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A key challenge for the introduction of any design changes, e.g., advanced fuel concepts,
first-of-a-kind nuclear reactor designs, etc., is the cost of the associated experiments,
which are required by law to validate the use of computer models for the various stages,
starting from conceptual design, to deployment, licensing, operation, and safety. To
achieve that, a criterion is needed to decide on whether a given experiment, past or
planned, is relevant to the application of interest. This allows the analyst to select the best
experiments for the given application leading to the highest measures of confidence for the
computer model predictions. The state-of-the-art methods rely on the concept of similarity
or representativity, which is a linear Gaussian-based inner-product metric measuring the
angle—as weighted by a prior model parameters covariance matrix—between two
gradients, one representing the application and the other a single validation
experiment. This manuscript emphasizes the concept of experimental relevance which
extends the basic similarity index to account for the value accrued from past experiments
and the associated experimental uncertainties, both currently missing from the extant
similarity methods. Accounting for multiple experiments is key to the overall experimental
cost reduction by prescreening for redundant information from multiple equally-relevant
experiments as measured by the basic similarity index. Accounting for experimental
uncertainties is also important as it allows one to select between two different
experimental setups, thus providing for a quantitative basis for sensor selection and
optimization. The proposed metric is denoted by ACCRUE, short for Accumulative
Correlation Coefficient for Relevance of Uncertainties in Experimental validation. Using
a number of criticality experiments for highly enriched fast metal systems and low enriched
thermal compound systems with accident tolerant fuel concept, the manuscript will
compare the performance of the ACCRUE and basic similarity indices for prioritizing
the relevance of a group of experiments to the given application.
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1 INTRODUCTION

Model validation is one of the key regulatory requirements to
develop a scientifically-defendable process in support of
establishing confidence in the results of computerized physics
models for the various developmental stages starting from
conceptual design to deployment, licensing, operation, and
safety. To ensure that model predictions can be trusted for a
given application, e.g., the domain envisaged for code usage, the
regulatory process requires the consolidation of two independent
sources of knowledge, one from measurements collected from
experimental conditions that are similar to the application, and
the other from code predictions that model the same
experimental conditions. For criticality safety applications,
representing the focus of this manuscript, model validation
plays a critical role in supporting design changes, e.g., the
introduction of high burnup fuel, high assay low enrichment
fuel, etc., or new fuel designs, e.g., accident tolerant fuel, both
typically challenged by the scarcity of experimental data.

It is thus paramount to devise a methodology that can
consolidate knowledge from both the experimental and
computational domains in some optimal manner. The
optimality of this consolidation process needs to recognize the
possible scarcity of relevant experimental data expected with new
designs, the cost for constructing new validation experiments,
and the infeasibility of duplicating of all application conditions in
the experimental domain. Ideally, the consolidation methodology
should be able to optimally leverage existing experimental data in
order to minimize the need for new experiments.

In our context, model validation entails a mapping process in
which the experimental biases (differences between
measurements and model predictions) are to be mapped to
the application’s responses of interest in the form of
calculational (i.e., best-estimate) biases along with their
uncertainties. The goal is to improve the analyst’s confidence
in the calculated application response. Mathematically, the
confidence is measured in terms of the response uncertainty.
The initial uncertainty propagated throughout the model is
referred to as the prior uncertainty which accounts for
parameter uncertainties, modeling assumptions, numerical
approximations, initial, and boundary conditions, etc. The
consolidation of experimental biases with the prior
uncertainties results in a calculational bias that is intended to
correct for the prior uncertainties. A successful consolidation
process would result in a reduced bias uncertainty, i.e., as
compared to the prior uncertainty, implying increased
confidence in the calculated response.

The prior uncertainties are often grouped into two categories,
aleatory, and epistemic. This manuscript will focus on epistemic
uncertainties resulting from the lack of knowledge of the true
values of the nuclear cross-section data. The implied assumption
here is that cross-sections constitute the major source of
uncertainty in neutronic calculations (Glaeser, 2008; Avramova
and Ivanov, 2010; Abdel-Khalik et al., 2013; Wieselquist, 2016).
Specifically, we focus on a single consolidation methodology for
reducing the impact of epistemic uncertainties, the so-called
generalized linear least-squares (GLLS) methodology which

may be derived using Bayesian estimation theory (Williams
et al., 2016). It is designed to calculate an optimal bias for any
calculated response based on an optimal adjustment of the
nuclear cross-sections.

In the neutronic community, the GLLS methodology has been
independently developed by various researchers (Gandini, 1967;
Salvatores, 1973; Broadhead et al., 2004; Cacuci and Ionescu-
Bujor, 2010) with varying levels of generalization and
mathematical formulation, e.g., Gaussianity assumption of the
uncertainty source, degree of nonlinearity of the response
variations with cross-sections, mathematical formulation in the
cross-section space or the response space, etc. Under the same set
of assumptions however, one can show the equivalence of these
various formulations. For example, for Gaussian prior cross-
section uncertainties and assumed linear approximations, the
noted GLLS optimality criterion reduces to an L2 minimization of
the sum of two terms, see Eq. 4. The first term minimizes the L2
norm of the adjustments of the cross-sections to ensure their
consistency with their prior values, and the second term
minimizes the discrepancy between the measurements and
predictions for the selected experimental responses. The GLLS
methodology is briefly discussed in Section 2.

A prerequisite for the GLLS methodology is to select the
experiments that are most relevant to the application
conditions1. The premise is that with higher relevance biases
with higher confidence, i.e., reduced uncertainties, can be
calculated. In the neutronic community, sensitivity methods
have been adopted to determine experimental relevance using
a scalar quantity, denoted by the similarity index ck (Broadhead
et al., 2004)—also called representativity factor by other
researchers (Palmiotti and Salvatores, 2012)—which can be
used to prioritize/rank the experiments and possibly judge the
value of a new experiment before it is constructed.

Tomeasure the similarity index ck, sensitivity methods are first
employed to calculate the first-order variations in select quantities
of interest that can be experimentally measured, e.g., critical
eigenvalue, reaction rate ratios, etc., with respect to the cross-
section variations by isotope, reaction type, and incident neutron
energy. This is done with both the experimental models as well as
the application model of interest, e.g., calculating the criticality
conditions for a new fuel design, resulting in one sensitivity vector
per model. The sensitivity vector comprises the first-order
derivatives, i.e., sensitivity coefficients, of a given response
with respect to all cross-sections. Next, the sensitivity vector of
the experiment is folded with that of the application and the prior
cross-section covariance matrix to calculate the similarity index.

The result of this folding process, see Eq. 5, is an integral
quantity (ck) taken to measure the degree of similarity between
the first order derivatives of a single quantity of interest with
respect to all cross-sections as calculated from both the

1In theory the GLLS can incorporate any experimental data regardless of their
relevance to the application conditions. In practice however, one limits the analysis
to the most relevant experiments for various practical considerations. For example,
inclusion of many weakly-relevant experiments may adversely impact the χ2 value
making it difficult to interpret the GLLS results.
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experiment and the application models2. The prior uncertainties
are used as weighting parameters, assigning more weight to cross-
sections with higher uncertainties. The resulting similarity index
ck is thus expected to be heavily influenced by cross-sections
exhibiting both high prior uncertainties as well as strong
sensitivities. This helps the GLLS methodology find the
optimal adjustments for cross-sections with strong sensitivities
as well as high uncertainties. This is justified as follows: cross-
sections with weak sensitivities would require large adjustments
to change the response, potentially rendering them statistically
inconsistent with their prior values. Similarly, adjusting low-
uncertainty cross-sections would violate their prior values, also
considered a form of fudging that cannot be mathematically
justified as it violates the basic assumption of the GLLS
methodology, that is the observed discrepancies are mainly
originating from the prior cross-section uncertainties.

The resulting similarity index ck is a scalar quantity which lies
between −1.0 and 1.0 and may be interpreted as follows: a zero
value implies no correlations, i.e., cross-sections with strong
sensitivities and high uncertainties, exist between the
application, and the experimental conditions. This implies that
experimental bias cannot be used to infer the application bias, i.e., it
cannot be used to improve the prior estimate of the application
response and hence the experiment is judged to have no value to
the given application. Conversely, a high similarity value, i.e., close
to 1.0, implies that the associated experimental bias can be reliably
used to infer the application bias. More important, the bias
uncertainty can be reduced with highly relevant experiments.
Theoretically, the inclusion of a zero-similarity experiment
would keep the prior uncertainty for the application
unchanged—not increasing the confidence—while a perfectly
similar experiment, e.g., ck � 1.0, would result in the minimum
bias uncertainty, i.e., the maximum attainable confidence3.

One key limitation of the similarity index is that it does not
account for the impact of measurement uncertainties. Essentially,
the ck value is obtained by normalizing the covariance matrix for
the calculated responses. This further implies that the
measurements uncertainties have no impact on the ck value
calculation. To explain this, consider two experiments with
analogous similarity as measured by the ck value but with
different measurement uncertainties. The experiment with the
lower uncertainty would result in the calculation of lower bias
uncertainty, i.e., more confidence. This implies that an
experiment with a lower ck value and a low measurement
uncertainty could result in a lower bias uncertainty than that
obtained from an experiment with higher ck value and higher
measurement uncertainty. Thus, it is important to include the
measurement uncertainty in the definition of relevance. This
brings value to the design of future experiments, often involving

an optimization of sensors’ types and placements. Inclusion of
measurement uncertainty would allow the analyst to compare the
value of different experiments (and sensors selection) prior to the
conduction of the experiment.

Another limitation of the similarity index is that it does not
consider the impact of past experiments. As the ck value is
calculated by normalizing the weighted inner product of two
sensitivity vectors, with more experiments involved in the
relevance evaluation process, the ck value cannot be employed
to capture a weighted relevance between two subspaces. To explain
this, consider that the analyst has calculated the application bias
using ideal conditions, i.e., with a highly relevant experiment and
near zero measurement uncertainty. In this scenario, the inclusion
of additional experiments, even if highly relevant, is unlikely to lead
to further noticeable reduction in the bias uncertainty. Thus, two
experiments with the same ck value should be assigned different
relevance depending on which experiment is employed first. This
provides a lot of value when designing new experiments by
quantifying the maximum possible increase in confidence while
accounting for past experiments. Addressing these two limitations
will help analysts determine the minimum number of experiments
required to meet a preset level of increased confidence as well as
compare the value of planned experiments, providing a
quantitative approach for their optimization.

In response to these limitations, this manuscript employs the
concept of experimental relevance as opposed to similarity in
order to distinguish between the possible added value of a new
experiment, if any, and the value available from past experiments.
This is possible by extending the definition of the ck similarity
index4 via a new analytical expression for experimental relevance,
denoted by the ACCRUE index, designed to account for the
experiment’s measurement uncertainty and the prior confidence
associated with past experiments. The symbol jk is used to
distinguish the ACCRUE index from the similarity index ck,
where the j denotes the ability to jointly assess the relevance
of an experiment with past experiments. The ACCRUE index is
short for Accumulated Correlation Coefficient for Relevance of
Uncertainties in Experimental validation.

The TSURFER code, representing the GLLS rendition under
the ORNL’s SCALE code suite, is employed to exemplify the
application of the ACCRUE index jk. Specifically, we develop
three sorting methods for the available experiments based
respectively on the similarity index ck, the ACCRUE index jk,
and pure random sampling. Two different sets of experiments are
employed to compare the performance of the various sorting
methods. The first set involves low-enriched uranium thermal
compound systems with the accident-tolerant fuel (ATF) concept
BWR assembly, and the second comprises highly enriched
uranium fast metal systems. Finally, numerical experiments
will be employed to verify the analytically-calculated values for jk.

2Other empirical forms for the similarity index have been proposed, but are not
covered here. (Broadhead et al., 2004). Examples include the use of the absolute
difference in the sensitivity coefficients,D, and the inner products of two sensitivity
profiles, E, etc.
3In this hypothetical scenario, the minimum uncertainty would be controlled by
the measurement uncertainty and other administrative uncertainties that are
typically added for unaccounted sources of uncertainties.

4The development here will be limited to the GLLS methodology; it is thus
implicitly assumed that the GLLS assumptions are satisfied, i.e., Gaussianity of
the cross-section prior uncertainty and linearity of the response variation with
cross-section perturbations.
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This manuscript is organized as follows. Section 2 provides a
background on sensitivity theory and the details of mathematical
description of the GLLS nuclear data adjustment methodology.
Section 3 introduces ACCRUE algorithm and an extension of the
non-intrusive stochastic verification with mathematical details.
Section 4 verifies the performance of the proposed algorithm by
numerical experiments to compare the results made by one of the
conventional integral similarity indices, ck¸ and the ACCRUE
index, jk. Concluding remarks and further research are
summarized in Section 5.

2 BACKGROUND AND RELEVANCE

This section presents a brief background on three key topics: 1)
sensitivity methods employed for the calculation of first-order
derivatives; 2) the GLLS adjustment theory, employed to calculate
the application bias; and 3) the extant similarity index ck
definition. The material in this section may be found in the
literature, however compiled here to help set the stage for the
proposed ACCRUE index.

2.1 Sensitivity Theory
Sensitivity coefficients are the key ingredients for the GLLS
methodology, as they are used to relate the response variations
to the model parameter variations, with the latter assumed to
represent the dominant sources of uncertainties. A sensitivity
coefficient measures the first-order variation of a response that is
caused by a change in one input model parameter. For the
numerical experiments employed in this paper, we focus on
the multiplication factor, keff, i.e., critical eigenvalue, as the
response of interest and the reaction-wise cross-sections by
isotope and energy group as the model parameters.

While sensitivity coefficients can be readily evaluated using
finite differencing, the adjoint-based perturbation theory
methodology (Usachev, 1964; Gandini, 1967; Stacey, 1974;
Oblow, 1976; Cacuci and Ionescu-Bujor, 2010) has been
adopted as the most efficient way to calculate derivatives. This
follows because adjoint-based sensitivity theory requires one
adjoint solution per response, implying that one can calculate
the first-order derivatives of the given response with respect to all
cross-sections using a single adjoint model evaluation, whereas
finite differencing requires an additional forward model
evaluation for each cross-section. The general idea behind
adjoint-based sensitivity analysis is summarized below for the
evaluation of the first order derivatives of the critical eigenvalue.

The Boltzmann transport equation for an assembly containing
fissionable material, referred to as the forward model, can be
symbolically expressed as (Williams, Broadhead and Parks,
2001): (M(α) − 1

k
F(α))ψ � 0 (1)

where
M(α) � Multigroup form of the Boltzmann loss operator.
F(α) � Multigroup form of the Boltzmann production

operator.

ψ � ψ(r,Ω, g) � Multigroup angular flux. where ψ is a
function of

r � position.
Ω � neutron moving direction.
g � energy group.
The two operators M(α) and F(α) are functions of the

reference multi-group cross-section data which may be
described by an n-dimensional vector, α �
[ α1 α2 / αn ]T whose n components are the reaction-
wise cross-sections by energy-group and isotope5. Thus, the
solution of this equation yielding the eigenvalue may be
compactly written as follows:

kj � fj(α)
where kj is the code-predicted eigenvalue6, i.e., keff, of jth critical
experiment model and fj is a compact representation of the
solution of Eq. 1 implying its dependence on α. Analytically, the
first-order derivatives of keffwith respect to each cross-section can
be expressed in a relative sense—referred to as the sensitivity
coefficients—using a first-order Taylor series expansion:

Skj,αi �
αi
kj

fj(α1, . . . , αi + Δαi, . . . , αn) − fj(α1, . . . , αi, . . . , αn)
Δαi

(2)

and aggregated in a vector (referred to as the sensitivity vector or
profile) with the superscript “T” representing vector/matrix
transpose:

sj � [ Skj,α1 Skj,α2 / Skj,αn ]T
Eq. 2 implies that a finite-difference-based sensitivity analysis

would require n + 1 forward model executions, one with the
reference cross-section values, and one additional execution
per cross-section. For most practical neutronic problems, this
is computationally infeasible because cross-sections often
number in the 104 to 105 range.

The adjoint formulation of sensitivity coefficients may be
described by the following equation:

Skjαi �
αi

kj

〈ψp z

zαi
(1
k
F −M)ψ〉

〈ψpFψ〉
(3)

The brackets represent an inner product operation
corresponding to an integration over entire phase-space (e.g.,
energy groups, direction of neutron travel, and space) using the
forward solution obtained from Eq. 1 and a new quantity, called
the adjoint solution, obtained from:

5Other dependencies for the two operators, such as geometry, composition, etc., are
suppressed in the current discussion, since GLLS focuses only on the epistemic
uncertainties associated with nuclear cross-sections.
6The subscript j (denoting the jth experiment) will be suppressed for other
quantities in Eqs. 2, 3 to reduce notational clutter, and because they do not
contribute to the discussion.
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(Mp − 1
k
Fp)ψp � 0

where Mp and Fp are the adjoint operators of the forward
operators M and F, evaluated at the reference cross-section
values. The z

zαi
term differentiates the operators M and F with

respect to the ith cross-section, with the derivative taken around
the reference cross-section values. Since the mathematical
expressions for M and F are known, these changes can be
analytically calculated. More importantly, they do not require
re-execution of the forward or the adjoint model. The implication
is that one can evaluate the derivatives with respect to all cross-
sections using a single forward and a single adjoint model
evaluation.

Several computer codes have embodied the adjoint
methodology to calculate sensitivity coefficients (Lucius et al.,
1981; Becker et al., 1982; Gerald; Rimpault et al., 2002). Of
interest to us is the SCALE TSUNAMI methodology (Rearden
and Jessee, 2016) which is used as a basis for the evaluation of the
sensitivity coefficients for the GLLS-based TSURFER code,
discussed in the next section.

2.2 GLLS Adjustment Methodology
As discussed earlier, the main goal of GLLS is to consolidate
knowledge from computations and experiments. This is
illustrated in Figure 1 using two representative PDFs
describing the best available knowledge about the keff from the
experiments (shown in red) and model predictions (blue). The
spread of each PDF is taken as a measure of confidence. The
confidence in the model predictions is determined by the
propagated prior uncertainties, and the experiment’s
confidence is tied to its measurement uncertainties. The GLLS
methodology represents a disciplined mathematical approach to
consolidate these two PDFs into one (yellow) that provides higher
confidence for the calculated response as compared to the prior
confidence from model predictions.

To achieve that, GLLS assumes that the uncertainties originate
from the cross-sections. Therefore, it attempts to identify the
optimal cross-section adjustments which minimize the

discrepancies between measured and predicted responses. Based
on the optimal adjustments, one can calculate the corresponding
change in the application’s response, with the application
representing the conditions for which no experimental values
exist. The change in the code-calculated application response,
i.e., from its prior value, is denoted by the application bias.

Considering that the analyst is interested in calculating the
bias for the keff value for a given application, and there exist M
available experiments, the corresponding prior values may be
aggregated in a vector k ∈ RM+1 such that:

k � [k1 k2 / kM+1]T

where the last component is the prior value for the application
keff. The corresponding measurements for the first M values are
designated by another vector m ∈ RM+1. In this formulation, the
last element of m is set to the prior value of keff, assumed to have
no corresponding experimental value.

The prior cross-section uncertainties are described by a multi-
variable Gaussian PDF with a vector of means representing the
reference multi-group cross-sections and a covariance matrix
given by:

Cαα �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ cov(α1, α1) cov(α1, α2) / cov(α1, αn)
cov(α2, α1) cov(α2, α2) / cov(α2, αn)

« « 1 «
cov(αn, α1) cov(αn, α2) / cov(αn, αn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rn×n

The adjusted cross-sections are calculated as the minimizer of
the following minimization problem subject to the
constraint k′(α′) � m′:

αp � argmin
α′

[α′ − α]TC−1
αα[α′ − α] + [m′ −m]TC−1

mm[m′ −m]
(4)

where Cmm ∈ R(M+1)×(M+1) is the covariance matrix for the
measured keff. The constraint implies that the adjusted cross-
sections α′ will update the best-estimated values (the components
of m′) for all M experiments as well as the application. The last
element of the vectorm′ is taken to represent the best-estimate for
the application keff value, and the last component of m′ −m is
referred to as the application bias. Note that kj −mj represents
the initial discrepancy between the prior code-calculated and
measured keff values for the jth experiment, and m′ −m
represents the discrepancy after the cross-sections are adjusted.

The objective function in Eq. 4 may be re-written in terms of
the calculated and adjusted keff values as:

χ2M � [k′ − k]TC−1
kk[k′ − k] + [m′ −m]TC−1

mm[m′ −m]
where χ2M is the M -degrees of freedom chi-square value
describing the discrepancies between the prior and adjusted
keff values. The Ckk ∈ R(M+1)×(M+1) matrix denotes the prior
covariance matrix for the calculated keff values given by:

Ckk � SkαCααS
T
kα (5)

and Skα ∈ R(M+1)×n matrix aggregates the sensitivity profiles for
all M experiments and the application:

FIGURE 1 | keff consolidated confidence from experiment and prior
calculations.
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Skα �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S1,1 S1,2 / S1,i / S1,n
S2,1 S2,2 / S2,i / S2,n
« « 1 « « «
Sj,1 Sj,2 / Sj,i / Sj,n
« « / « 1 «

SM,1 SM,2 / SM,i / SM,n

SM+1,1 SM+1,2 / SM+1,i / SM+1,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where (j, i) element represents the relative sensitivity coefficient of
the jth experiment [or application, (M + 1)th row] with respect
to the ith multi-group cross-section.

Assuming that the linearization of the constraint k′(α′) � m′
is sufficiently accurate within the limitations of first-order
sensitivity theory, the minimizer of the objective function in
Eq. 4 may be given by:

Δk � −Ckk(Ckk + Cmm)−1d
where Δk � k′ − k and d ∈ RM+1 is the discrepancy
vector, d � k −m

The posterior (i.e., post the consolidation of experimental and
prior values) covariance matrix for the keff values is given by:

Ck′k′ � Ckk − Ckk(Ckk + Cmm)−1Ckk (6)

The diagonal elements of this matrix describe the
confidence one has in the posterior keff values. The
(M + 1)th diagonal element of the Ckk matrix
(Ckk[M + 1, M + 1]) measures the prior confidence one has
in the calculated application keff value. If the experiments are
relevant to the application, the posterior confidence,
(Ck′k′[M + 1, M + 1]) should provide higher confidence,
i.e., Ck′k′[M + 1, M + 1]<Ckk[M + 1, M + 1].

2.3 Similarity Index, ck
The definition of the similarity index ck naturally appears in the
GLLS formulation of the prior covariance matrix. Specifically, one
can expand Eq. 5 as follows:

Ckk �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sT1Cααs1 sT1Cααs2 / sT1CααsM+1

sT2Cααs2 sT2Cααs2 / sT2CααsM+1
« « 1 «

sTM+1Cααs1 sTM+1Cααs2 / sTM+1CααsM+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

The diagonal entries of this matrix represent the uncertainty
(in the units of variance) of the prior keff values and the off-
diagonal entries are the correlations between these uncertainties.
Ideally, one would want to maximize the correlations between the
application and all experiments, described by the last row or last
column of the matrix. A standardized form of this matrix may be
obtained by multiplying it from both sides by the inverse of the
square root of its diagonal elements to produce the
matrix R ∈ R(M+1)×(M+1):

R �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
sT1Cααs2�������

sT1Cααs1
√ �������

sT2Cααs2
√ /

sT1CααsM+1�������
sT1Cααs1

√ �����������
sTM+1CααsM+1

√
sT2Cααs1�������

sT2Cααs2
√ �������

sT1Cααs1
√ 1 /

sT2CααsM+1�������
sT2Cααs2

√ �����������
sTM+1CααsM+1

√
« « 1 «

sTM+1Cααs1�����������
sTM+1CααsM+1

√ �������
sT1Cααs1

√ sTM+1Cααs2�����������
sTM+1CααsM+1

√ �������
sT2Cααs2

√ / 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In this representation, the value of any off-diagonal terms is

standardized between −1.0 and 1.0 which is equivalent to the
definition of the standard correlation coefficient between two
random variables. Appearing naturally in the GLLS formulation,
these off-diagonal terms have been adopted as to measure
experimental relevance. Specifically, the similarity index ck
between the application and the jth experiment is given by:

ck(kj, kM+1) � sTjCααsM+1������
sTjCααsj

√ ����������
sTM+1CααsM+1

√ (8)

This equation may be used to pre-calculate the similarities of
all available experiments with respect to the given application. To
achieve that one needs to calculate the corresponding sensitivity
profiles for the experiments and the application which are readily
calculated using the adjoint sensitivity theory presented in
Section 2.1. In our work, the SCALE TSUNAMI code is
employed to calculate the sensitivity profiles as well as the
similarity indices.

Next, it is instructive to give a geometric interpretation of the
similarity index. To do that, rewrite the expressions in Eq. 8 using
the Cholesky decomposition of Ckk as:

Ckk � ΓTΓ

where Γ � [ c1 c2 / cM+1 ], where the inner-product of any
of two columns of Γ gives:

cTi cj � Ckk[i, j], i, j � 1, 2, . . . , M + 1

Performing this transformation for both the numerator and
denominator in Eq. 8, the ck index reduces to:

ck(kj, kM+1) � cTj cM+1����
cTj cj

√ ��������
cTM+1cM+1

√
� Ckk[j,M + 1]�������

Ckk[j, j]√ ����������������
Ckk[M + 1,M + 1]√ � cos θ(cj, cM+1)

(9)

FIGURE 2 | Geometrical interpretation for the similarity index, ck.
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As illustrated in Figure 2, this expression is interpreted as
cosine angle between two vectors, one related to the application
and the other to an experiment.

Further, it has been shown in earlier research (Huang et al.,
2020) that one can calculate ck using randomized forward
model evaluations taking advantage of the equivalence
between the ck definition and the standard correlation
coefficient. This requires sampling of the cross-sections
within their prior uncertainties a few hundred times to
obtain sufficiently approximate estimates of the similarity
index, as shown below. As demonstrated in earlier work
using the Sampler code under the SCALE environment
(Wieselquist, 2016), this forward-based approach provides
two advantages; first, it allows one to calculate similarity
indices when the adjoint solver is not available; and second,
it provides a way to verify the results of adjoint-based
calculations.

It has been shown in earlier work that these two vectors may be
interpreted as the directional sensitivity profiles with respect to
the dominant eigen directions of the prior covariance matrix. To
illustrate the mechanics of the forward-based approach for
calculating the similarity index, first consider re-writing the
cross-section covariance matrix decomposed by Cholesky
methodology as follows:

Cαα � UΛ2UT (10)

where U ∈ Rn×n a unitary matrix; UTU � UUT � I and
Λ ∈ Rn×n is a diagonal matrix whose elements are square root
of the singular values of Cαα.

If ξ(p) ∈ Rn is a Gaussian variable, one can generateN random
samples for the cross-sections which respect their covariance
structure, such that:

Δα(p) � UΛξ(p), p � 1, 2, . . . , N

By the law of large numbers, one can show that asN increases
(Stark and Woods, 2012)

lim
N→∞

⎛⎝ 1
N

∑N
p�1

ξ(p)ξ(p)T⎞⎠ � I

This limit is readily reached with a few hundred samples.
Verification with numerical experiments is provided in the
following section.

Then, Eq. 10 can be re-written by the cross-section samples,
such as:

Cαα � lim
N→∞

UΛ⎛⎝ 1
N

∑N
p�1

ξ(p)ξ(p)T⎞⎠ΛTUT

� lim
N→∞

⎛⎝ 1
N

∑N
p�1

Δα(p)Δα(p)T⎞⎠
With the linearity assumption valid, e.g., SkαΔα(p) � Δk(p),
samples for the code-calculated responses also can be
calculated by the sandwich rule in Eq. 5, and thus the
covariance matrix for calculated responses can be re-written as:

Ckk � SkαUΛ2UTSTkα � lim
N→∞

⎛⎝ 1
N

∑N
p�1

SkαΔα(p)Δα(p)TSTkα⎞⎠
� lim

N→∞
⎛⎝ 1
N

∑N
p�1

Δk(p)Δk(p)T⎞⎠
whereΔk transforms the sensitivity matrix Skα using the Chelosky
factor of Cαα.

Thus, the construction of the Ckk matrix effectively reduces to
the following three steps; first, it transforms the original variables
into a set that are uncorrelated; second, it calculates the
sensitivities along the directions of the transformed variables
(referred to as directional sensitivity in the calculus literature);
and third, it weighs each directional sensitivity by its
corresponding prior uncertainty.

The deviation vector of jth experiment (or application denoted
by subscript M + 1) code-calculated samples from its reference
value can be written as:

Δkj �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k(1)j − k(ref)j

k(ref)j

k(2)j − k(ref)j

k(ref)j

«

k(N)
j − k(ref)j

k(ref)j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, j � 1, 2, . . . ,M + 1

Each term in Δkj may be considered as a sample resulting
from executing the forward model with a random cross-section
perturbation. Thus, Δkj is a vector ofN sampled perturbations of
the jth response. Graphically, these perturbation vectors can be
displayed via a scatter plot. For example, Figure 3 shows a

FIGURE 3 | Representative scatter plot of two perturbation vectors.
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representative scatter plot of the perturbation vectors for the jth
experiment and the application.

Their similarity index thus reduces to the standard correlation
coefficient between the two vectors Δkj and ΔkM+1 similarly to
Eq. 9 such that:

cos θ(Δkj,ΔkM+1) � ΔkTjΔkM+1�������
ΔkTjΔkj

√ �����������
ΔkTM+1ΔkM+1

√
With a large number of samples, the inner-products of any two
sample vectors reduce to the elements of the Ckk matrix, such
that:

lim
N→∞

ΔkTi Δkj � Ckk[i, j]
Thus,

ck(kj, kM+1) � lim
N→∞

ΔkTjΔkM+1�������
ΔkTjΔkj

√ �����������
ΔkTM+1ΔkM+1

√
In this manuscript, the ACCRUE index will be calculated

using both the analytical definition, presented in Section 3, as
well as the noted forward-based approach for verification.

3 ACCRUE INDEX AND VERIFICATION
ALGORITHM

This section details the theoretical derivation of the ACCRUE
index jk, discusses its relationship to the ck index, and shows how
it can be calculated both analytically using the adjoint approach
and statistically using the forward approach. The jk index is
designed to address two limitations of the ck index, first the
impact of measurement uncertainty on the relevance of a given
experiment, and second, the diminished value of an experiment
resulting from its similarity with previously consolidated
experiments. With regard to the first limitation, the ck index
bases the similarity on the code-calculated values only. In practice
however, an experiment with a high ck index could prove less
valuable to estimating the application bias if its measurements
have high uncertainties. The second limitation calls for an
approach to identify experimental redundancy. The high level
premise of any inference procedure is that additional
measurements will result in more confidence in the calculated
application bias. In practice however, the confidence gleaned
from multiple highly relevant experiments could be equally
obtained from a smaller number of experiments if high level
of redundancy exists between the experiments, a common
phenomenon observed in many fields, often referred to as the
law of diminished return. The ck index does not capture this effect
because it is based on a single experiment.

3.1 Impact of Measurement Uncertainty
Different from the ck index which relies on the Ckk matrix, the jk
index leverages the Ckk + Cmm matrix which appears in the GLLS
procedure to weigh the prior values and the experimental
measurements. This matrix can be shown to be the covariance

matrix for the discrepancies between the calculated andmeasured
values, whereas the Ckk matrix is the covariance matrix for the
calculated values only.

The discrepancies can be aggregated in a vector such that:

d � [ k1 −m1 k2 −m2 / kM −mM kM+1 ]T
where the last element, kM+1, of the discrepancy vector remains
the same as k, since measurement uncertainty for the application
is not applicable.

Then the covariance matrix for the discrepancy vector, d, is:

Cdd �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1,1 D1,2 / D1,M D1,M+1
D2,1 D2,2 / D2,M D2,M+1
« « 1 « «

DM,1 DM,2 / DM,M DM,M+1
DM+1,1 DM+1,2 / DM+1,M DM+1,M+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R(M+1)×(M+1)

(11)

where Di,j � Ckk[i, j] + Cmm[i, j] and Cmm[i, j] describes the
possible correlations between the experimental measurements.
The elements of the last column or the last row of the Cdd are the
same as those of the Ckk matrix since no measurement is
applicable for the application. If the experiments are
independent, then the Cmm matrix reduces to a diagonal matrix.

Similarly to before, consider the expressions in Eq. 11 using
the Cholesky decomposition of Cdd as:

Cdd � DTD

where D � [ δ1 δ2 / δM+1 ], where the inner-product of
any of two columns of D gives:

7δTi δj � Cdd[i, j], i, j � 1, 2, . . . ,M + 1

Geometrically, the ACCRUE index jk with a single experiment
thus is defined as the cosine angle defined by two vectors of D,
specifically one related to the application and the other to an
experiment as:

jk(dj; dM+1) � δTj δM+1����
δTj δj

√ ��������
δTM+1δM+1

√
� Cdd[j,M + 1]��������

Cdd[j, j]√ ����������������
Cdd[M + 1,M + 1]√

� cos θ(δj, δM+1) (12)

Figure 4 graphically shows how the measurement
uncertainty impacts on the jk value with a single experiment
(the jth experiment denoted by subscript “j”) as compared to the
ck value. Due to the measurement uncertainty, the cosine angles
estimated by ck and jk respectively change from cos θj to cosφj.
If the associate measurement uncertainty of the given
experiment is zero, the jk value reduces to the ck value. In
any other cases where the measurement uncertainty of the given
experiment is not zero, the cosine angle given by jk is always
smaller than that by ck as illustrated, e.g., cosφj < cos θj or
φj > θj. This can be readily proved by comparing the
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analytical expressions for each ck and jk value shown in Eqs. 9,
12, respectively.

With regard to the matrix notations of both equations,
Ckk[j,M + 1] and Cdd[j,M + 1], Ckk[M + 1,M + 1] and
Cdd[M + 1,M + 1] are the same respectively since
measurement is not applicable for the application, while
Cdd[j, j] is always greater than Ckk[j, j] since
Cdd[j, j] � Ckk[j, j] + Cmm[j, j]. As a result, the cosine angle
is reduced proportional to

���������������
Ckk[j, j]/Cdd[j, j]

√
with experimental

measurement uncertainty present.
As discussed in Section 2.3, the covariance matrix, Cmm, can

be written as:

Cmm � LLT � lim
N→∞

⎛⎝L
1
N

∑N
i�1

ζ(p)ζ(p)TLT⎞⎠
� lim

N→∞
⎛⎝ 1
N

∑N
p�1

Δm(p)Δm(p)T⎞⎠
where L ∈ RM×M a low triangular matrix.

Then the measurement sample vector for jth experiment,
Δmj ∈ RN, is defined as:

Δmj �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m(1)
j −m(ref)

j

m(ref)
j

m(2)
j −m(ref)

j

m(ref)
j

«

m(N)
j −m(ref)

j

m(ref)
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, j � 1, 2, . . . ,M

Thus, the discrepancy sample vector for jth experiment,
Δdj ∈ RN, is:

Δdj � Δkj − FjΔmj

where Fj is a scalar quantity representing a ratio of experimental
to calculated response values of jth experiment

lim
N→∞

ΔdT
i Δdj � Cdd[i, j]

Thus,

jk(dj; dM+1) � lim
N→∞

ΔdT
jΔdM+1�������

ΔdT
jΔdj

√ �����������
ΔdT

M+1ΔdM+1
√

3.2 Impact of Multiple Experiments
The ACCRUE index may be viewed as the similarity between a
group of experiments and the application of interest when the
experimental uncertainties are excluded from the analysis. Its true
value however is in assessing the relevance of a new experiment by
taking into account both the experiment’s measurement uncertainty
and the value gleaned from past experiments. In this section, the
detailed analytical derivation for jk value with multiple experiments
is provided with the δ vectors. However, if analysts are not interested
in including the impact ofmeasurement uncertainties, they canwork
directly with the c vectors instead of δ vectors.

Analytically, the jk index for the first L experiments is given
using the elements of the Cdd matrix in Eq. 11 by:

jk �

�������������∑L
i�1

(Ei,M+1)2
Ei,i DM+1,M+1

√√
(13)

where the E terms are defined by the following recurring relation:

E1,j � D1,j

Ei,j � Di,j − ∑i−1
k�1

Ek,i

Ek,k
Ek,j

These terms can be evaluated analytically given access to the
sensitivity coefficients, the prior cross-section covariance matrix,

FIGURE 4 | Impact of measurement uncertainty inclusion.
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and the measurement uncertainties. By way of an example,
consider the simple case with L � 1, i.e., a single experiment,
where the jk reduces to:

jk(d1; dM+1) �
�����������(D1,M+1)2
D1,1 DM+1,M+1

√
� s1Cααs

T
M+1�����������

sT1Cααs1 + σ2
m1

√ ����������
sTM+1CααsM+1

√
(14)

This expression equivalent to the ck index assuming zero
measurement uncertainty, i.e., σ2m1

� 0.0. The implication is
the jk will always have a lower value than the corresponding ck
value for any realistic non-zero experimental uncertainties. With
L � 2, and assuming the measurement uncertainties are
uncorrelated, i.e., Cmm[1, 2] � Cmm[2, 1] � 0, the jk value
becomes:

jk(d1, d2; dM+1) �
������������������������(E1,M+1)2
E1,1 DM+1,M+1

+ (E2,M+1)2
E2,2 DM+1,M+1

√
�

����������������������������������(D1,M+1)2
D1,1 DM+1,M+1

+
(D2,M+1 − D1,2

D1,1
D1,M+1)2

(D2,2 − D1,2

D1,1
D1,2) DM+1,M+1

√√√
�

���������������������������������������������������������������
(sT1Cααsa)2(sT1Cααs1 + σ2m1

)(sTaCααsa) + (sT2Cααsa − sT1Cααs2
sT1Cααs1 + σ2

m1

sT2Cααsa)2

(sT2Cααs2 + σ2m2
− sT1Cααs2
sT1Cααs1 + σ2

m1

sT1Cααs2)sTaCααsa

√√√√√
(15)

Eq. 15 shows that the relevance of two experiments may be
expressed as the sum of two terms, one very similar to the ck index
representing the relevance of the first experiment, and the other
subtracting away the impact of the first experiment. To help
interpret the jk index for L experiments, we resort to the
geometrical and statistical interpretations provided earlier in
Section 3.1.

Consider the case with two experiments (denoted by the
subscripts “1” and “2”, respectively) as illustrated in Figure 5,
where jk calculates the angle between the δM+1 vector
(representing the application) and the subspace formed by δ1

and δ2 (representing the two experiments). As long as the second
experiment provides additional information which is not
duplicated by the first experiment, the jk value is expected to
increase as compared to the value obtained with a single
experiment, i.e., jk(δ1, δ2; δM+1)> jk(δ1; δM+1) or φ2 <φ1 as
shown in Figure 5. In the case that the second experiment
carries no additional information, e.g., the jk value remains the
same. The implication is that the second experiments provides no
value to the GLLS inference procedure, and hence can be
excluded.

The cosine angle between any two subspaces can be
calculated by orthogonal projection techniques, e.g., QR
decomposition or Singular Value Decomposition (SVD).
For example, consider the jk value of the first L
experiments and the application, the corresponding δ
vectors can be aggregated as:

DL � [ δ1 δ2 / δL ]
Then, the associated jk expression can be written as:

jk(DL; δM+1) � cos θ(DL, δM+1) � cos θ(QL, v) �
∣∣∣∣∣∣∣∣QT

L v
∣∣∣∣∣∣∣∣

�
�����������������������(qT1 v)2 + (qT2 v)2 +/(qTLv)2√

where qj (j � 1, 2, . . . , L) is jth q vector of theQL matrix fromQR
decomposition and v is a normalized δM+1 vector for the
application such as v � δM+1/||δM+1||.

For example, consider the case where D1 contains only δ1
vector corresponding to the first experiment, i.e., D1 � δ1, then
the jk value is calculated as:

jk(D1, δM+1) �
������(qT1 v)2√

where q1 is a normalized directional vector of δ1:

q1 � δ1
||δ1||

Thus, the jk value is

FIGURE 5 | Geometrical interpretation of jk value with two experiments.
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jk �

������������(δT1 δM+1)2
δT1 δ1δ

T
M+1δM+1

√√
� δT1 δM+1����

δT1 δ1

√ ��������
δTM+1δM+1

√
� sT1Cααsa�����������

sT1Cααs1 + σ2
m1

√ �������
sTaCααsa

√
which is equivalent to Eq. 14

If D2 contains two δ vectors (δ1 and δ2) corresponding to the
first two experiments, then the jk value is calculated as:

jk(D2, δM+1) �
�������������(qT1 v)2 + (qT2 v)2√

where q2 is defined by Gram-Schmidt process such as:

q2 �
(δ2 − δT1 δ2

δT1 δ1
δ1)���������������

δT2 δ2(1 − δT1 δ2δ
T
1 δ2

δT1 δ1δ
T
2 δ2

)√
Thus, the jk value is:

jk �

�����������������������������������(δT1 δM+1)2
δT1 δ1δ

T
M+1δM+1

+
(δ2ca − δT1 δ2

δT1 δ1
δ1δM+1)2

(δT2 δ2 − δT2 δ1
δT1 δ2
δT1 δ1

)δTM+1δM+1

√√√
�

����������������������������������������������������������(sT1Cααsa)2(sT1Cααs1 + σ2m1
)(sTaCααsa) + (sT2Cααsa − sT2Cααsa

sT1 Cααs2
sT1 Cααs1+σ2m1

)2

(sT2Cααs2 + σ2
m2

− sT1Cααs2
sT1 Cααs2

sT1 Cααs1+σ2m1
)sTaCααsa

√√√
which is equivalent to Eq. 15

Consequently, the general expression for jk value can be
written as:

jk �

���������������∑L
i�1

(uT
i δM+1)2

uT
i ui δ

T
M+1δM+1

√√
where

u1 � δ1

ui � δi − ∑i−1
k�1

uT
k δi

uT
k uk

uk, i � 2, 3, . . . , L

which evaluates the same scalar quantity as that calculated by the
matrix element notations in earlier this section.

3.3 Overall Process
Figure 6 shows the overall process for evaluating the similarity or
relevance of an experiment to a given application. The similarity
accounts for the correlation between two responses, e.g., one
from the application and the other from the experiment, as
calculated by a computer code. The ACCRUE index extends
the concept of similarity to quantify the relevance, as measured
by the added value of the experiment, taking into account both
the experiment’s measurement uncertainties as well as past
experiments. As shown in this figure, the first step is to check
if an adjoint solver is available which allows one to employ
sensitivity coefficients. If no experimental measurement

uncertainty is available and only a single experiment is
available, the ACCRUE index jk reduces to the similarity index
ck. If the experimental uncertainty is available, Eq. 12 is employed
to evaluate the jk index. If additional experiments are available,
then the most general expression for jk is employed per Eq. 13.

4 NUMERICAL EXPERIMENTS

Numerical experiments have been conducted with two different
case studies. The first case study assumes that the applications
have low ck values for all available experiments which are in the
order of 0.7, referred to as the low relevance applications, and the
second case study considers applications with high ck values that
are greater than 0.9. An application with low relevant
experiments represents a realistic scenario expected with first-
of-a-kind designs, i.e., advanced reactor designs and new fuel
concepts, with no prior or rare strongly relevant experiments. It
also highlights the expected high cost of new experiments, and the
need to employ modeling and simulation to design a minimal
number of targeted validation experiments. When the ck values
are low for the given application, it is important to figure out a
way to prioritize the selection of past available experiments, as
well as judge the value of new/planned experiments. We compare
the performance of the jk and ck indices for both the high
relevance and low relevance applications for a range of
assumed values for the experimental uncertainties. This is also
important when designing new experiments, as it provides
quantitative value for different types of instrumentations with
varying levels of measurement uncertainties.

The low relevance case study employs 17 critical benchmark
experiments from the low enriched uranium thermal compound
systems (LCT-008-001—LCT-008-017) in the ICSBEP handbook
(NEA, 2011) as experiments and the accident-tolerant fuel (ATF)
concept BWR assembly as an application. The selected LCT
benchmark experiment set (LCT-008) cases are critical lattices
with UO2 fuel rods of 2.9% enrichment and perturbing rods in
borated water in common, but have different boron
concentrations and various rods arrangements. Their similarity
indices, ck, to the BWR ATF model are all around 0.7 as reported
by TSUNAMI-IP. The BWR ATF model is a 10 × 10 GE14
dominant lattice with UO2 fuel and FeCrAl cladding. This
model comprises 92 UO2 fuel pins, 78 out of which are fuel
with various enrichments from 2 to 4% and the remaining are 14
rods with gadolinium, surrounded by water coolant in a channel
box structure (Jessee, 2020). The layouts of a representative LCT
benchmark experiment (LCT-008-001) and the application
model are shown in Figure 7. The high relevance case study
employs 42 critical experiments from highly enriched uranium
fast metal systems (HMF set, short for HEU-MET-FAST) in
ICSBEP handbook. In this study, application models are selected
among these benchmark experiments and similarity indices are in
the 0.9 range (NEA, 2011). All the critical benchmarks employ
highly enriched uranium fuel with a variety of design
configurations and different enrichments. Figure 8 shows two
representative benchmark experiments one of which is used as an
experiment (HMF-020-001, Polyethylene-reflected spherical
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assembly of 235U) and the other as an application (HMF-019-001,
Graphite-reflected spherical assembly of 235U).

To identify the possible impact of initial discrepancies,
i.e., differences between calculated and measured responses,
on the GLLS-estimated biases, three critical experiments
having different biases (high, intermediate, and low) are
selected as applications and the remaining experiments are
used as validation experiments. The high bias application is
selected to have an initial keff discrepancy in the order of

1,000 pcm, while the intermediate in the order of
300–500 pcm, and the low 200 pcm.

4.1 Comparison of jk vs. ck-Sorting
Figure 9 shows representative results for the high relevance case
study for three different applications with high, intermediate, and
low biases. The x-axis explores the change in the GLLS-estimated
biases when adding one experiment at a time, wherein the
experiments are ordered according to their ck values (top

FIGURE 6 | Approach for evaluating experimental relevance.

FIGURE 7 | Low-relevant case layouts of the representative models. (A) Experiment model: LCT-008-001 (B) Application model: ATF assembly.
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graphs), and jk values (bottom graphs). The ck-sorting is
straightforward as each experiment is employed once in
conjunction with the given application. Markedly different, the
jk value depends on the number and order of experiments
included, hence each sorting is expected to give rise to
different profiles for jk and the associated bias and bias
uncertainty. The goal is thus to identify the order that allows
the analyst to reach a certain level of confidence in the calculated
bias with minimal number of experiments. In the current study,

the search for this optimal order is initiated with the experiment
having the highest ck value, with the second experiment selected
tomaximize the jk value among all remaining experiments, and so
on. In practice, one may start with any experiment, and adds
experiments as they become available, or may employ the jk value
to quantify the value of new/planned experiments. For each
added experiment, the GLLS bias and bias uncertainty are
calculated to help compare the ck and jk-sorting. The goal is to
achieve a stable prediction of the bias with minimal uncertainty.

FIGURE 8 | High-relevant case layouts of the representative models. (A) Experiment model: HMF-020-001 (B) Application model: HMF-019-001.

FIGURE 9 | Bias and uncertainty estimation for high relevance case.
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These results show that the bias stabilizes quicker with the jk
sorting. More important, the ck-sorting could show sudden
changes after a period of stable behavior. For all considered
applications using the ck-sorting, the biases continue to
experience sudden or gradual changes following a period of
stable behavior. For example, for the low bias application, the
estimated bias exhibits an upward trend after the 20th
experiment. The implication is that the additional experiments
continue to provide value to the GLLS procedure despite their
lower relevance. With the jk-sorting, a more explainable trend is
achieved whereby the bias trend shows stable behavior after the
20th experiment.

Regarding the bias uncertainties, shown in Figure 9 as error
bars, they are plotted in Figures 10, 11 as a function of the
number of experiments using both the ck and jk-sorting for,
respectively, one application with high relevance experiments and
one application with low relevance experiments. The results

highlight a key limitation of the ck-sorting, that is the addition
of low relevance experiments could change the trend of both the
bias and the bias uncertainty. The jk-sorting however does not
suffer from this limitation, implying that one can select the
minimal number of experiments required to reach a certain
pre-determined level of confidence for the calculated bias.
Comparison of the uncertainty values in both figures indicate
that the impact is much less pronounced when highly relevant
experiments are available. This highlights the value of the jk-
sorting when limited number of experiments are available, as is
the case with first-of-a-kind designs.

These results are compared in Figure 12 with randomized
orders (shown as multi-color solid lines) for one of the low
relevance applications at different levels of measurement
uncertainty, specifically 10 pcm (representing a highly accurate
measurement), 100 pcm (a realistic measurement), and 500 pcm
(a low confidence measurement) for the measured keff values. The

FIGURE 10 | Bias uncertainty reduction for a low relevance application.

FIGURE 11 | Bias uncertainty reduction for a high relevance application.
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results show that pure random sampling could be superior to ck-
sorting, with the jk sorting still exhibiting the best behavior in
terms of reducing the bias uncertainty with minimal number of
experiments. When the measurement uncertainty is too high, the
ordering of the experiments is no longer important. This is a key
observation highlighting the value of ordering experiments as
experimentalists continue to improve their measurements in
support of model validation.

To help understand the changes in the bias and bias
uncertainty associated with the ck-sorting, the left plot in
Figure 13 orders the experiments according to their ck values,
and the middle plot calculates the corresponding jk values using
the ck-sorting. Notice that although the first few experiments,
i.e., #15, #13, #12, . . ., to #4 have higher relevance than later
experiments, they do not change the jk value, and hence the bias
and bias uncertainty as shown in the earlier figures. The jk values
start to show larger increase when additional lower relevance

experiments are added, explaining the sudden or gradual change
in the bias and its uncertainty. However, when the experiments
are ordered according to their jk values, as shown in the right plot,
a smoother jk profile is obtained which is consistent with the bias
and bias uncertainty profiles obtained using the GLLS procedure.
The implication is that one can employ the jk profile to develop
insight into the amount of experimental effort necessary to reach
a target confidence in the calculated bias, even before the actual
measurements are recorded. This follows because jk only requires
access to the prior uncertainties and the expected measurement
uncertainty, not the actual measured bias.

4.2 Stochastic Non-Intrusive Verification
As mentioned earlier, the analytical expressions for the similarity
or relevance metrics such as ck and jk require access to derivatives
which may not be readily available. To address this challenge,
earlier work has developed an alternative to the estimation of ck

FIGURE 12 | Bias uncertainty reduction with random orders.

FIGURE 13 | Comparison of the ck and jk profiles.
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value using a non-intrusive forward-based stochastic method
(Huang et al., 2020). In this section, we present numerical
results comparing the results of the analytically-calculated jk
value to that estimated by the noted stochastic method. This
will serve two purposes: the first is to provide a simple
approach for the calculation of the jk value when derivatives are
unavailable, and the second to help verify the calculated jk value
using the stochastic method by comparing it to the analytically-
calculated value. To achieve that, two benchmark experiments
(HMF-005-001 and 005-002) are selected to calculate the jk value.
Their calculated response uncertainties are 1,492 pcm and
1721 pcm respectively, and measurement uncertainties are
360 pcm. A total of 1,000 samples are generated to examine the
convergence of forward-based jk value, whose corresponding
analytical value is 0.9445 as given by Eq. 15, shown in
Figure 14 as a horizontal line. The results indicate that the
forward-based approach produces acceptable approximation of
the analytical value using few hundred simulations, which is
consistent with the results reported previously for the ck value
(Huang et al., 2020).

5 CONCLUSION AND FURTHER
RESEARCH

This manuscript has introduced an extension of the basic
similarity metric, denoted by the ACCRUE metric and
mathematically symbolized by the jk index to distinguish it
from the ck similarity metric. The ACCRUE metric takes into
account the impact of multiple experiments and the associated

experimental uncertainties, both currently missing from the
extant similarity definition. The results show that the
ACCRUE metric is capable of finding the optimal sorting of
the experiments, the one that leads to the most stable variation in
the GLLS calculated bias and bias uncertainty. When the
experiments available are highly relevant and numerous, the
performance of the ck metric approaches that of the jk metric.
However, when highly-relevant experiments are scarce and when
experimental uncertainties are low, the jk metric is capable of
identifying the minimal number of experiments required to reach
a certain confidence for the calculated bias, whereas the ck metric
may be outperformed by random sorting of the experiments. The
results of this work are expected to be valuable to the validation of
computer models for first-of-a-kind designs where little or rare
experimental data exist. Another important value for the jkmetric
is that it can be calculated using forward samples of the model
responses, thereby precluding the need for derivatives, which
allows one to extend the concept to non-keff responses. This will
allow one to extend its definition to models exhibiting nonlinear
behavior often resulting from multi-physics coupling, e.g.,
different geometry, compositions, and types of reactor. This
will pave the way to the development of relevance metrics that
goes beyond the first-order variations currently captured by the
extant similarity analysis.
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