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With the continuing increase of offshore wind farm power scale, it is urgent to propose a
simplified wind farm model, which aggregates the entire wind farm into single or several
aggregated wind turbine generators (WTGs), aiming to save computing resources and
improve simulation speed. A novel aggregation algorithm that considers the power loss of
offshore submarine cable is proposed, which is different from the traditional wind farm
modeling method that adopts amplifying transformer as aggregation medium. Moreover,
multi machine aggregation (MMA) algorithm is furtherly proposed to improve the
aggregation accuracy. Simulation results verify that the proposed aggregation method
can present the dynamic characteristics of wind farm with high accuracy, and can be
popularized for other types of wind farm.
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INTRODUCTION

In recent years, the penetration of wind energy and the scale of wind farm are increasing rapidly (Zou
et al., 2014), at the same time, since the energy efficiency for offshore wind energy is relatively higher
than onshore wind energy, so there is an obvious trend that the application focus is shifting from
offshore to onshore wind farm. On the other hand, wind power is inherently random and
intermittent (Sanchez et al., 2012), with the continuing increase of wind power scale, this will
impose adverse impact on the stability operation of large scale wind farm, so before the construction
of wind farm, it is necessary to conduct a comprehensive feasibility analysis, aiming to analyze the
interactive behavior between wind farm and power grid (Xue et al., 2013; Muljadi et al., 2006).
Nowadays the modeling of wind farm is usually focused on onshore wind farm with doubly-fed
induction generator (DFIG) as the main generator type, but as for offshore wind farm, it usually
adopts permanent magnet synchronous motor (PMSM) as the main generator type, so there is also
an urgent need to conduct research and analysis on PMSM offshore wind farm and its aggregation
application.

For engineering practice, the impact of wind power integrated into power grid is usually analyzed
from the perspective of “wind farm” (Ding et al., 2013), if detailed model is adopted for eachWTG in
one single wind farm, this will lead to an incredible increase in the scale of simulation, one effective
solution is to build a simplified wind farm aggregation model to increase the simulation speed while
maintaining accuracy. Previous researches have already focused on single machine aggregation
(SMA) (Mercado-Vargas et al., 2015) and multi machine aggregation (MMA) (Badr et al., 2015). For
SMA aggregation, the entire wind farm will be integrated into one single large WTG, the interface
characteristics of single aggregated WTG is the same compared with that of wind farm (L. M.
Fernandez et al., 2005). For MMA aggregation, the entire wind farm will be aggregated into several
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large WTGs according to certain indexes, normally the wind
speed will be the selected as the main grouping index. (H. Dong,
2018). Amplifying transformer is usually adopted to conduct the
aggregation work, (Conroy et al., 2009)- (Slootweg et al., 2003),
the primary winding is connected to a single WTG, while the
output power from the secondary winding is amplified with an
artificial constant, this method is easy to conduct and understand,
but the most obvious drawback is that the mechanism of adopting
amplifying transformer as aggregation medium still needs further
verification, and the dynamic characteristics of transmission line
or cable is neglected (Yang et al., 2012; Ali et al., 2013), all these
shortcomings will severely influence the aggregation accuracy,
making aggregation model less convincing. Different from the
aggregation method which adopts amplifying transformer,
aggregation algorithm is used to calculate the aggregated
generator parameter according to the single WTG parameter
as well as the number of WTGs in wind farm (Chowdhury et al.,
2010; Li et al., 2011).

At present, some results have been achieved in the research of
dynamic aggregation modeling of onshore wind farms. However,
unlike onshore wind farms, offshore wind turbines have a larger
unit capacity and use cable lines as the main collection lines, this
is one of the most significant difference from that used on
onshore wind farm, besides, the impact brought by the
submarine cable cannot be ignored. The modalities of the
aggregation model of wind turbines are more abundant (Wang
et al., 2018; Badr et al., 2015), and the dynamic characteristics of
the collection lines of wind farms have also become a main object
of aggregation research, which cannot be ignored.

At the same time, unlike the overhead line collection lines of
onshore wind farms, the charging capacity of the cable collection
lines of offshore wind farms is very large, generally 20–25 times
than that of the overhead line circuits, which is equivalent to the
reactive power compensation equipment being connected in
parallel, so ignoring the transmission line capacitance in the
conventional aggregation method will bring great errors, and
the aggregation result will also have a significant difference
between the detailed model and the aggregated model. (Teng
et al., 2019; Du et al., 2019).

In this paper, a comprehensive aggregation algorithm is proposed
considering the power loss of offshore wind farm submarine cable,
including the aggregation of WTG electrical parameters, pneumatic
parameters as well as the integration of transmission line, the power
equivalent principle is also used to calculate all the aggregation
parameters of wind farm, simulation results verify that the
proposed aggregation algorithm can match well with detailed
model, while MMA model is more accurate than SMA to reflect
the operation of wind farm in various wind speed environment.

MODELING OF OFFSHORE PMSM WIND
FARM

Structure of Offshore PMSM Wind Farm
Offshore wind farm usually adopts permanent magnet
synchronous motor (PMSM) as the main generation type due
to its relative higher power rating compared with that of tradition

doubly-fed induction generator (DFIG). As is shown in Figure 1,
one single wind farm usually consists of up to 16 feeders which are
connected to collection bus, for each feeder in wind farm, up to 12
WTGs are connected in series in each feeder. A typical simplified
PMSM wind farm is selected to conduct aggregation simulation
research in this paper, six feeders are linked to 35 kV collection bus
with three or four WTG connected in series in one single feeder,
altogether 34 WTGs are included in this wind farm.

Operation and Control of PMSM Wind Farm
As is shown in Figure 2, the working interval within the full wind
speed range for PMSM can be divided into four operation modes,
which are I-low constant speed mode, II-MPPT mode, III-high
constant speed mode and IV-constant power mode respectively,
x-axis represents the wind speed v, and y-axis refers to rotor speed ωr.

When wind speed locates within [vcutin, v1], the purpose is to
control the rotor speed to stabilize at a low constant speed ωr_min.
With the increase of wind speed, PMSM then enters theMPPT stage,
PMSM will operate at a particular rotor speed so as to catch the
maximum power from wind, both tip speed ratio λ and rotor speed
will be controlled at their optimal value λopt and ωr_opt. When wind
speed exceeds v2, rotor speed reaches the rated value ωr_max, PMSM
will then operate at high constant speed ωr_max until exceeding the
rated power, afterwards the pitch angle regulator will be activated and
PMSM will operate at constant power mode.

Each PMSM WTG in the target research wind farm adopts
traditional Vector Control (VC) strategy to decouple the control
of WTG active power and reactive power, the control diagram for
PMSM rotor side converter (RSC) and grid side converter (GSC)
is shown in Figures 3, 4 respectively.

PMSMRSCadopts rotorflux linkage oriented vector control strategy,
the control purpose of this control strategy is to control RSCactive power
and reactivepower independently.As is shown inFigure 3, two cascaded
control loops are included in RSC control strategy, the control object of
active power control loop is PMSM rotor speed ωr, so as to track the
MPPTpoint given a specificwind speed. For reactive power control loop,
the d-axis reference current isd* is set to zero, so that the PMSM
electromagnetic torque can only be influenced by q-axis stator
current isq, which is exactly the output of rotor speed closed loop.

The control diagram of PMSMGSC is shown in Figure 4, GSC
is aimed at controlling dc-link voltage and balancing active power
through dc-link capacitor, the GSC d axis reference current is
obtained from the output of dc-link voltage regulator and the q
axis reference current is get via reactive power regulator.

AGGREGATION PRINCIPLE AND
ALGORITHM

Submarine cable is considered as one important aggregation
object in this paper, which is less emphasized in traditional
amplifying transformer aggregation strategy, the conditions
that the aggregation of wind farm must meet are:

1) The amplitude and phase of voltage at PCC of
aggregation model is equal to that of wind farm
detailed model.
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2) The total capacity of aggregation model is the sum of the
capacities of all WTGs in the detailed model.

3) The consumed active power inside the aggregation model is
equal to that of wind farm detailed model.

4) The inductive and capacitive reactive power of aggregation
model is equal to that of wind farm detailed model.

PMSM WTG Parameter Aggregation
Based on the principles listed above, the equivalent parameters of
aggregated PMSMWTG can be calculated with Eq. 1, 2, where a
total of m WTGs with the same generation type are aggregated
into one single WTG.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Seq � ∑m

i�1
Si � mSn

Xs−eq � xs

m
rs−eq � rs

m
Bc eq � mBc

(1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ht eq � Ht Hg eq � Hg

Ks eq � Ks Ds eq � Ds

ST eq � mST ZT eq � ZT

m

(2)

Sn is the rated capacity of one single WTG, xs, rs and Bc are
the reactance, resistance and admittance of the WTG; m is the
total number of WTGs in the same cluster; ST is the rated

FIGURE 1 | Topological structure of PMSM wind farm.

FIGURE 2 | Operation mode division under full wind condition.
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capacity of the transformer; ZT is the impedance of the
transformer; Ht and Hg is the inertia time constant of the
wind turbine and generator.

As for the aggregation of wind speed, there are a variety of
aggregation methods to calculate the aggregated wind speed for
wind farm. When the element of wake effect is not taken in
account, then the aggregated wind speed is the same as the speed
for single WTG:

veq � v (3)

However, when taking wake effect into consideration,
then the calculation of aggregated wind speed is based on
the power curve of WTG, firstly the power of each WTG in
wind farm needs to be calculated and then get the average
power, so that the aggregated wind speed can be drawn
from the average wind speed as well as the given WTG
power curve, assuming that the number of WTGs that will
be aggregated is m, then the output power can be
calculated as:

Pm � f(vm) (4)

Based on the power equation in Eq. 4, the aggregated wind
speed can be calculated from:

veq � 1
m

∑m
i�1

f−1(vk) (5)

PMSMWind Farm Aggregation Considering
Submarine Cable Power Loss
For offshore PMSM wind farm, the ground capacitance is usually
20–25 times than that of overhead lines. So it cannot be ignored in
the SMA analysis. Active power equivalent principle is applied in
the aggregation of offshore submarine cable, as is shown in
Figure 5, Si and Ui represent the output power and terminal
voltage of the ith WTG on the feeder respectively, Ci and Zi
represent the capacitance and impedance of the ith cable line on
the feeder respectively, Upcc represents the voltage at the PCC

FIGURE 3 | Control diagram of PMSM RSC.

FIGURE 4 | Control diagram of PMSM GSC.
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point. And Seq andUeq represent the equivalent output power and
terminal voltage of the aggregated WTG separately, Ceq and Zeq
represent the equivalent capacitance and impedance of the
aggregated cable line.

Based on the power equivalent principle, in order to calculate
SMA submarine cable parameter, the power loss of the
impedance on the nth cable at the end of the feeder, and the
power loss of the impedance of themth cable on the feeder can be
expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ΔSn � (Sn − j
1
2
CnU

2
n)2

Zn/U
2
n

ΔSm �
⎛⎝∑n−1

i�m
(Si − j

1
2
(Ci+1 + Ci)U2

i + ΔSi+1) − j
1
2
CnU

2
n
⎞⎠2

Zm

U2
m

(6)

Based on Eq. 6, the power loss of all submarine cables on one
feeder, and the power loss on the equivalent circuit can be
expressed as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ΔSztotal � ΔS1 + ΔS2 + . . . + ΔSn

ΔSzeq �
(Seq − j

1
2
CeqU

2
eq)2

Zeq

U2
eq

(7)

The expression of equivalence impedance Zeq can be
calculated based on the power equivalent principle of
ΔSztotal � ΔSzeq:

Zeq � ΔSztotal(Seq − j 1
2 CeqU2

eq)2 U
2
eq (8)

Besides, according to the principle that the reactive power
consumed on the capacitor before and after the cable line
equivalence is the same, the equivalent capacitor can be expressed as:

Ceq � (CnU2
n + CnU2

n−1 + Cn−1U2
n−1 + . . . + C2U2

2 + C1U2
2 + C1U2

1)(U2
eq + U2

1)
(9)

Equations 1–9 are the main calculation algorithm for PMSM
wind farm single machine aggregation. When referring multi
machine aggregation, wind speed for each WTG is selected as
the main grouping index, all WTGs in a wind farm are grouped
into four groups according to the WTG operation mode so as to
minimize the aggregation error, since the operation mode is directly
related to the wind speed and wind speed can be well estimated and
calculated through various prediction algorithm, so it is easy to
group one single wind farm based on wind speed for each WTG.

SIMULATION RESULTS

Simulation Verification of SMA for Grid Fault
Situation.
Simulation verification is firstly carried out between detailed
model and SMA model under the wind speed of 7, 9, and
11 m/s respectively. A three-phase short circuit fault occurs in
simulation and the fault duration is 0.625 s.

Figure 6A shows the comparison between the detailedmodel and
SMA model under the wind speed of 7m/s. The first panel is the
voltage RMS value, indicating that grid voltage drops to 20% of the
normal value and lasts for 625ms, the rest panels are output active
power, reactive power and current. Figure 6B is the average error

FIGURE 5 | Transmission Line Aggregation process. (A) Before Equivalence. (B) After Equivalence.
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curve of active power, reactive power and current at the PCC point.
Based on Figure 6A and Figure 6B, it can be seen that the two curves
overlap well with each other in steady state. Although there is a
deviation in the dynamic process, it is not very large, whichmeans that
the SMAmodel can reflect the dynamic process of the detailedmodel.

Similar conclusions can also be found in Figure 7, 8, where the
wind speed are 9 and 11 m/s respectively.

In order to investigate the aggregation accuracy of SMA
model, we define the average error Ex as an important index
to quantify the aggregation accuracy, as is shown as:

FIGURE 6 | 7 m/s LVRT response comparison. (A) Comparison Results (B) Error Results.

FIGURE 7 | 9 m/s LVRT response comparison. (A) Comparison Results (B) Error Results.
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Ex � 1
n

∑n
i�1(Xeqi −Xi)

XN
× 100% (10)

where x is the parameter to be investigated, n is the number of
sampling points, the subscript eq indicates the equivalent
parameter of the aggregation model while N indicates the
rated value. As is shown from Tables 1–3, the average error
comparison before, during and after grid fault are listed
respectively for further analysis.

It can be seen from Table 1 that for different wind speeds,
when the collection line is a cable line, the results of the wind farm
aggregation model match well with the detailed wind model, the
average error of voltage, current and active power is within 0.12%,

while the error of reactive power is within 0.05%, which can fully
prove the correctness of the aggregation method proposed in this
paper. As the wind speed increases, it can be seen that the
magnitude of the error is also increasing. The reason is that
the output parameter is increased with the increase of wind speed,
but the base value used in the evaluation method is unchanged,
which results in the increase of average error, but the increase is
still within the normal range.

Comparing Table 1, Table 2, and Table 3, it can be seen that
the average error during grid fault process is larger than that
before and after grid fault. The main reason is that the line
parameters are calculated at the rated power for the convenience
of simulation, during grid fault process, the output active power is
less than that in steady state, which causes the loss on the line of
the aggregated model to be different from detailed model.

Simulation Verification Between SMA and
MMA Algorithm.
Wind speed of each wind turbine generator is randomly set to
compare the aggregation accuracy between SMA and MMA

FIGURE 8 | 11 m/s LVRT response comparison. (A) Comparison Results (B) Error Results.

TABLE 1 | Average error before grid fault between SMA and detailed model.

Wind speed (m/s) Average error/%

Voltage Active power Reactive power Current

7 0.0639 0.0008 0.0192 0.00358
9 0.0656 0.00147 0.0279 0.00475
11 0.0682 0.00143 0.0398 0.0071

TABLE 2 | Average error during grid fault between SMA and detailed model.

Wind speed (m/s) Average error/%

Voltage Active power Reactive power Current

7 0.0446 0.24 0.0444 0.37
9 0.0446 0.23 0.0427 0.37
11 0.0443 0.22 0.0411 0.36

TABLE 3 | Average error after grid fault between SMA and detailed model.

Wind speed (m/s) Average error/%

Voltage Active power Reactive power Current

7 0.0642 0.00106 0.0241 0.00436
9 0.066 0.00145 0.0333 0.00542
11 0.0686 0.00138 0.0457 0.00832

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7710097

Shao et al. PMSM Wind Farm Aggregation Algorithm

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


algorithm. Wind speed for each WTG is selected as the main
grouping index, as is shown in Figure 2, the wind speed of wind
turbine generator determines the operation mode, so all wind
turbine generators running in the same operation mode are
grouped together to be aggregated into one WTG.

Simulation results are shown in Figure 9 to compare the
aggregation accuracy between detailed model, MMA model and
SMAmodel. A three-phase symmetrical short-circuit fault occurs
in the simulation at t � 10 s, the amplitude of grid voltage drop is
20% of the rated voltage. The first panel of Figure 9A is the grid
voltage while the rest panels are output active power, reactive
power and current. Figure 9B shows the error curve of PCC point
voltage RMS, output active power, output reactive power and
output current. Combining the two figures, it can be seen that the
MMA model has higher accuracy than SMA model, MMA can
better reflect the dynamic process of the detailed model in the
dynamic process.

From the above simulation results, although the response
trend of SMA model, MMA model and detailed model are
basically the same, there are still dynamic errors during the
whole process, so that a quantitative analysis is still needed to
calculate the error before and during grid fault. The results are
shown in the following table.

Comparing Table 4 and Table 5, it can be seen that the MMA
model has higher accuracy than SMA model. When wind
turbines are in different operation modes, the SMA model is
not sufficient enough to characterize the entire wind farm, the
average error between MMA model and the detailed model are
smaller than that between SMA model and the detailed model,
showing that grouping wind farm according to wind speed can
effectively improve the aggregation accuracy.

CONCLUSION

This paper proposes a comprehensive aggregation algorithm with
the consideration of the power loss of offshore wind farm
submarine cable. The aggregation algorithm includes the
aggregation of WTG electrical parameters, pneumatic
parameters as well as the integration of transmission line, the
power equivalent principle is used to calculate all the aggregation
parameters of wind farm. Detailed conclusions are:

1) The aggregated model can comprehensively reflect the dynamic
characteristics of wind farm under different working conditions.

2) Simulation results verify that the proposed aggregation
algorithm can match well with detailed model, while MMA
model is more accurate than SMA to reflect the operation of

FIGURE 9 | Comparisons between SMA and MMA algorithm. (A) Comparison Results (B) Error Results.

TABLE 4 | Average error before grid fault between SMA,MMA and detailedmodel.

Aggregation type Average error/%

Voltage Active power Reactive power Current

SMA 0.0895 0.74 0.42 0.55
MMA 0.0713 0.62 0.14 0.52

TABLE 5 | Average error during grid fault between SMA,MMA and detailedmodel.

Aggregation type Average error/%

Voltage Active power Reactive power Current

SMA 0.53 0.66 3.49 12.62
MMA 0.1 0.28 0.21 0.12
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wind farm in various wind speed environment (Sanchez et al.,
2012; Mercado-Vargas et al., 2015).
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