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Energy consumption prediction is a popular research field in computational intelligence.
However, it is difficult for general machine learning models to handle complex time series
data such as building energy consumption data, and the results are often unsatisfactory.
To address this difficulty, a hybrid prediction model based on modal decomposition was
proposed in this paper. For data preprocessing, the variational mode decomposition
(VMD) technique was used to used to decompose the original sequence into more robust
subsequences. In the feature selection, the maximum relevance minimum redundancy
(mRMR) algorithm was chosen to analyse the correlation between each component and
the individual features while eliminating the redundancy between individual features. In
the forecasting module, the long short-term memory (LSTM) neural network model was
used to predict power consumption. In order to verify the performance of the proposed
model, three categories of contrast methods were applied: 1) Comparing the hybrid
model to a single predictive model, 2) Comparing the hybrid model with the
backpropagation neural network (BPNN) to the hybrid model with the LSTM and 3)
Comparing the hybrid model using mRMR and the hybrid model using mutual
information maximization (MIM). The experimental results on the measured data of an
office building in Qingdao show that the proposed hybrid model can improve the
prediction accuracy and has better robustness compared to VMD-MIM-LSTM. In the
three control groups mentioned above, the R2 value of the hybrid model improved by 10,
3 and 3%, respectively, the values of the mean absolute error (MAE) decreased by 48.9,
41.4 and 35.6%, respectively, and the root mean square error (RMSE) decreased by
54.7, 35.5 and 34.1%, respectively.
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1 INTRODUCTION

Energy is critical in modern society, and energy consumption is a major issue that has long plagued
humanity. Increasing demand for energy is gradually drawing attention to energy conservation issues
around the world. Among energy sources, building electricity consumption accounts for a large
proportion of total social energy consumption. From a global perspective, building energy
consumption accounts for about 40% of the global energy consumption, and this proportion is
likely to increase in the future.
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Scientists have explored various methods for predicting
building electricity consumption, aiming to achieve intelligent
energy management and energy-saving building reconstruction
based on predicted energy consumption. However, building
electricity forecasting continues to be a challenging effort due
to the variety of factors that affect energy consumption, such as
building structure, equipment, weather conditions, and energy-
use behaviours of the building occupants.

Building electricity consumption predictions can be divided
into three methods according to the type of data input and
processing method used: White-box physics-based models,
grey-box reduced-order models and black-box data-driven
models.

White-box physics-based models rely on thermodynamic
rules for detailed energy modelling and analysis. The
construction of the physical model requires a large number of
physical parameters related to the building and a detailed setting
of the system operation. Its accuracy depends on the input
parameters and the selected simulation software. Zhu et al.
(Zhu et al., 2012; Said, 2016) compared the Dest, Energy Plus
and DOE-2 simulation software calculation methods, and their
research results showed that the difference of load between the
simulation results of Dest and Energy Plus was less than 10%.
However, some detailed architectural data may not be readily
available to researchers, resulting in an inability to provide
accurate inputs and thus leading to poor predictive performance.

Grey-box modelling approaches offer a combination of
physical and data-driven prediction models, leveraging the
advantages and minimizing the disadvantages of both
approaches. In grey-box models, some internal parameters and
equations are physically interpretable (Eom et al., 2012; Amasyali
and El-Gohary, 2018). Grey-box models may also show better
performance compared to black-box and white-box models. For
example, Dong et al. (Dong et al., 2016) developed a hybrid model
which coupled a data-driven model and a thermal network model
for predicting the total energy consumption of residential areas
and compared its prediction performance to artificial neural
networks (ANN), support vector machines (SVM) and least
square support vector machine (LSSVM)-based models.

Unlike physical models, black-box data-driven models do not
require detailed building data, but rather they learn from the
available historical data to make predictions. Common machine
learning algorithms include SVM and ANN. These algorithms
have a wide range of applications in the field of energy
consumption prediction. Currently, about 47% of studies use
ANN to predict energy consumption (Liu et al., 2019). For
example, Mansoor et al. (Muhammad et al., 2020) compared
two different neural network models, feed-forward neural
networks (FFNN) and echo state networks (ESN) for electrical
load forecasting in real commercial buildings; their results
indicated that the ESN model generally performed slightly
better than the FFNN model Katarina. Liu et al. (Liu et al.,
2020) proposed a hybrid forecasting model that combined the
Jaya algorithm and SVM. In this model, the representative
features of the input data were selected and the hyper-
parameters of SVM were optimized by using the Jaya
optimization algorithm to efficiently improve the forecasting

accuracy of wind speed. Mendonça et al. (de Paiva et al.,
2020) investigated the application of machine learning models
for solar radiation intensity prediction. They evaluated multigene
genetic programming (MGGP) and the multilayer perceptron
(MLP) ANN. The results showed that MGGP produced better
results in the case of a single prediction, while ANN presented
more accurate results for ensemble forecasting. Anderso et al.
(Marcello Anderson et al., 2017) applied portfolio theory to solar
and wind energy forecasting to improve resource forecasting for
specific solar and wind energy conditions in the Brazilian region.
Their study showed that the optimal combination of 30% solar
and 70% wind resources generated the smallest calculated
standard deviation.

However, the original time series were often unstable due to
the disturbance of uncertainty. For this type of data, a single
model did not produce excellent results (He et al., 2018). To
improve the prediction accuracy, the segregation of these series
with different frequencies from the energy data was considered as
a possible solution.

Empirical mode decomposition (EMD) was proposed by Dr
Norden E. Huang in 1998 (Huang Norden et al., 1998) as a
method for processing nonstationary signals; it is an adaptive
time-frequency localization analysis method, the number of
decomposed IMFs depends on the data itself. Liu et al. (Liu
et al., 2012) proposed a standard hybridization of EMD with the
backpropagation neural network (BPNN) method. In this study,
all intrinsic mode functions (IMFs) and the residue were
forecasted with BPNN models. Similarly, Guo et al. (Guo
et al., 2011) proposed a modified EMD–FFNN model in the
form of an EMD-based FFNN ensemble learning paradigm. This
study showed that the first IMF containing high-frequency
components was mostly unsymmetrical and disordered, which
led to the generation of large forecasting disturbances. The
simplest combinations of hybrid EMD–SVM models are
presented in the literature (Lin and Peng, 2011; Zhang et al.,
2015). These models decomposed wind data into a series of
components (IMFs) using EMD, and then different models
were built with various kernel functions and parameters for
each component using the SVM model.

However, the IMF components obtained by EMD often
exhibit mode mixing, resulting in inaccurate IMF components.
To solve this problem, many scholars have proposed improved
algorithms. Wu and Huang (Wu and Huang, 2009) suggested the
ensemble empirical mode decomposition (EEMD) method.
Numerous articles in distinct research areas have claimed the
superior performance of the EEMD method over hybrid EMD
models. The hybrid EEMD–SVM model has been used in the
literature and has achieved better prediction accuracy than other
models (Hu et al., 2013; Wu et al., 2018). In one work (Wu et al.,
2018), wind speed data was decomposed into seven IMF
components with EEMD and then the IMFs were predicted
using the appropriate SVM models. Elsewhere, a similar
approach was used in which the first IMF (IMF1) was
removed from the prediction analysis and all remaining IMFs
were forecasted with SVMmodels (Hu et al., 2013). Yu et al. (Wu
et al., 2018) proposed a novel model based on EEMD and LSTM
for crude oil price forecasting. In this study, a method to select the
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same number of proper inputs in various decomposition scenarios
was developed. To extract features from the selected components
more adequately, LSTMwas introduced as a forecasting method to
predict price movement directly. Dragomiretskiy and Zosso
(Dragomiretskiy and Zosso, 2014) introduced the variational
mode decomposition (VMD) method in 2014. The VMD
algorithm is more robust in that it inherits the advantages of
the EMD algorithm while solving the mode mixing problem of the
EMD algorithm. In recent years, the VMD algorithm has been
successfully applied in many fields, such as fault diagnosis research
(Zhang et al., 2017) and forecast research (Liu et al., 2018; Niu et al.,
2020). The studies of He (He et al., 2019) and Li (Li et al., 2018)
have shown that the combinationmodel based on “decomposition-
prediction” can achieve high prediction accuracy in heating and
cooling seasons. He et al. developed a VMD-LSTM forecasting
model for electricity load forecasting in Hubei province. They
divided the 1-year data into four parts, corresponding to four
seasons. The results show that the proposed forecasting model has
high forecasting accuracy on all four data sets. The lowest
prediction accuracy is found in summer, attributed to the
higher fluctuation and uncertainty of load in summer.

Studies using signal decomposition methods have some
shortcomings. Firstly, some literature uses different prediction
methods for different IMF frequencies while ignoring the
feature selection variability of IMFs. Secondly, it is difficult to
provide a reasonable explanation for the physical meaning of each
component using signal decomposition methods. To address these
inadequacies, a hybrid system was developed that comprises three
modules to predict the electricity load of public buildings in
Qingdao. Compared with existing studies on short-term load
forecasting, the main contributions of this paper are as follows:

1) A novel deep learning-based method for predicting building
electricity consumption is proposed. The idea of
‘‘decomposition–reconstruction–integration” results in a
feasible and efficient method to model and forecast
nonlinear, non-stationary, complex time series.

2) Due to the volatility and uncertainty of the load data, VMD is
used to decompose the raw load into more stable series. Most
of the literature does not detail the determination of the
number of VMD components (Sun et al., 2019b). In this
paper, the mean value of the instantaneous frequency of each
component is used to determine the number of K.

3) Most of the literature does not provide a reasonable
interpretation of the components decomposed by the
modal decomposition algorithm. In this paper, the highly
volatile load is decomposed into several subsequences by
VMD. The redundancy between features is removed by the
mRMR algorithm so that each subsequence has a suitable
feature. With the features selected by mRMR, this paper
attempts to analyse the physical meaning of each subsequence.

This study is organized as follows. Section 2 outlines the principles
of the methods related to the proposed hybrid system. In addition, a
case study is presented in Section 3. Finally, the study’s conclusions
and avenues for future work are presented in Section 4. Note that the
data decomposition and feature selection were performed on a laptop

with an Intel(R) i5-7400CPUwithMATLAB 2020a installed, and the
deep learning model was performed on a laptop with an Intel(R) i5-
7400 CPU with Python 3.8 installed.

2 METHODOLOGY

The main contents of this section introduce the algorithm used in
this paper: Variational mode decomposition (VMD), Max-
Relevance and Min-Redundancy (mRMR) and Long Short-
Term Memory Neural Network (LSTM). The flow chart of the
hybrid model is shown in Figure 1.

2.1 Principle of Variational Mode
Decomposition
2.1.1 VMD Principle
In order to solve the modal mixing problem existing in EMD,
Dragomiretskiy et al. (Dragomiretskiy and Zosso, 2014) proposed
the VMD algorithm, which is essentially a set of adaptive Wiener
filter sets. The decomposition number K of VMD is determined
artificially. Theoretically, if the value of K is more reasonable, it
can effectively suppress the modal mixing phenomenon. the main
process of VMD is divided into five steps:

1) Suppose uk is the Kth order mode of the original signal f and
δ(t) is a Dirac distribution. The analytic signal of the mode uk
is calculated by Hilbert transform, then its unilateral
frequency spectrum can be expressed as:(δ(t) + j

πt
)*uk(t) (1)

2) Adding a pre-estimated center frequency to the resolved signal
of the mode, the frequency of the mode can be modulated to
the corresponding baseband:[(δ(t) + j

πt
)*uk(t)]e−jwkt (2)

3) Calculating the bandwidth of each modal signal, the
constrained optimization problem is expressed as:

min
{uk},{wk},

⎧⎨⎩∑k
k�1










σt[(δ(t) + j

πt
)*uk(t)]e−jwkt









22⎫⎬⎭ (3)

where the constraint of Eq. 3 is: ∑k
k�1uk(t) � f(t).

4) The Lagrangian function λ(t) and quadratic penalty factor α
are introduced to solve the optimal solution of the constrained
problem and transform the constrained optimization problem
into an unconstrained optimization problem.

L[{uk}, {wk}, λ] � α∑k
k�1










σt[(δ(t) + j

πt
)*uk(t)]e−jwkt









22
+









f(t) −∑k

k�1
uk(t)









22 +〈λ(t), f(t) −∑k
k�1

uk(t)〉 (4)
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5) Use the multiplicative operator alternating direction method
to update un+1k , wn+1

k , λn+1 alternately in both directions until
the following iteration conditions are satisfied:

∑
k








u∧n+1k − u
∧n

k







22/





u∧nk





22 < ε (5)

Where ε> 0, un+1k , wn+1
k , λn+1 are denoted as:

ûn+1
k (w) � f̂(ω) −∑i< kû

n+1
k (ω) −∑i> kû

n
k(ω) + λ̂

n(w)
2

1 + 2α(ω − ωn
k)2 (6)

ωn+1
k � ∫∞

0
ω
∣∣∣∣ûn+1

k (w)∣∣∣∣2dω∫∞

0

∣∣∣∣ûn+1
k (w)∣∣∣∣2dω (7)

λ̂
n+1(ω) � λ̂

n(ω) + τ(f̂(w) − ûn+1
k (ω)) (8)

where τ is the updated noise parameter.

2.1.2 VMD parameter determination
1) Modal Number

The number of modalities K should be determined before
the VMD is used to decompose. Too large or too small a value
of K will affect the accuracy of the model. In this paper, the
mean value of instantaneous frequency of each component is
used to determine the number of K. When the value of k is too

large, and the high-frequency component will be broken. It
means that the instantaneous frequency at the break of the
high-frequency component is 0. As a result, the high-frequency
component breaks lead to a decrease in the average
instantaneous frequency. Figure 2 shows the mean values of
instantaneous frequencies for the nine cases of VMD
components. It can be seen from the figure that the number
of VMD components increases to a certain number, and the
curve has an obvious bending phenomenon. To sum up, the
value of K is chosen as 4.

2) Penalty Factor

The penalty factor changes the constrained variational
problem into a non-constrained variational problem.
According to Ref. (Wu, 2016), when the value of the penalty
factor is set to 2000 has strong adaptability and can ensure a
certain convergence speed.

2.2 Principle of Max-Relevance and
Min-Redundancy
Peng et al.(Peng et al., 2005) proposed a feature selection method
based on Mutual Information, which uses Mutual Information to
measure the dependency between two variables while taking into
account the redundancy between features.

FIGURE 1 | Hybrid model flow chart.
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2.2.1 Max-Relevance
The maximum correlation criterion solution can be expressed as
the average of the mutual information between the feature xi and
the target variable y:

maxD(J, y) � 1

|J| ∑xi∈J I(xi, y) (9)

where xi is the characteristic; y represents the target variable; J is
the set containing the xi; I(xi, y) represents the mutual
information between the feature xi and the target variable y.
The expression is as follows:

I(xi, y) � ∫∫p(xi, y)log p(xi, y)
p(xi)p(y) dxidy (10)

where p(xi), p(y) are the edge probability density functions of xi

and y, respectively , p(xi, y) is the joint probability density
function of of xi and y.

2.2.2 Minimum Redundancy
The overlapping information between any two feature variables
is called redundancy information. The features selected
according to Eq. 9 only consider the degree of correlation
and do not consider the existence of redundancy between
features. The input of redundant features increases the
number of input features, and decreases the accuracy of the
prediction model. The Minimum Redundancy expression is as
follows:

minR(J) � 1

|J|2 ∑
xi∈J,xj∈J

I(xi, xj) (11)

mRMR can be expressed by Eqs 9, 11 as:

maxψ(D,R),
ψ � D − R. (12)

2.3 Prediction Model
The prediction part uses Long Short-Term Memory Neural
Network (LSTM) model, which was proposed by Hochreiter
and Schmidhuber (Hochreiter and Schmidhuber, 1997) to
learn long-term dependence information. It can handle more
complex problems, and has more mature applications in the field
of load prediction (Sun et al., 2019a). Long short-term memory
neural network is a special form of the recurrent neural network.

FIGURE 2 | Average instantaneous frequency when K from 1 to 9

FIGURE 3 | LSTM structure.
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LSTM is composed of cells with the same structure (Figure 3). In
this model, the data of the next moment is predicted each time by
the previous data and historical data, which is processed by the
cells. Each cell has three input parameters: Historically stored
information Ct−1, historical dataXt and ht−1, which represent the
prediction results of the last cell and input parameter to the cell.
Each cell contains four parts, including the forgotten gate, the
input gate, the update gate and the output gate.

The data ht−1 that processed by the previous cell, and the
input data of the current time Xt are linked by a matrix and
obtain X’

t,

X’
t � [ht−1, Xt] (13)

In the forgotten gate, LSTM can decide what information to
discard from the cell. After the sigmoid function processing, X’

t
can get ft1. LSTM can remember large amounts of historical data
by ft1 filtered data.

ft1 � σ(Wf ·X’ + bf) (14)

In the input gate, LSTM acquires the new data, After the
sigmoid function processing, X’

t can get it. The it decides the
useful data in X’

t. Moreover, X’
t is processed by the tanh function

to calculate C’
t,

it � σ(Wi ·X’ + bt) (15)

C’
t � tan h(Wc ·X’ + bc) (16)

ft2 � it × C’
t (17)

Ct is updated in the update gate. To obtain the historical data,
Ct−1 and ft1 are multiplied by the matrix, In order to keep more
accurate rules in the cell for accurate prediction, ft2 is added to
the equation to get output Ct,

Ct � ft1 × Ct−1 + ft2 (18)

LSTM outputs the result in the output gate. After the sigmoid
function processing, X’

t can get Ot. Ot decides which Ct needs to
be retained as the result. In addition, Ct is processed by the tanh
function to get h’t, h

’
t and Ot are multiplied to obtain the final

data ht,

Ot � σ(Wo ·X’
t + bo) (19)

ht � Ot × tanh(Ct) (20)

tan h(x) � e2x − 1
e2x + 1

(21)

σ(x) � ex

ex + 1
(22)

In order to compare the prediction results of different models,
three evaluation metrics will be used in this paper: Decision
factor: R-square (R2), mean absolute error (MAE), and root mean
square error (RMSE). The specific calculation of these metrics is
described as follows:

R2 � 1 − ∑i(Pi − Qi)∑i( �Qi − Qi)22 (23)

MAE � 1
n
∑n
i�1
|Qi − Pi| (24)

RMSE �

���������������⎛⎝1
n
∑n
i�1
(Qi − Pi)2⎞⎠√√

(25)

WhereQi is the recorded value of building power consumption at
time i, and Pi is the predicted value of building power
consumption at time i. These three criteria describe the close-
ness of the predicted data to the actual data in three different
ways, The value of R2 is between 0 and 1, with 0 indicating worse
than the mean and 1 indicating perfect prediction, And for MAE
and RMSE, the smaller the value, the better the prediction result
of the model.

3 CASE STUDY

3.1 Data Introduction
The building electricity consumption data obtained in this article
was obtained from the Qingdao civil building energy
consumption monitoring platform. Raw data was selected
from three summer cooling months (June, July and August)
with a time granularity of 1 hour. The maximum and
minimum values of the original data are 803.5 KW and
65 KW; the difference between the maximum and minimum
values is 738.5 KW, which demonstrates the volatility of the
data. The mean and standard deviation of this data are
333.48 KW and 199.97 KW, respectively, which shows the
large dispersion of the data. In Figure 4, which illustrates the
sequence of the original data, it can be seen that the raw load
fluctuates considerably.

3.2 Comparison of Decomposition by EEMD
and VMD
Figure 5A shows how EEMD decomposes the original load into
11 intrinsic mode functions (IMFs) and a residual, and Figure 5B
shows the spectrum after passing the Fourier transform. Even
with the improved EMD algorithm, the phenomenon of modal
mixing is still evident. Modal mixing occurs when one modal
component is decomposed into multiple components. In the
figure, the frequency band of IMF4 overlaps with the
frequency bands of IMF3 and IMF5. Modal mixing is a defect
of the EEMD algorithm and leads to degradation of the model
accuracy, so it is important to avoid this phenomenon.

The VMD algorithm solves the modal mixing problem
inherent in the EEMD algorithm. In Figure 6A, the VMD
decomposition results are shown for K � 4 and the penalty
parameter a � 2000, which were determined in Section 2.1.2.
u1 is the lowest frequency component, u2 is the medium
frequency component and u3 and u4 are the highest frequency
components. According to the additional analysis supplied by the
spectrogram in Figure 6B, there is no overlap in the frequencies
of the components, which indicates that the VMD algorithm
solves the problem of modal mixing.
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In summary, both the EEMD and VMD algorithms are
capable of handling volatile raw data, and both algorithms
decompose the load into several stable components. The
EEMD algorithm is an improved algorithm based on EMD,
but it is limited due to the phenomenon of modal confusion.
The VMD algorithm overcomes this shortcoming. The VMD
algorithm can sufficiently decompose the raw load data to obtain
more physically meaningful components and improve the
accuracy of the model prediction.

3.3 Feature Selection
Building electricity consumption is influenced by climate and
historical load. However, the raw data contains only
meteorological factors. To fully consider the independence of
each component and research the physical significance of each
component, a set of feature matrices are established in this paper.
The appropriate feature set is selected by the mRMR algorithm
for input into the prediction model. The established feature
matrices and their representations are shown in Table 1.

The time interval of the load data collected in this paper is 1 h.
In Table 1, D_t represents the load point for the previous 48 h at
time t. Similarly, T_t, H_t and Dp_t represent the temperature,
humidity and dew point temperature, respectively, for the
previous 48 h at time t. The wind speed, temperature,
humidity and dew point are the meteorological characteristics
of the dataset.

After establishing the feature matrix, each component of the
decomposition is used as the target variable y, and xi is the data
point in the feature matrix. The mRMR values are calculated
according to Eq. 12 and the calculation results are sorted in
descending order. The top 15 influencing factors are selected as
the feature matrix of the input model. The final selection results
are shown in Table 2.

To illustrate the superiority of the mRMR algorithm, mutual
information maximization (MIM) (Novakovic et al., 2011) is used as
a comparison in this paper. The MIM algorithm is based on the
theory ofmutual information, but unlikemRMR, theMIM algorithm
only considers the correlation between features and target variables

and does not consider the redundancy between features. The results
of the MIM feature selection are shown in Table 2.

Consider u1 and u4 in Table 2 as an example. The low-
frequency components u1 and u2 are mainly influenced by
D_t, which indicates that the u1 and u2 components are
influenced more heavily by the historical load of the past 48 h.
It is further seen through Figure 6A that although both u1 and u2
are strongly influenced by historical loads, u1 presents a load
variation trend with a week as a period, while u2 presents a load
variation trend with a 24-h period. In contrast, the high-
frequency components u3 and u4 are not only influenced by
the historical load but also by the weather factor. Weather factors
are usually seen as uncertainty factors. The influence of humidity
on u4 is ranked second among all the features. This explains why
u4 is more volatile than u1: u1 is mainly influenced by historical
load and has a certain regularity, while u4 is influenced by
uncertainties such as humidity. Thus, u4 is more irregular.

Table 3 shows that the results of the MIM feature selection
method are similarly ranked, with the higher-ranked features all
being historical loads at a given moment. This is especially
apparent for the u3 and u4 components. The top five features
selected using MIM have a high degree of overlap because the
MIM algorithm only considers the maximum correlation
between features and variables while ignoring the degree of
redundancy between features. This is improved by using the
mRMR algorithm. For u3 and u4, the feature overlap selected
using the mRMR algorithm is not high, and features that are not
considered by MIM, such as wind speed and humidity, are taken
into account by the mRMR algorithm.

In summary, the mRMR algorithm considers not only the
correlation between features and target variables but also the
degree of redundancy between features. The selected features can
better reflect some characteristics of the modal components and
reduce the dimensionality of the feature matrix.

3.3 Model Predictions
In this paper, the LSTM model is used for predictions. The
training and test sets are divided for a total of 2,208 data

FIGURE 4 | Original total energy series.
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points from June 1, 2017 to August 31, 2017. Of this data, 80% is
used to build the model and 20% is used to check the validity of
the established models.

The number of layers of the LSTM model serves to remember
important information, and theoretically, more hidden layers give
the model an improved nonlinear fitting ability and a better
learning effect. However, increasing the number of layers

consumes a considerable amount of computation time.
According to the literature (Pan, 2018; Li et al., 2019), the
number of implied layers generally does not exceed 3, so the
number of implied layers in this paper has been determined to be 1.

The number of nodes in the hidden layer affects the
performance of the model. If the number of nodes in the
implicit layer is too small, less effective information is

FIGURE 5 | (A) The decomposition results of EEMD. (B) The decomposition spectrogram of EEMD.
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obtained in the prediction process. If the number of nodes in the
implicit layer is too large, it may lead to a longer training time and
overfitting problems. According to the literature (Xu et al., 2020),
the number of nodes in the hidden layer can be determined by
Eq. (26):

l � �����
m + n

√ + a (26)

where l is the number of nodes in the hidden layer, m is the
number of input nodes, n is the number of output nodes, and a is

a constant from 1 to 10. By calculation, the number of nodes l in
the hidden layer is determined to be 8. The LSTM network is
trained using the Adam optimization algorithm (Wang et al.,
2019). By referring to relevant literature (Kong et al., 2019; Pei
et al., 2020) and experimental measurements, the remaining
parameters are set: The number of iterations of the neural
network is set to 1,000, the learning rate is set to 0.01, and the
expected error is set to 0.0004. The prediction results are shown in
Figure 7 and Table 4.

FIGURE 6 | (A) The decomposition results of VMD. (B) The decomposition spectrogram of VMD.
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Figure 7 and Table 3 demonstrate that the integrated model
proposed in this paper achieves better results for the prediction of
each component. In general, the prediction results for the low and
medium frequency components (u1 and u2, respectively) are
better, with R2 values of 0.997 and 0.994, respectively. The u3
component also achieved a better prediction, having an R2 value
of 0.992. In contrast, the prediction results for the high-frequency
component u4 are slightly worse, with an R2 value of only 0.982.

Table 3 also shows the prediction results for each component
obtained using the MIM feature selection method. The R2 values
of the prediction results for all four components are lower than
those obtained by the mRMRmethod, especially for the u2 and u3

components. The main reason for this result is because the MIM
feature selection algorithm does not consider the redundancy
among the features, which leads to a certain degree of
repetitiveness of the selected features.

3.4 Model Comparison
The proposed model is compared and analysed alongside other
models to verify its reliability. The other models are singular and
include a model using EEMD decomposition
(EEMD–mRMR–BPNN), a model using the MIM algorithm
(VMD–MIM–LSTM) and a model using the BPNN algorithm
(VMD–mRMR–BPNN). The prediction results and evaluation
metrics of all models are shown in Figure 8 and Table 4.

The predictions of the integrated model with the addition of
the modal decomposition algorithm are more accurate compared
to the single prediction model (LSTM), as shown in Figure 8.
This indicates that the modal decomposition algorithm can
indeed handle more complex data and improve the accuracy
of the model. In addition, the prediction model proposed in this
paper has the highest prediction accuracy among the four models.

According to the evaluation metrics analysis in Table 4, the
prediction error of the single LSTM model is larger than the
prediction error of the integrated model. This is mainly due to the
instability of the load data and the limitations of the input

TABLE 1 | Construction of feature matrix.

Feature name Representation

D_t D_1,D_2,D_3. . .D_48
T_t T_1,T_2,T_3. . .T_48
H_t H_1,H_2,H_3. . .H_48
Dp_t Dp_1,Dp_2,Dp_3. . .Dp_48
Wind speed Wind speed
Temperature Temperature
Humidity Humidity
Dew point Dew point

TABLE 2 | Feature selection results.

Number u1 u2 u3 u4

mRMR MIM mRMR MIM mRMR MIM mRMR MIM

1 D_8 D_8 D_1 D-1 D_2 D-2 D_1 D-1
2 D_46 D-15 D_13 D-2 D_15 D-3 Humidity D-2
3 D_15 D-16 D_43 D-6 Humidity D-4 D_12 D-3
4 D_1 D-5 D_7 D-13 D_8 D-1 D_21 D-4
5 D_36 D-4 D_27 D-5 D_23 D-7 1D_8 D-5
6 D_26 D-46 D_36 D-10 D_45 D-6 D_2 D-6
7 D_17 D-30 D_47 D-7 D_4 D-5 D_41 D-8
8 D_30 D-26 D_17 D-3 D_13 D-10 D_47 D-23
9 D_44 D-10 D_2 D-9 D_33 D-9 D_14 D-24
10 D_4 D-47 D_10 D-4 D_1 D-8 D_3 D-12
11 D_10 D-48 D_16 D-12 D_17 D-13 Wind speed D-25
12 D_48 D-14 D_6 D-8 D_7 D-23 D_10 D-7
13 D_39 D-28 D_48 D-27 D_46 D-12 D_23 D-9
14 D_16 D-22 D_38 D-11 D_3 D-14 D_4 D-10
15 D_3 D-39 D_3 D-28 D_14 D-11 D_35 D-22

TABLE 3 | VMD component prediction result.

Model Subsequences MAE (kWh) RMSE (kWh) R2

VMD + mRMR + LSTM u1 2.61 3.34 0.997
u2 8.61 11.23 0.994
u3 2.90 4.02 0.992
u4 2.18 3.07 0.982

VMD + MIM + LSTM u1 8.83 10.44 0.977
u2 25.63 35.95 0.943
u3 7.08 11.14 0.960
u4 2.11 3.09 0.980
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features. The modal decomposition algorithm can decompose the
fluctuating data into several stable IMFs, and the mRMR
algorithm can select suitable features for the model. Thus, the
prediction results of the integrated model are better than those of
the single LSTM model. In addition, the integrated model using
the VMDmodal decomposition method (VMD–mRMR–BPNN)
predicts better results than the integrated model using EEMD
(EEMD–mRMR–BPNN). The R2 is improved by 5.6% and the

FIGURE 7 | VMD component prediction figure.(A) u1, (B) u2, (C) u3, (D) u4.

TABLE 4 | Evaluation metrics of each model.

Model MAE (kWh) RMSE (kWh) R2

LSTM 41.77 67.70 0.87
VMD + mRMR + BPNN 36.42 47.54 0.94
EEMD + mRMR + BPNN 50.39 62.21 0.89
VMD + MIM + LSTM 33.15 46.42 0.94
VMD + mRMR + LSTM 21.36 30.64 0.97

FIGURE 8 | Prediction results of each model.
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MAE and RMSE are reduced by 27.7 and 23.6%, respectively,
because the VMD algorithm solves the problems of modal
aliasing and elusive components.

Comparing the VMD–MIM–LSTM and
VMD–mRMR–LSTM integrated models, the mRMR
algorithm, which takes into account the redundancy between
features, achieves better prediction accuracy for the feature
selection algorithm. The R2 is improved by 3.0%, the value of
the MAE is reduced by 35.6% and the value of RMSE is reduced
by 34.1%. This is because the mRMR algorithm takes into account
the redundancy between features and can select the appropriate
feature matrix for each IMF.

Comparing the VMD–mRMR–LSTM and
VMD–mRMR–BPNN prediction models, the integrated
model using LSTM outperforms the integrated model using
BPNN. The R2 of the LSTM integrated model is improved by
3.0%, the value of MAE is reduced by 41.4% and the value of
RMSE is reduced by 35.5%. The power load series is a sample of
power load variation over time, and the BPNN model has
shortcomings in analysing these types of time series. For the
time series, the LSTM model better mines the relationship

between the data points. In brief, the model proposed in this
paper has the highest prediction accuracy.

3.5 Model Robustness
The experimental results show that the hybrid model proposed in
this paper has high prediction accuracy. In this section, the
robustness of the hybrid model is analysed by varying the
number of input feature parameters and the number of
neurons in the hidden layer. For simplicity, the VMD-
decomposed u4 has been selected as the target dataset.

3.5.1 Number of Neurons in The Hidden Layers
In theory, with the increase of the number of neurons in the
hidden layer and the more abstract features extracted by deep
learning, the more accurate a time series will be, which is
favourable for predictions (Zhang et al., 2020). Figure 9A
shows the RMSE of the VMD–mRMR–LSTM and
VMD–MIM–LSTM models when the number of neurons in
the hidden layer is changed. When the number of hidden
layer nodes is between 5 and 25, the RMSE shows a gradual
decrease; when the number of hidden layer nodes is between 25

FIGURE 9 | (A) Effect of the number of hidden layers on RMSE of u4. (B) Effect of the number of input parameters on RMSE of u4.
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and 65, the RMSE has a large fluctuation; when the number of
hidden layer nodes is between 65 and 100, the RMSE tends to be
smooth, its value is mostly between 3 and 5 and the prediction
error is relatively stable, which indicates that these twomodels are
highly robust. In addition, the RMSE of VMD–mRMR–LSTM is
lower than that of VMD–MIM–LSTM in most situations, which
indicates that VMD–mRMR–LSTM has better prediction
performance and more stable robustness.

3.5.2 Number of Input Parameters
The redundancy between features is theoretically taken into
account by the mRMR algorithm so that more input
parameters lead to a better prediction performance of the
model. However, too many feature parameters can increase
the complexity of the model and increase the computing cost.

Figure 9B illustrates the effect of the number of feature
parameters on the accuracy of the model. When the number
of input features is between 1 and 6, the RMSE of the models is
decreasing and fluctuates. When the number of input features is
between 6 and 15, the RMSE of both models decreases smoothly
with values in the range of 3.5–4.5. The prediction error of the
VMD–mRMR–LSTM model is smaller than that of the
VMD–MIM–LSTM model. Therefore, the
VMD–mRMR–LSTM model is more robust than the
VMD–MIM–LSTM model when the number of input features
is changed.

3.5.3 Effect of Input Data
To investigate the effect of different input data on the accuracy
of the model, the training set in the 3.1 section is used as the

FIGURE 10 | (A) The decomposition results of training set. (B) The decomposition spectrogram of training set.
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raw data input to the hybrid model. Figure 10A shows the
results of the training set decomposed by VMD. Comparing
the decomposition results in Figure 6A, 10A, it can be seen
that the trend of the training set is similar to the original data.
Further comparing the spectrograms in Figure 6B, 10B,
although the peak frequency of the training data set and the
original data set is different, they appear at the same locations.
The decomposition results of the training set are input into the
hybrid model, and the prediction result is shown in Figure 11.
The predicted values of MAE, RMSE, and R2 are 30.96 kWh,
38.96 kWh, and 0.95, respectively. Compared with the results
of decomposing the original data (VMD–mRMR–LSTM), the
R2 of the decomposed training dataset model (Training_Set-
VMD–mRMR–LSTM) decreased by 2%, and the RMSE and
MAE increased by 27 and 44.9%, respectively, indicating that
the selection of the input data can have an impact on the
accuracy of the model. Training_Set- VMD–mRMR–LSTM
still has higher accuracy than the single LSTM model, and the
R2 improved by 7%, RMSE and MAE reduced by 42.4 and
25.9%, respectively. In conclusion, the use of training data as
model input reduces the accuracy of the model, but the impact
is small in general. Compared with a single model, the
proposed hybrid model still has a greater superiority.

4 CONCLUSION

A hybrid short-term load forecasting model, namely
VMD–mRMR–LSTM, was proposed in this paper. To solve
the modal mixing problem presented by the EMD algorithm,
the VMD algorithm was used, and the value of its decomposition
number K was determined by the average instantaneous
frequency. For feature selection, the mRMR algorithm was
used to select the related feature by analysing the correlation
between each component and feature as well as the redundancy
between features. Finally, the LSTM model was used for the

prediction model. The case study in this paper demonstrated the
following:

1) Compared to single prediction models, hybrid models have
higher accuracy and are more robust in the field of energy
consumption prediction and have a broad application prospect
for the short-term prediction of building energy consumption.

2) Using VMD to decompose the original sequence can have a
better decomposition effect than when EEMD is used.
Decomposition by VMD solves the problem of modal
confusion so that the decomposed sequence is stable. The
prediction results of the hybrid model using VMD are higher
than those of the hybrid model using EEMD.

3) The mRMR algorithm can eliminate the redundancy between
features and show the influencing factors of the modal
components. The experimental results prove that the
features selected by the mRMR algorithm have a higher
prediction accuracy and better interpretability than those
selected by MIM, which is supported by the value of R2

increasing by 3%, the value of MAE decreasing by 35.6%
and the value of RMSE decreasing by 34.1%.

4) The hybrid model proposed in this paper can achieve an R2 value of
0.97, and its prediction results are higher than those of the singlemodel
(LSTM) and the general integrated model (VMD–MIM–LSTM).
Therefore, the proposed VMD–mRMR–LSTM approach has a
high potential for practical applications in energy systems, such as
forecasting building energy consumption.

5) By varying the number of input feature parameters and the
number of neurons in the hidden layer, the model is proven to
have good robustness.

In this paper, all decomposed components were predicted
using the LSTM model. However, since the frequency of each
component varied, the LSTM may not have produced ideal
results for each component. For example, in Table 3, the
difference between the R2 values of the u1 and u4 components

FIGURE 11 | Prediction results of model with training set.
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for the VMD–mRMR–LSTMmodel was not negligible. Choosing
appropriate prediction models for the different frequency
components may lead to better results. We will conduct more
research in this direction in the future.
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