performance improvement, such as
the nanoparticle modification technology, the graphene
modification technology, and the design and development
of new materials as well. On the other hand, this research can
provide a technical basis for the safety assessment on the
long-term service of polymer-matrix nuclear radiation
shielding materials in nuclear power plants.

CONCLUSION

Themechanical properties and shielding performance of the polymer-
matrix nuclear radiation shielding material are gradually deteriorated
due to the long-term synergy of nuclear radiation and thermal effects,
which brings hidden dangers to the safe operation of the device. In this
article, the development of the degradation of mechanical properties
and shielding performance of polymer-matrix nuclear radiation
materials in service is briefly described. Then, the difficulties of this
problem are analyzed. On this basis, this problem is analyzed level by
level. Taking the changes of mechanical properties and shielding
properties of shielding materials as the mainline, the implied rays

FIGURE 2 | Damage mechanism analysis of the materials under the synergy of nuclear radiation and temperature.
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withoutmaterial interactions and the interaction between heat and the
material are analyzed. Finally, a reference approach to solve the
problem is proposed.
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