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The statistical characteristics of the nighttime noise data of 1000 kV AC transmission lines
were investigated, the noise data of the Huainan-Shanghai 1000 kV AC transmission line
collected at night (0:00 to 6:00) from September 25, 2015, to February 16, 2016, were
statistically analyzed using the nonparametric statistical K-S test, and the outliers were
detected using the moving window kernel principal component analysis (MWKPCA). The
results show that after the ineffective data are removed by MWKPCA, the 5, 50, and 95%
values of the data are basically unchanged. To a certain extent, the method proposed in
this paper can remove the invalid audible noise (AN) data of 1000 kV AC transmission lines
without affecting the subsequent study of AN, we use various machine learning algorithms
to predict the A weight sound level (Awsl) before and after the invalid data rejection, and the
results show that the invalid data rejection has contributed to the improvement of the
transmission line AN Awsl prediction accuracy.
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INTRODUCTION

Audible noise (AN) of transmission lines, as one of the design criteria of transmission lines, affects
the conductor selection, corridor width, insulator string length, and conductor arrangement.
However, in the process of collecting the transmission lines AN, there is a large amount of
ambient noise, and the data collection is easily disturbed by the ambient noises. If the
transmission lines AN is smaller than the ambient noises, then the ambient noises will probably
become invalid data in the data set, and the invalid data will have an impact on the transmission line
evaluation.

Previous research on transmission lines AN contains empirical formulas for transmission lines
AN in various countries (Juette and Zaffanella, 1970; Trinh and Maruvada, 1977; Perry et al., 1979;
Chartier and Stearns, 2007; Tang et al., 2010; Chen et al., 2012), analysis of transmission lines AN
domain characteristics and frequency domain characteristics (Liu et al., 2018; Cheng et al., 2019), and
transmission line design parameters, meteorological factors, environmental factors on transmission
lines AN, and so on (Li et al., 2016; Guo et al., 2019; Zao et al., 2021; Xie et al., 2016; Du et al., 2016;
Xie et al., 2017; Yang et al., 2016; Li et al., 2018; Pengfei et al., 2019). However, in order to solve the
influence of ambient noises on data acquisition, Yuanqing Liu et al. studied the frequency spectrum
of corona AN and ambient noises of positive and negative conductors of DC transmission lines at
different voltages through corona cage test and studied the conversion relationship between

Edited by:
Xun Shen,

Tokyo University of Agriculture and
Technology, Japan

Reviewed by:
Hengrui Ma,

Qinghai University, China
Guangzheng Yu,

Shanghai University of Electric Power,
China

*Correspondence:
Zhenhua Li

Lizhenhua1993@163.com

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 14 September 2021
Accepted: 27 September 2021
Published: 05 November 2021

Citation:
Cheng Z, Li Z, Huang Y, Yao W and
Xie H (2021) Invalid Data Rejection of

Audible Noise on AC Transmission
Lines Based on Moving Window

Kernel Principal Component Analysis
Front. Energy Res. 9:775519.

doi: 10.3389/fenrg.2021.775519

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7755191

BRIEF RESEARCH REPORT
published: 05 November 2021

doi: 10.3389/fenrg.2021.775519

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.775519&domain=pdf&date_stamp=2021-11-05
https://www.frontiersin.org/articles/10.3389/fenrg.2021.775519/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.775519/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.775519/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.775519/full
http://creativecommons.org/licenses/by/4.0/
mailto:Lizhenhua1993@163.com
https://doi.org/10.3389/fenrg.2021.775519
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.775519


A-weighted sound level (Awsl) and 8 kHz component of DC
transmission lines AN, so as to avoid the interference of ambient
noises (Liu et al., 2014a). Yingyi Liu et al. studied the relationship
between corona current and AN on transmission lines and
summarized the empirical formula for calculating the
A-weighted sound pressure level (Awsl) by corona current, so
as to indirectly get the effective data of AN evading the ambient
noises interference (Liu et al., 2019). Li Xebao et al. showed that,
to accurately study the time-domain characteristics of the AN
generated by single corona discharge, the ambient noise was
removed by correlation analysis and impulse characteristics (Li
et al., 2015). Liu Yuanqing et al. used a finite impulse response
filter to reject the invalid data of AN on DC transmission lines.
The above-mentioned research on the effective data of the AN of
transmission lines is divided into two types: indirect acquisition
of effective data and rejection of invalid data. The research on the
rejection of invalid data uses methods for single-dimensional
data, which directly process the original data of the sound signal
or the Awsl, ignoring the connection between the individual
octave components of the sound signal (Liu et al., 2014b). The
above-mentioned studies on the effective data of AN on
transmission lines are divided into two types: indirect
acquisition of effective data and rejection of invalid data. The
studies on the rejection of invalid data use methods for single-
dimensional data, which directly process the original data of the
sound signal and repair the sound pressure data disturbed by
ambient noise, ignoring the connection between the individual
octave band components of the sound signal. Therefore, this
paper introduces a data-driven approach based on the
determination of multidimensional data, and the data
disturbed by environmental noise are directly eliminated.

Data-driven-based methods have more applications in power
system stability, energy optimization and dispatch, voltage and
current monitoring, transportation, etc. (Zhang and Luo, 2018;
Zhu et al., 2019; Li et al., 2020; Yang et al., 2020; Shen and
Raksincharoensak, 2021). In this paper, data consisting of 10
components of AN octave band from 16 Hz octave band to 8 kHz
octave band and Awsl which are determined with moving
window kernel principal component analysis (MWKPCA) by
establishing the SPE statistic in the residual subspace of the
principal component analysis with the T2 statistic in the
principal component subspace are used to evaluate AN invalid
data, and the data that exceed the threshold of SPE statistic or T2

statistic are excluded, so that the AN invalid data in the dataset
are removed.

AN DISTRIBUTION CHARACTERISTICS

Noise data for a total of 69 days of the Huainan-Shanghai AC
transmission line were collected at night (0:00 to 6:00) from
September 25, 2015, to February 16, 2016. The conductor adopts
8×LGJ-630/45. Subconductor diameter is 33.6 mm.
Subconductor spacing is 400 mm and the operating voltage is
1050 kV. The surface gradient of phase A, phase B, and phase C is
14.44, 14.82, and 14.73 kV/cm, respectively. The distribution
characteristics of each octave band of AN and Awsl were

analyzed using the K-S test (Kolmogorov-Smirnov test) one
after another. The following hypothesis is made for the sample
data H0: the overall sample data is conformed to the normal
distribution, and the alternative hypothesis H1: the overall sample
data from which the sample comes does not conform to normal
distribution. The test statistic is defined as

D � max(∣∣∣∣f(x) − g(x)∣∣∣∣) (1)

where f(x) is the cumulative probability of the sample value in
the normal distribution and g(x) is the actual cumulative
probability.

Since the actual f(x) and g(x) are discrete values, Equation 1
is modified to

Dm � max
i
(∣∣∣∣f(xi−1) − g(xi−1)

∣∣∣∣, ∣∣∣∣f(xi) − g(xi)
∣∣∣∣) × �

n
√

(2)

where n is the sample size. When the data size is large and the
original hypothesis holds, DM approximately conforms to the
Kolmogorov distribution, and the distribution function is
expressed as

Z(x) �
⎧⎪⎨⎪⎩ 0 x< 0∑+∞

j�−∞
(−1)j exp(−2j2x2) x≥ 0 (3)

Taking the significance level α as 0.05, calculate the test
statistic Z values and the corresponding probability p values. If
p is less than the significance level, then the original hypothesis
H0 is rejected and the distribution of the sample from the total is
considered to be significantly different from the normal
distribution. If p is greater than the significance level α, then
the original hypothesis H0 should not be rejected and the
distribution of the total from which the sample comes is not
significantly different from the normal distribution.

Normal distribution analysis in days for a total of 69 days of
data: 16 Hz octave band of AN has the highest number of days
conforming to the normal distribution with 46 days, the lowest
octave band of AN has only 23 days conforming to the normal
distribution, average 33 days conforming to the normal
distribution. A test of 44 days in which the data size exceeded
the average group size of 110 groups: 16 Hz octave band of AN
has the highest number of days conforming to the normal
distribution with 29 days, and the lowest octave band of AN
has only 9 days conforming to the normal distribution, average
17.8 days conforming to the normal distribution.

AN INVALID DATA DETERMINATION

Correlation Analysis of Each Octave Band
Component
When the electric field strength on the surface of AC transmission
lines exceeds the critical strength, due to a large number of
ionization effects, ionization zone will appear around the
conductor, under the action of the electric field, positive ions
in the positive zone and negative ions in negative zone are moved
the radially outward movement, respectively. In the role of the
alternating electric field around the conductor charged ions along

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7755192

Cheng et al. Audible Noise Invalid Data Rejection

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


the conductor to do round-trip movement to produce
“humming” sound, this noise is “pure tone,” and its frequency
is a multiple of the frequency of 50 Hz. At the same time, the rapid
movement of these ions will produce corona current pulses
around the conductor, while a large number of ions in the
direction away from the conductor and air molecules collide
to produce sound pressure pulses. The AN generated by the
sound pressure pulses and corona current pulses together in the
broadband noise belongs to the medium and high-frequency AN
(Fa Yuan et al., 2016; Zelong et al., 2012; Cheng, 2020).

Both “pure tone” and broadband noise are periodic outward
propagation of sound waves due to the pressure exerted on the air
layer by ion motion under the effect of alternating electric fields
(Di et al., 2012). There are many sound sources that produce
various ambient noises during the acquisition of transmission
lines AN. The frequency spectrum of different types of sound
sources is not the same (Lu et al., 2010; Liu et al., 2018), and the
final collected sound signal is the result of the joint action of the
noise components belonging to different octave band. Therefore,
it is necessary to consider the noise component data belonging to
different octave band center frequency as a whole and to
determine the invalid data for the data set composed of them.
Eqs 4, 5 were used to calculate Pearson’s correlation coefficient
and gray correlation coefficient between each octave band
component, respectively.

ρX,Y � E((Xi − μ)(Yi − ]))�������������∑(Xi−μ)
N

∑ (Yi−])
N

√ (4)

where xi and yi are the sample observations of variable X and
variable Y, respectively; μ and ] are the mean values of variables X
and Y, respectively; N is the total number of samples.

ζ i(k) �
max

i
max

k
Δi(k) + ρ ·max

i
max

k
Δi(k)

Δi(k) + ρ ·max
i

max
k

Δi(k) (5)

where Δi(k) is the absolute value of the difference between the
variable y(k) and the corresponding element of the variable xi(k)
and ρ is the resolution factor; usually ρ is 0.5.

A total of 55 pairs of correlation coefficients were obtained
after calculating the Pearson correlation coefficients between each
AN component by Equation 4, of which 33 groups had
correlation coefficients less than 0.5 and 28 groups had
correlation coefficients less than 0.4. A total of 55 pairs of
gray correlation coefficients obtained after calculating the
nonlinear relationship between the AN components by
Equation 5 are all greater than 0.7. It can be found that there
is a strong nonlinear relationship between each octave band
component, so it is necessary to consider each octave band
component as a whole composed of multidimensional data. It
has been proved that the data do not satisfy the normal
distribution in most cases, the time span of the transmission
line AN collection is long, and the meteorological factors change a
lot during the data collection process, so MWKPCA is used to
determine the invalid data day by day to reduce the influence of
the change of meteorological factors on the determination results.

Algorithm Principle of MWKPCA
KPCA can be viewed as a principal component analysis in high-
dimensional feature space (Li et al., 2018; Zhang and Luo, 2018;
Zhu et al., 2021); compared with traditional PCA, it needs to
project the dataset X � [x1, x2/, xN] into the high-dimensional
feature space Γ through a nonlinear mapping b to obtain a new
dataset:

ϕ(X) � [ϕ(x1), ϕ(x2)/ϕ(xN)] (6)

where X is a matrix of N rows and M columns, ϕ(x) is a matrix of
D rows and M columns, and D>N.

Then the covariance matrix in the higher dimensional space
is CΓ:

CΓ �� 1
N

∑N
i�1

ϕ(xi)ϕ(xi)T (7)

The kernel matrix KϵϕN×N is usually obtained in the high-
dimensional feature space using the kernel function instead of the
mapping function, followed by the calculation of the kernel
matrix K̃ after centering.

K � K − K·1N − 1N·K + 1N·K·1N (8)

where k is a kernel matrix and 1N is anN ×Nmatrix where each
element is 1

N.
The eigenvectors (P1, P2,/, P3) and the corresponding

eigenvalues (λ1, λ2,/, λA) are obtained by the singular value
decomposition of the covariance matrix R of the matrix K̃, where
A (A<N) is the number of principal elements obtained by the
cumulative variance contribution, and the covariance matrix of
the matrix K̃ is shown in the following equation:

R � KTK/(N − 1) � [PPe]Λ[PP]T (9)

where P is the principal component load matrix and Pe is the
residual load matrix.

By building a good KPCA model, the T2 statistic is used to
determine the information of K̃ projection into the principal
component subspace, as the following equation:

T2 � KTPΛ−1PTX

� ∑m

i�1
t2i
λi
∼
p(n2 − 1)
n(n − p) F(n, n − p) (10)

where Λ � diag(λ1, λ2,/λm) is the principal variance matrix, n
is the number of samples, m is the number of principals,
F(n, n − p) is the F distribution with degrees of freedom n and
n-p. Let the confidence coefficient be α; then the control threshold
of the T2 statistic is T2

UCL.

T2
UCL �

α(n2 − 1)
n − α

Fα(α, n − α) (11)

The SPE statistics in the residual subspace are used to
determine data anomalies. The SPE statistic is given in the
following Eq. 12:

SPE � (XPeP
T
e )(XPeP

T
e )T � XPeP

T
e X

T ≤ SPEUCL (12)
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The control threshold SPEUCL is given in the following
Equation 13:

SPEUCL � θ1
⎡⎢⎢⎢⎢⎢⎢⎣Cα

�����
2θ2h20

√
θ1

+ 1 + θ2h0(h0 − 1)
θ21

⎤⎥⎥⎥⎥⎥⎥⎦
1
h0

(13)

where α is the confidence level, C is the critical value of the normal
distribution at the detection level of α,h0 � 1 − 2θ1θ3/3θ

2
2, and

θi � ∑m
j�A+1, i � 1, 2, 3.

MWKPCA introduces the moving window function on the
basis of KPCA, and for such cases as this paper where the time
span is up to 6 months, the invalid data is determined in days, and
the training data and test data are continuously updated with
SPEUCL and T2

UCL, so as to reduce the negative impact of changes
in meteorological factors on the results of invalid data
determination.

The flow of MWKPCA calculation is shown in Figure 1.

Multidimensional Invalid Data
Determination
The 484 sets of data for each octave band component which are
close to the average value of that component are selected as the
initial training data, and the training data are updated in the
process of determining invalid data day by day, adding the data
judged as normal on that day to the training data, and eliminating
the corresponding number of data from the previous training
data, so as to detect abnormal data for 7,658 sets of test data day
by day. The computed significance level of the initial training
modelα � 0.85, kernel width gamma � 16 for the radial basis
function, corresponding to the control threshold SPEUCL for the
SPE statistic and the control threshold T2

UCL for the T2 statistic,

and the corresponding number of principal elements is 9. The
final outlier determination results are shown in Figure 2: the total
number of groups that exceeded the threshold of SPE statistics or
T2 statistics was 1,013, the total number of groups that exceeded
the threshold of T2 statistics was 703, and the final rejected data
were 1,475.

PREDICTION OF AWSL EFFECTIVE DATA

Percentile Comparison
Table 1 shows the percentile of each octave band component of
AN in the two stages of original data and after MWKPCA (Ln in
the table indicates the values ranked in the top n% positions by
arranging the data in descending order), and it can be found that
most of the octave band components L5, L50, L95 do not change
much after the removing of invalid data screening, so the
elimination of invalid data using the method of this paper
basically does not affect the study of AN data (Liu et al., 2014a).

Prediction Result Comparison
Direct collection of Awsl of transmission line AN is susceptible
to ambient noises interference, while in the octave band 8 kHz
component of sound ambient noises and AC transmission line
AN, values differ significantly (IEEE Std 656-2018 Standard for
the Measurement of Audible Noise from Overhead
Transmission Lines., 2018; Lu et al., 2010); the collection of
AN 8 kHz component is subject to less interference, while the
collection of meteorological data is less subject to strong
interference similar to that of ambient noises for AC
transmission line AN. Therefore, this paper trains the
algorithm model to predict the effective data of
transmission line Awsl by the three features of octave band
8 kHz component, temperature, and visible range, so as to
indirectly obtain the AC transmission line Aswl which is
relatively less disturbed by ambient noises.

The three features of octave band 8 kHz component,
temperature, and visible range are normalized by Equation 14,
and the values are converted to between 0 and 1 to avoid the effect
of the difference in magnitude between different features on the
prediction accuracy.

S � s − smin

smax − smin
(14)

where S is the normalized result of each feature; s is the original
data of each feature; Smaxand Smin are the maximum and
minimum values of each feature.

In order to prevent the influence of chance on the
prediction results due to the random combination of data
when dividing the train sets and test sets, this paper divides
the data sets into 10 copies by 10-fold cross validation, taking
one of them as the train sets and the remaining nine as the test
sets, and quantifies the error of the model prediction results
by root mean square error (RMSE), mean absolute error
(MAE), Mean Absolute Percentage Error (MAPE), and
Symmetric Mean Absolute Percentage Error (SMAPE) (as
shown in Eqs. 15–18, the smaller the error, the better the

FIGURE 1 | Moving window kernel principal component analysis
(MWKPCA) calculation process.
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prediction result, and the final result is taken as the average of
10 predictions).

RMSE �
������������
1
n
∑n
i�1
(yi − ŷi)2√

(15)

MAE � 1
n
∑n
i�1

∣∣∣∣yi − ŷi

∣∣∣∣ (16)

MAPE � 100%
n

∑n
i�1

∣∣∣∣ŷi − yi

∣∣∣∣
yi

(17)

SMAPE � 100%
n

∑n
i�1

∣∣∣∣ŷi − yi

∣∣∣∣(∣∣∣∣ŷi

∣∣∣∣ + ∣∣∣∣yi

∣∣∣∣)/2 (18)

where yi and ŷi represent the true and predicted values; n
represents the number of predicted versus true values.

In order to better reflect the improvement of the prediction
accuracy by the outlier rejection algorithm, this paper uses
LightGBM and XGBoost based on Boosting model, SVR based
on hyperplane, KNN based on distance, and elastic network
and linear regression to predict the Awsl, and the mean value
of the final Awsl prediction result is shown in Table 2:
predictions were made using the data sets before and after
invalid data rejection in this paper, respectively. The mean
error of the prediction results after invalid data rejection
using MWKPA is lower than that of the original data, and the
invalid data rejection has contributed to the improvement of
the prediction accuracy.

Using the above six algorithms to predict the effective Awsl
data after eliminating invalid data by IF, DBSCAN, LOF, KPCA,
and MWKPCA, the comparison of the mean error values of the
prediction results is shown in Table 2; the mean error values after
eliminating invalid data by using MWKPCA are significantly
lower than those of the other four methods.

CONCLUSION

A method is proposed to reject the invalid data of AN on
transmission lines using MWKPCA. After using this method
to reject the invalid transmission line AN data, there is no impact
on the subsequent study of AN.

FIGURE 2 | Determination results based on MWKPCA.

TABLE 1 | Statistical values of audible noise (AN) in each frequency band before and after data processing.

L95 L50 L59

Original MWKPCA Original MWKPCA Original MWKPCA

16 Hz 36.08 36.26 42.49 42.38 56.74 54.77
31.5 Hz 35.76 36.04 42.77 42.60 57.46 56.02
63 Hz 33.45 33.81 42.01 41.78 52.46 50.89
125 Hz 23.70 23.85 34.13 33.92 55.23 54.75
250 Hz 21.79 22.02 30.34 30.08 54.07 52.28
500 Hz 18.69 19.13 27.85 27.37 47.06 45.07
1000 Hz 17.08 17.59 27.86 26.99 45.97 44.77
2000 Hz 13.48 14.52 25.76 25.35 43.75 42.43
4000 Hz 14.59 15.20 27.74 27.33 41.99 41.20
8000 Hz 11.79 11.92 19.20 19.49 37.29 35.69
Awsl 27.75 28.01 37.41 37.15 53.75 52.75

TABLE 2 | Prediction errors.

RMSE MAE MAPE SMAPE

Original 6.60 4.97 12.95 12.78
MWKPCA 5.73 4.37 11.46 11.41
KPCA 6.10 4.42 11.97 11.71
IF 6.48 4.92 12.86 12.73
LOF 5.87 4.52 11.90 11.81
DBSCAN 6.02 4.54 11.93 11.83
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The multidimensional invalid data determination method
MWKPCA proposed in this paper can improve the prediction
accuracy of transmission lines AN Awsl to some extent, and the
improvement of Awsl prediction accuracy on real data set is
higher than IF, DBSCAN, and LOF.
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