
Electricity Theft Detection in Power
Consumption Data Based on Adaptive
Tuning Recurrent Neural Network
Guoying Lin1,2, Haoyang Feng1, Xiaofeng Feng1, Hongwu Wen3, Yuanzheng Li4,
Shaoyong Hong5* and Zhixian Ni4

1Metrology Center of Guangdong Power Grid Corporation, Guangzhou, China, 2College of Electrical Engineering, Zhejiang
University, Hangzhou, China, 3Zhanjiang Power Supply Bureau of Guangdong Power Grid Co. Ltd., Zhanjiang, China, 4China-EU
Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, China, 5School of Data
Science, Guangzhou Huashang College, Guangzhou, China

Electricity theft behavior has serious influence on the normal operation of power grid and
the economic benefits of power enterprises. Intelligent anti-power-theft algorithm is
required for monitoring the power consumption data to recognize electricity power
theft. In this paper, an adaptive time-series recurrent neural network (TSRNN)
architecture was built up to detect the abnormal users (i.e., the electricity theft users)
in time-series data of the power consumption. In fusion with the synthetic minority
oversampling technique (SMOTE) algorithm, a batch of virtual abnormal observations
were generated as the implementation for training the TSRNN model. The power
consumption record was characterized with the sharp data (ARP), the peak data
(PEA), and the shoulder data (SHO). In the TSRNN architectural framework, a basic
network unit was formed with three input nodes linked to one hidden neuron for extracting
data features from the three characteristic variables. For time-series analysis, the TSRNN
structure was re-formed by circulating the basic unit. Each hidden node was designed
receiving data from both the current input neurons and the time-former neuron, thus to
form a combination of network linking weights for adaptive tuning. The optimization of the
TSRNN model is to automatically search for the most suitable values of these linking
weights driven by the collected and simulated data. The TSRNN model was trained and
optimized with a high discriminant accuracy of 95.1%, and evaluated to have 89.3%
accuracy. Finally, the optimized TSRNN model was used to predict the 47 real abnormal
samples, resulting in having only three samples false predicted. These experimental results
indicated that the proposed adaptive TSRNN architecture combined with SMOTE is
feasible to identify the abnormal electricity theft behavior. It is prospective to be applied to
online monitoring of distributed analysis of large-scale electricity power consumption data.
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INTRODUCTION

With the increasing scale of the power grid, the power
consumption is becoming larger year by year. People are
concerning on the economic operation of power network,
saving of electric resources, reduction of grid line loss, and
structural optimization on power consumption (Dileep, 2020).
However, the customer’s behavior of stealing electricity comes in
non-stopping emergence. This infraction phenomenon has
seriously affected the normal operation of power grid and the
economic benefits of power enterprises (Li et al., 2019; Zhang
et al., 2020). The electricity theft rate in developing countries is as
high as 30%, and the social power supply and consumption has
also been greatly influenced. According to rough statistics,
China’s power enterprises lose as much as 20 billion CNY
every year due to power theft. Therefore, power enterprises
must carry out efficient anti-electricity-theft work, in order to
guarantee the reasonable power supply and rational use of
electricity, thus to reduce economic losses as much as possible
(Aryanezhad, 2019).

The traditional detection methods of power theft mainly rely
on the scheduled operations of technicians who work in power
supply enterprises. The operation goes with reading the electricity
meter and then recording, counting, and performing manual
analysis and calculation. In the hardware aspect, there are
multifaceted operations that can prevent energy theft, such as
to install the specialized watt-hour metering box, to implement a
kind of conductor that closes the low-voltage outlet to the
metering device, to add anti-thief function to the watt-hour
meter, and to improve the application rate of electrical
acquisition system (Jokar et al., 2016). However, most of these
traditional anti-theft detection methods focus on the
improvement of power devices. There is a lack of sufficient
anti-power-stealing algorithms to analyze massive historical
power consumption data, so it is difficult to find the power
consumption characteristics of power-stealing users and detect
the power-stealing behavior realized by advanced attack means
(Ahmad et al., 2015). Therefore, the development of power
industry needs to strengthen the development of new artificial
intelligence and information and automation technology. With
the continuous improvement of dynamic monitoring and
acquisition technology of power consumption data of power
grid users, it is of great engineering significance to study the
intelligent anti-power-theft algorithm based on the big data of the
power consumption to identify the power theft behavior (Ren
et al., 2020; Zhang et al., 2021).

At present, the most popular scheme is to lay out the smart
grid detection architecture and framework, then to collect the
power consumption data, and upload them to the centralized data
processing center through the terminal smart meter, and
successively, the centralized data can be further analyzed by
intelligent algorithms to detect electricity theft. The prevalent
anti-power-stealing data mining algorithms include clustering,
BP neural network, and local outlier detection algorithm (Al-
Dahidi et al., 2019; Li Y. et al., 2021). Many practical experiments
have been studied in previous research works. A typical load
curve is extracted from the power consumption data by applying

the adaptive K-means clustering algorithm to realize load
forecasting and load control (Zhu et al., 2016). The situation
of abnormal point detection method was proposed based on a
fuzzy neural network to deal with various data, which provides a
new idea for mining abnormal data from the power consumption
records (Mozaffar et al., 2018). The flying anomaly factor
detection and analysis method was investigated to detect an
electric energy meter flying anomaly (Li et al., 2016). A novel
detection method of power theft was constructed based on the
one-class SVM algorithm. A calibration model was established by
analyzing a large number of historical data. If the current data are
inconsistent with the model, it is considered that there is a
possibility of power theft (Dou et al., 2018). Also, the RBF
neural network was proposed to detect the electricity-stealing
behavior, which used the data characteristics of voltage, current,
and power factor to detect electricity theft, to make a positive
detection on electricity stealing (Cao et al., 2018).

Due to the wide layout of the power grid, the large-scale
deployment of smart meters should consume a lot of resources. In
order to save the energy consumption of distributed terminal
nodes, and reduce the non-essential data transmission, it is
necessary to study modern data mining technology, in
integration with machine learning algorithms (Wang et al.,
2020; Li Z. et al., 2021). The application of indirect data
anomaly detection as well as some preprocessing and
analyzing technologies is much necessary to achieve the online
detection of power theft. However, data-driven power theft
detection is a special type of anomaly detection, which has a
serious class imbalance problem (Avila et al., 2018). Actually, the
number of normal power consumption users is much larger than
the number of abnormal users. The inherent imbalance of data
will affect the performance of traditional machine learning
methods. Until now, only a few studies have considered the
category imbalance in power theft detection (Zhang et al., 2019).
The solutions of these works are mainly performed with
undersampling and oversampling methods in the aspects of
data analytical algorithm. They were keen on simultaneously
implementing the random oversampling and undersampling
techniques, to select the best detection effect by testing
different sampling ratios. Otherwise, they focus on increasing
the misclassification cost of abnormal users to improve the
detection rate of electricity theft, by setting penalty parameters
for support vector machine misclassification of normal and
abnormal users (Hu et al., 2019).

Generally, the electricity theft monitoring data are a kind of
time-series data. The difficulty of data analysis lies in how to find
the abnormal data from the constantly updated dynamic data
flow, so as to accurately predict the theft users. The fact that the
data are extremely imbalance is the first-of-all analytical
difficulty. Many experiments have proved that oversampling is
a solution to the category imbalance problem. In essence, the
random oversampling method increases the weight in the sample
set by randomly copying a few samples. It does not increase
classification accuracy but is easy to cause over-fitting (He and
Garcia, 2019). Synthetic minority oversampling technique
(SMOTE) is an unbalanced data recall method that is
improved from the linear interpolation calculation
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methodology. It uses the local prior distribution information
of samples to improve the accuracy of minority samples, to
solve the data imbalance problem (Zhu et al., 2017).
Furthermore, the recurrent neural network (RNN) is an
effective intelligent machine learning method that is
especially effective for monitoring and analyzing time-
series dynamic data flow. The RNN is derived from the
conventional fully connected neural network (FCNN)
model. Its core operation is to compute the result of each
neuron not only from its input data (similar to the FCNN) but
also from the historical variables from its former calculations
(different from the FCNN). The RNN model is widely used in
addressing the tasks of sequential data processing (Liu et al.,
2020). The running of the RNN structure is to produce a
neuron output by combined fusing of the current status data
with the previous status data of the system. The RNN is able to
automatically learn the time correlation of the input data
without specifying any lag observations (Cossu et al., 2021). It
is well known that the traditional time-series analytical
methods (such as auto-correlation) need to identify the
seasonality and stability from the time-series data. The
effectiveness of identification may vary according to the
network structure and the calculation speed, and it needs
to be adjusted for each simulation (Chen et al., 2018;
Farjaminezhad et al., 2021). The characteristic of the RNN
is to create a closed-loop calculation in the hidden layer,
which forms a circulating adaptive model to capture the
internal hidden historical state features in the way of
iterative update, and thus to complete the process of error
level accumulation in the training stage. In effect, the RNN
model is enforced to adapt the error accumulation and
improve the model robustness (Ståhl et al., 2019).

This paper is aimed at designing a data-driven adaptive
parameter optimization time-series RNN (TSRNN)
architecture, for intelligent machine learning to solve the
problem of abnormal monitoring of power consumption. The
TSRNN architecture with an adaptive training strategy is
constructed by monitoring, collecting, and analyzing the
observed data of a stage. Then, the non-linear features of the
observed data can be extracted by developing a hyperparametric
optimization mode of RNN, in fusion with a SMOTE solvation of
data imbalance. On this algorithmic basis, the power-stealing
users with abnormal characteristics are identified in a large
number of power user samples. In structural detail, grid search
is designed for the parameter selection of the RNN linking
weights, and also, a fault-tolerance iteration mechanism is
adopted for parameter optimization in the closed-loop training
stage, to control the error accumulation in model prediction, so as
to enhance the model robustness. In this way, the proposed
intelligent TSRNN architecture with data-driven adaptive
parameter optimization is validated through data training and
prediction. The optimized model is effective for accurate
extraction of the data features of power-stealing behavior. The
establishment of the intelligent TSRNN model is expected to
overcome the costly, laborious, and time-consuming problems of
the traditional methods for monitoring electricity theft. It is
feasible to speed up to locate the abnormal watt-hour meter

terminals and accurately identify the power-stealing users. The
proposed method helps promote the development of artificial
intelligence and information analysis technology in the field of
power grid operation and maintenance.

METHODOLOGIES

In this section, we discuss the basic structure of the TSRNN
architecture and the algorithmic progress of SMOTE balancing.
The energy theft detection model is established and further
optimized by fusion of TSRNN and SMOTE. And the
discriminant indicators are introduced based on the confusion
matrix for the quasi-qualitative recognition of the abnormal
user data.

The Principle of SMOTE
The SMOTE algorithm is an oversampling method based on
synthetic sampling proposed by Chawla (Chawla et al., 2002). In
geometric sense, the SMOTEmethod firstly observes the minority
samples and connects them and a batch of their surrounding
samples. Then, it produces new samples by random insertion on
the connecting lines. The connection and insertion operation can
reduce the imbalance of sample space and simultaneously prevent
the over-fitting phenomenon by suppressing too large repetition
of the original minority samples (Fernández et al., 2018; Chen
et al., 2021). The schematic diagram for generating new samples
by the SMOTE algorithm is shown in Figure 1. Specifically, the
SMOTE sample-generating procedures are described in the
following steps:

Step 1: Let xi|i � 1, 2 . . . }{ be the minority samples and set the
sampling number r according to the number ratio of the
majority samples over the minority samples
Step 2: Search k samples in the neighborhood of the minority
samples, where k> r

FIGURE 1 | Schematic diagram of the SMOTE algorithm.
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Step 3: Randomly select r samples from the k neighborhood
sample, to form the neighborhood sample set y1, y2 . . .yr}{
Step 4: To generate a set of new samples by random linear
interpolation computation, the new samples are denoted as
pj|j � 1, 2 . . .}{ , where

pj � xi + rand(0, 1)p(yi − xi), i, j � 1, 2 . . . r, (1)

with rand(0, 1) representing a random number in the interval of
[0, 1]. Then, pj}{ is regarded as the algorithmic implementation of
the minority samples.

Step 5: The newly generated samples pj}{ are regarded as the
algorithmic implementation of the minority samples, added to
the original sample set to form a brand new training sample set
together with the majority samples.

The SMOTE algorithm makes artificial synthesis of minority
samples by random interpolation. Compared with the traditional
methods of random replication, SMOTE reduces redundant
information of newly generated minority samples and effectively
avoids the phenomenon of over-fitting in the subsequent data
mining processes. In algorithm, SMOTE shows its uncertainty in
part of selecting the nearest neighborhood of the original minority
samples, namely, the number of neighbor samples (i.e., the number
of k) has a great influence on the model performance. When
SMOTE is embedded in fusion with the TSRNN architecture, the
number of neighbor samples would be designed as one of the
tunable parameters for the network model optimization.

Time-Series RNN Model
The data-driven time-series analysis problem is theoretically
described as a general ordinary differential model (Li and
Yang, 2021), formulated as

ẑ � f(z, x), (2)

where z ∈ Rd is the current state of the system and x ∈ Rd

represents the instant input data. In common sense, the model
function f is unknown, but it can be estimated by simulation on
the discrete observation of the current state z and the instant
input x. On these lines, the fully connected neural network
(FCNN) is suitable to resolve the data-driven analytical models.

An FCNN module is traditionally applied as a black box to
directly transform the input data to the hidden layer and then to get
the output. The generated data acquired at each neuron node are
described as zt+1 � g(zt, xt), where the activation function g(·) is
usually a kind of simple linear transformation, while the operation
inside the FCNN has no physical interpretations. The black-box
model may not be able to capture the detailed data transition in the
time series. The TSRNN is proposed to solve this issue.

The TSRNN architecture is built up with circulation
computation of the hidden layer. To unfold the circulation
ring, the TSRNN structure is introduced as shown in
Figure 2. As is shown in Figure 2, the TSRNN architecture is
supposed to be constructed along a time variance axis. At the
starting of time, the power consumption user data are input into
the network and delivered to the first hidden layer (H1) while
t � 1. The data are transformed and calculated to extract the first
level of neural features and then delivered to the next hidden layer
when t varies. At each time step, the result of each neuron
computation depends not only on the current input but also
on the computation results. In this way, the TSRNN captures the
intercorrelation between the time longitudinal parameters and
the section parameters. As such, there are two network linking
weight effects: one describes the direct effect from network layer
delivery and the other shows the indirect data influence from the
time-series circulation of the hidden layers. Any change in the
direct weights or in the indirect weights will cause a change in the
output at any instant moment of time (Alkinani et al., 2021).

Figure 2 also presents a simple TSRNN cell structure at the
instant moment of time t � t. To be specific, a TSRNN cell is
actually a single layer of hidden neurons. This hidden layer is
denoted as H(t), and there are many hidden neurons for
functional calculation, i.e., H(t) � hi(t)|i � 1, 2 . . .m}{ .
Suppose the current input data are X(t) � xi(t)|i � 1, 2 . . . n}{
from the power consumption user data, regarded as the direct
input. The time-lag input data are acquired from the network
calculation in the hidden layer H(t − 1) at the time moment of
t − 1, taken as the indirect input. Then, H(t) works as a t-time
hidden layer to extract data features from the direct inputs as well
as the indirect inputs. The output of H(t) is influenced by both
X(t) and H(t − 1). It can be formulated as

H(t) � f(W ·X(t) + U ·H(t − 1)), (3)

where the function f(·) simply represents the sigmoid function
which would strictly limit the transformed features in the
standard variable range of [−1, 1]. The parameters W and U
represent the linking weights for data connection and for the time
variance connection, respectively.

Successively, data H(t), namely, the set of feature data
included in hi(t)}{ , are further delivered to a softmax unit for

FIGURE 2 | Structural design of the time-series RNN (TSRNN) architecture.
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discriminant calculation. Thus, the neural network output
at the time-series moment of t is mathematically
demonstrated as

O(t) � K(V ·H(t)), (4)

where V represents the linking weights involving the data
transform from H(t) to O(t) and the function K(·) operates
the k-means clustering by Mahalanobis distance

mah(Oi,Oj) � ������������������(oi − oj)TΣ−1(oi − oj)√
for i, j � 1, 2 . . . n. (5)

The Mahalanobis distance between any two of the n samples is
calculated according to Eq. 5 and then to obtain the distance
matrix KM at the instant time moment of t, namely,

KM(t) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
mah11 mah12
mah21 mah22

/ mah1n
/ mah2n

« «
mahn1 mahn2

1 «
/ mahnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· for t ∈ [Tstart, Tend], (6)

where mahijbmah(Oi,Oj).
Finally, the Mahalanobis-based k-means clustering results of

the TSRNN-extracted feature data are used for further calculation
of the discriminant indicators, thus to help identify the abnormal
users from all of the electric power consumption data.

Discriminant Indicators
The power consumption data are originally imbalanced because the
normal electricity users aremuch larger than the electricity thieves. It
is expensive to identify the abnormal users. In our algorithmic
designs, SMOTE is functional to alleviate the data imbalance, and the
adaptive TSRNN model extracts the feature of power consumption
data for improving the model discrimination accuracy with the
k-meansMahalanobis measure. Themodel should be evaluated with
quantitative indicators. The confusion matrix is a basic tool to
evaluate the model performance (see Table 1). Then, the
indicators of each model are verified based on the matrix table.

By definition of the confusion matrix, the normal power
consumption users are distinguished as the negative records,
while the abnormal users are taken as positive. Thus, the table
markers are interpreted with the following information:

- TP indicates that the abnormal user (positive) is accurately
predicted as abnormal (positive),

- TN indicates that the normal user (negative) is accurately
predicted as normal (negative),

- FP indicates that the actual normal user (negative) is
predicted false as abnormal (positive),

- FN indicates that the actual abnormal user (positive) is
predicted false as normal (negative).

Multiple indicators are further calculated according to the
confusion matrix, such as the classification accuracy (ACC), true
positive rate (TPR), and false alarm rate (FAR). The calculations
are presented as follows:

ACC � TP + TN
TP + FN + FP + TN

, (7)

TPR � TP
TP + FN

, (8)

FAR � FP
FP + TN

. (9)

These indicators are used to evaluate the model performance
of the adaptive parametric-scaling TSRNN architecture. It is
learnt from Eqs. 7–9 that the higher the TP and TN are, the
better the model performance is.

For fault-tolerant analysis, the model prediction results can
be monitored at every moment of the dynamic changing time
series. By data export, there are a series of prediction results
acquired for the model classification of normal and abnormal
users. Then, the frequency of identification of abnormal is
counted for each user over the whole time-series axis,
thus to provide an extra confirmation of the model
predictions.

ANALYSIS OF POWER CONSUMPTION
DATA

A total of 929 electricity/power consumption users were
monitored continuously from January 1, 2017, to March
31, 2019, with the minimum time changing unit of 1 day;
thus, we recorded 820 instant moments in the long time series
spanning 25 months. Their electricity use data were collected
in different partitions of time periods of hours according to
the total usage amount. In detail, the electricity used during
the hours of 00:00–08:00 is named the off-peak data (denoted
as OPE for short), during 08:00–12:00 as the peak data (PEA),
during 18:00–22:00 as the sharp data (ARP), and during the
rest hours as the shoulder data (SHO).

If the electricity users are taken as the analytical samples,
the power consumption characteristics of the 929 samples are
demonstrated by the recorded data of OPE, PEA ARP, and
SHO. There are 820 digital records for each user by time
variance. As the maximum record is over thirty thousand and
the minimum record is zero, the dataset should be normalized
before analysis, applying the min–max normalization method
(Jin et al., 2015). Then, we statistically derived the sample
distribution using the average electricity consumption of the
820 time nodes (see Figure 3). As is seen from Figure 3, the
users do not use electricity all along time; for example, some
electricity consumption appears high in the ARP time but low
or even zero in SHO, and some goes high in PEA but zero in
ARP or OPE. To be specific, it is seen from the sub-figure of
OPE (the blue plot) that only one user out of the 929 keeps

TABLE 1 | Confusion matrix for evaluation of the discrimination/classification
models.

Prediction

Positive Negative

Actual data Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)
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using electricity during the OPE time period. Thus, it is
recognized with statistical principles that the OPE data
property hardly provides data information for
discriminating the abnormal users. Then, the OPE data do
not participate in the following modeling processes of SMOTE
balancing and TSRNN training.

DATA BALANCING BY SMOTE

Practically, we have the priori target classification index for the
929 available power consumption user samples. There are
originally 882 normal samples and only 47 abnormal samples.

The normal samples are the majority, and the abnormal ones are
the minority. The imbalance ratio of the normal over the
abnormal goes to a great extent of around 19:1. The scattering
distribution of the 929 samples is a plot in the 3D axis based on
the three basic variables of ARP, PEA, and SHO (see Figure 4A).
To ease the heavy imbalance status, the SMOTE algorithm is
applied to increase the proportion of the minority samples by
linear interpolations. According to the principle of the SMOTE
simulation as introduced in The Principle of SMOTE, a batch of
virtual samples are generated by interpolations on the original 47
abnormal samples.

Theoretically, one virtual sample is generated from the linking
edge of every two samples. The 47 available samples are able to

FIGURE 3 | Statistical descriptive plots of the power consumption data in different time period partitions.

FIGURE 4 | Distribution of the power consumption user samples (panel (A) is for the original 929 samples, and panel (B) is for the SMOTE-balanced output of the
1,151 samples).
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generate 1,081 (i.e., C2
47) new samples in all, from which we

randomly chose 222 samples as a supplement to data balance. By
SMOTE simulation, we finally have total of 1,151 samples for
modeling analysis, of which 269 are abnormal samples, while 882
are normal data from the original. The scattering distribution is
shown in Figure 4B. In this case, we have the sample balance ratio
at about 3:1 for the normal samples over the abnormal samples.

Hereafter, the 1,151 SMOTE-balancing samples were used to
train the TSRNN model (defined in Time-Series RNN Model), as
to build up an intelligent network architecture with adaptive grid
optimization of parameters, for accurate recognition of the
abnormal power users who are stealing electricity.

DISCRIMINATIONS BASED ON TSRNN
TRAINING AND TESTING

An applicable discrimination model for detecting electricity theft
was trained using the TSRNN architecture based on the power

consumption data of the 1,151 SMOTE-balanced samples. The
recorded ARP, PEA, and SHO variables are taken as the network
input. The data have a time-series record of 820 days.

The data samples were divided into two sets for model training
and testing: 918 samples (∼80%) for training and 233 (∼20%) for
testing. The training data were used to conduct the data-driven
machine learning optimization of the TSRNN model. The model
was constructed with three input neurons and one hidden neuron
to produce the output results. There, we have three input-to-
hidden linking weights (w1,w2, and w3) and one hidden-to-
output linking weight (v) to adjust. There is also a linking weight
(u) to help accept another data input from the former time
moment of the circle iteration. With machine learning
operations, these linking weights were adaptively identified as
their most suitable values during the model training process, and
then the testing data were used to examine the model
discrimination effectiveness by using the data-driven decisive
parameters.

In progress, the 918 training samples were introduced to the
input layer at everymoment of time and then delivered to compute
the hidden variables. Notably, the RNN architecture is
characterized with the circle of reproducing the hidden layer.
The hidden variables at t moment are affected by both the
t-moment input and the hidden variables at the t − 1 moment,
where t � 1, 2 . . . 820. Thus, a series of phased discriminant results
were obtained from the output layers at every time moment.
Specifically, we chose to make a segmentation to the full time
series from January 1, 2017, to March 31, 2019. There, we set five
time markers (see Table 2), to observe five phased modeling
outputs for examining the progress of model optimization.

TABLE 2 | Markers of the five special time nodes for investigation of the TSRNN
model performance.

Time marker Marked moment of
time series (t)

Corresponding time nodes

t1 181 June 30, 2017
t2 365 December 31, 2017
t3 546 June 30, 2018
t4 730 December 31, 2018
t5 820 March 31, 2019

FIGURE 5 | ROC curves for the evaluation of the TSRNN training effects at the five selected time markers based on the 918 training samples.
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Based on the 918 training samples, the TSRNN model was
trained with parameters’ iteration by circle improvement of the
hidden neurons. We calculated the model discriminant indicators
at each phase stoppage moment of t1, t2, t3, t4, and t5 and drew
the ROC curves (see Figure 5). The ROC figures show that the
TSRNNmodel was continuously improved with the promotion of
time series. Eventually, the optimal model was observed at t �
t5 � 820.

To study the machine learning progress on parameter
optimization, we further investigate the running procedures of
the adaptive tuning of the TSRNN linking weights. If the linking
weights are denoted as a combination of (w1,w2,w3, v, u), we
initialized this combination as (100, 100, 100, 100, 1) for model
optimization by network iteration of time-series circulation.
When time varies, the more and more power consumption
data were input to the network, and thus, the linking weights
were adjusted for the improving TSRNN model. The changing
values of each linking weight were recorded with a time interval of
every 20 moments, and thus, we obtained the variation trends of
the five linking weights for model optimization (see Figure 6). It
is seen from Figure 6 that the network weights of wi and v were
presented as an overall downward trend with cyclical recovery
fluctuations, ending with optimal values close to zero. And the
parameter u (i.e., the weight of the iteration of time series) shows
a trend of first falling and then rising. In the end, the optimal

value of (w1, w2, w3, v, u) was recognized as
(2.763, 0.767, 0.821, 3.254, 0.564) after 820 iterations by time
series, noting that u � 0.564 was for the circle iterative
optimization from t � 819 to t � 820. These observed optimal
values of parameters indicated that the optimal TSRNN model
was trained to have a linear formula expression with simple
weight coefficients, while the circle iteration of time series pays a
certain contribution to the network model.

The predictive performance of the TSRNN discriminant
model with adaptive tuning of the network weights was
further evaluated by the 233 test samples, which were assumed
to be “unknown” because they were not involved in the training
process. We have the knowledge that there were 53 abnormal
samples and 180 normal samples in the test sample set. The
optimal TSRNN model is evaluated with a relative high
prediction accuracy upon the quantitative metrics of the
model indicators. The predictive ACC, TPR, and FAR were
89.3, 92.5, and 11.7%, respectively. The corresponding
confusion matrix is shown in Table 3.

Aiming to find out the electricity theft from the real power
consumption users, the optimal model output its discriminant
results for each sample (shown in Figure 7). The virtual use data
which were produced by SMOTE balancing were not targeted for
prediction. Thus, it is necessary to distinguish the real abnormal
data from the virtual abnormal data. Practically, we used solid
stars to mark the 10 real abnormal samples in the figure, and only
two of them were predicted to be false. The results indicated that
the adaptive TSRNN architecture is functional to predict the
abnormal cases in the daily records of the power
consumption data.

Furthermore, the well-trained TSRNN architecture was
utilized to monitor the time-series data from January 1, 2017,
to March 31, 2019, to recognize the power consumption users
who probably have electricity theft behavior. The identification of

FIGURE 6 | Training of linking weights in the TSRNN structure.

TABLE 3 | Confusion matrix of the discriminating results predicted by the optimal
TSRNN model for the 233 test samples.

Prediction by the optimal TSRNNmodel

Positive/abnormal Negative/normal

Actual data Positive/abnormal TP � 49 FN � 4
Negative/normal FP � 21 TN � 159
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the real abnormal users is listed in Table 4. It is learnt from
Table 4 that the optimal TSRNNmodel successfully identified 44
of the total of 47 abnormal users. The results show that the
proposed adaptive TSRNN architecture combined with SMOTE
sample balancing technique is able to accurately find the
abnormal samples based on the analysis of the time-
series–recorded power consumption data, thus to recognize
the electricity theft behaviors.

CONCLUSION

In this paper, an adaptive TSRNN architecture was built up to
detect the electricity theft based on time-series data of the power
consumption. The recorded data were monitored continuously
from January 1, 2017, to March 31, 2019 (820 days in total). By
monitoring the ARP, PEA, and SHO data, the users who are
suspicious of stealing electricity were denoted as abnormal

samples, while the other common users were denoted as
normal. There, we had collected the data of 882 normal
samples and 47 abnormal samples. As the abnormal users
appear as the minority in all of the recorded data, the SMOTE
algorithm was used to ease the data imbalance by generating 222
virtual abnormal samples, to make the ratio of the normal over
the abnormal at about 3:1.

The TSRNNmodel was established based on the total of 1,151
user samples over the 820 time-series moments. A basic network
was formed with three input nodes for receiving the data in the
three variables of ARP, PEA, and SHO, and with one hidden
neuron for extracting data features. Then, the network output was
computed as a k-means classified result to discriminate the
sample as an abnormal one or a normal one. The k-means
classifier calculation was on the basis of Mahalanobis distance.
As for the successive analysis of the non-stopping input time-
series data, the TSRNN structure was re-formed by circulating
this kind of basic network. Then, each hidden node was

FIGURE 7 | Discrimination for each test sample by the optimal TSRNN model.

TABLE 4 | Discrimination results for the 47 real abnormal data of the electricity theft users.

User number Predictions User number Predictions User number Predictions

No. 16 abnormal No. 331 NORMAL No. 645 abnormal
No. 24 abnormal No. 354 abnormal No. 653 abnormal
No. 46 abnormal No. 371 abnormal No. 669 abnormal
No. 49 abnormal No. 375 abnormal No. 690 abnormal
No. 62 abnormal No. 397 abnormal No. 694 abnormal
No. 76 abnormal No. 415 abnormal No. 696 abnormal
No. 99 abnormal No. 462 abnormal No. 706 abnormal
No. 114 abnormal No. 482 abnormal No. 726 abnormal
No. 138 abnormal No. 502 abnormal No. 737 NORMAL
No. 152 abnormal No. 509 abnormal No. 765 NORMAL
No. 226 abnormal No. 609 abnormal No. 773 abnormal
No. 262 abnormal No. 613 abnormal No. 812 abnormal
No. 263 abnormal No. 614 abnormal No. 817 abnormal
No. 264 abnormal No. 636 abnormal No. 833 abnormal
No. 281 abnormal No. 637 abnormal No. 864 abnormal
No. 286 abnormal No. 638 abnormal — —
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influenced by the input data at the current time moment and the
data delivery from the time-former hidden node, and thus, the
output results can be optimized by adaptively tuning the network
parameters in the combination of linking weights
(w1, w2, w3, v, u). In our empirical experiment, the most optimal
values of the combination of linking weights were observed as
(2.763, 0.767, 0.821, 3.254, 0.564) after 820 iterations by time
series. There, we obtained the discriminant model with a high
prediction accuracy of ACC � 95.1%. The optimal TSRNN model
was evaluated to be much effective by the 233 test samples, with the
testing ACC � 89.3, TPR � 92.5, and FAR � 11.7%. Therefore, the
adaptive TSRNN model was finally used to predict the 47 real
abnormal samples, and the discriminating results are quite
appreciating, with only three samples predicted to be false. The
prediction accuracy was as high as 93.6%.

The experimental results indicated that the proposed adaptive
TSRNN architecture in fusion with the SMOTE balancing
technique is feasible to extract data features for monitoring the
abnormal electricity theft behavior. The methodology framework
is prospectively promoted to be used for online monitoring on
big data analysis for a large scale of electricity power
consumption.
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