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To solve the problems of environmental pollution and energy consumption, the
development of renewable energy sources becomes the top priority of current energy
transformation. Therefore, distributed power generation has received extensive attention
from engineers and researchers. However, the output of distributed generation (DG) is
generally random and intermittent, which will cause various degrees of impact on the safe
and stable operation of power system when connected to different locations, different
capacities, and different types of power grids. Thus, the impact of sizing, type, and location
needs to be carefully considered when choosing the optimal DG connection scheme to
ensure the overall operation safety, stability, reliability, and efficiency of power grid. This
work proposes a distinctive objective function that comprehensively considers power loss,
voltage profile, pollution emissions, and DG costs, which is then solved by the
multiobjective particle swarm optimization (MOPSO). Finally, the effectiveness and
feasibility of the proposed algorithm are verified based on the IEEE 33-bus and 69-bus
distribution network.

Keywords: distribution network, distributed generation, optimal sizing and placement, multiobjective particle swarm
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INTRODUCTION

With the rapid development of the world’s electric power industry, the total amount of social
electricity consumption has risen sharply over the last decade (Yang et al., 2016; Yang et al., 2017;
Zhang et al., 2021). Under the traditional grid framework, the power sector mainly builds large
centralized power sources such as nuclear power stations, large hydropower stations, and coal-fired
power stations and then expands into a large-scale power system (Yang et al., 2019a; Yang et al.,
2019b; Yan, 2020). However, its disadvantages are also increasingly prominent (Li et al., 2020; Xi
et al., 2020), in particular, highly centralized power supply is gradually difficult to meet the flexibility
requirements of power grid operation, and the failure of important power supply nodes seriously
affects the overall reliability of power grid’s power supply. Moreover, long-distance transmission is
also under serious power loss and security problems (Mehleri et al., 2012; Wang et al., 2014; Yang
et al., 2018).

To overcome the negative impact of the aforementioned problems, the concept of distributed
generation (DG) was put forward in the 1980s (GopiyaNaik et al., 2013; Yang et al., 2015). DG has an
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extremely important influence on the planning and operation of
the distribution network (Sara et al., 2020; Yang et al., 2020; Ali
andMohammad, 2021). Also, proper access of DG in distribution
network can effectively enhance the power quality, reduce the
active power loss, improve the voltage distribution, and boost the
overall economy and flexibility of the power network operation
(Abdurrahman et al., 2020; Bikash et al., 2020; Suresh and
Edward, 2020). As the end of power network, the stability and
efficiency of distribution network directly affect its overall
efficiency (Surajit and Parimal, 2018; Bikash et al., 2019).
Therefore, the location and sizing of distributed power
generation have become an important research content of
power grid planning.

The problem of location and sizing of DG is to optimize its
installation point and sizing to maximize the benefits under the
constraints of satisfying the given investment and system operation
(Kumar et al., 2019; Nagaballi and Kale, 2020). With the increasing
requirements for power system reliable operation, the problem of DG
location and constant sizing has developed from a single-objective
problem that only considers the minimum network loss to a
multiobjective optimization problem that comprehensively considers
voltage quality, current quality, and environmental factors. Quadratic
programming method, genetic algorithm, and other methods have
been applied to solve suchmultiobjective location and constant volume
problem. These methods all need to set weights to transform the
multiobjective problem into a single-objective problem for proper
solutions (Murty and Kumar, 2015); however, these weights are often
difficult to determine in actual operation.

Besides, the solution of a large number of planning models is
relatively complicated, while the selection of the algorithm
directly affects the choice of planning schemes (Aman et al.,
2014; Nezhadpashaki et al., 2020; Zeng and Shu, 2020). At
present, the solving algorithms mainly include mathematical
optimization and metaheuristic algorithm (Doagou-Mojarrad
et al., 2013; Satish et al., 2013; Sultana et al., 2016). However,

mathematical optimization algorithm owns relatively low
computational efficiency and is only suitable for small-scale
distribution networks. Thus, metaheuristic algorithm has
received much attention and application in recent years
(Aman et al., 2012; Pabu and Singh, 2016; Iqbal et al., 2018).
Literature (Chandrasekhar and Sydulu, 2012) adopts genetic
algorithm (GA) to optimize the new load nodes for expansion
plan of distribution network, and then simulated annealing
algorithm is utilized to optimize the generated single plan,
which considerably reduces the load size of DG connected to
the distribution network and the influence of power flow of the
distribution network. Literature (Aman et al., 2013) proposes an
improved particle swarm optimization algorithm based on hybrid

FIGURE 1 | Annual output curve of wind turbine. FIGURE 2 | Annual output curve of PV system.

FIGURE 3 | Annual load curve of residents.
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simulated annealing method to optimize the location and sizing
of distributed power sources. However, the convergence speed of
the aforementioned algorithms is relatively slow, and the result is
prone to local optimal solutions.

Therefore, an objective function comprehensively considering
power losses, voltage profile, pollution emission, and DG cost is
proposed in this work, and MOPSO is utilized to solve it. Finally,
the proposed method is validated via an IEEE 33-bus and 69-bus
distribution network to verify its effectiveness. Then, the Pareto
front result is given.

The remaining of this paper is organized as follows:Mathematical
Optimization Model of DG Planning develops the objective function.
In Multiobjective Particle Swarm Optimization Algorithm,
multiobjective particle swarm optimization (MOPSO) is described.
Comprehensive case studies are undertaken in Case Studies. At last,
Conclusion summarizes the main contributions of the paper.

MATHEMATICAL OPTIMIZATION MODEL
OF DG PLANNING

Load and DG Power Output Timing Model
Wind Turbine Output Timing Model
The output power of wind turbine mainly depends on wind
speed, which can be expressed by the following piecewise function
(Velasquez et al., 2016):

P(v) �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (v≤ vci zv≥ vco)
Pr

v − vci
vR − vci

(vci ≤ v≤ vR)
Pr (vR ≤ v≤ vco)

, (1)

where P(v) is the power output of the wind turbine; vci denotes the
entry wind speed; vco is the cut-out wind speed; vR means rated wind
speed; Pr represents the rated output power. The wind turbine output
curve is modeled according to the mean seasonal wind speed, and the
output curve is shown in Figure 1 (Sara et al., 2020).

Photovoltaic System Output Timing Model
The output power PPV of the photovoltaic (PV) system can be
approximated by (Velasquez et al., 2016)

PPV � Pstc
Ir,t
Istc

[1 + αT(Tt − Tstc)], (2)

where Pstc means the output power of the PV system when the
solar radiation intensity Istc � 1000W/m2 and the temperature
Tstc � 25°C; Ir,t denotes the radiation intensity during actual
operation; αT represents the power temperature coefficient of
the PV system; Tt is the actual operating temperature of the
photovoltaic power supply. In addition, the output curve of the
PV system obtained by fitting the irradiance of typical days in all
seasons is shown in Figure 2 (Sara et al., 2020).

Load Timing Model
The load size shows certain regularity due to people’s living
habits. Figure 3 shows the typical load curve of residents in all
seasons (Velasquez et al., 2016).

Objective Function
Power Losses
The power losses index takes into account the total active power
loss of 96 h in four typical days, which is established as follows
(Velasquez et al., 2016):

minf1(x) � ∑
T

t�1
∑
n

i�1
∑
n

j�1
Aij · (PiPj + QiQj) + Bij · (QiPj − PiQj),

(3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Aij �
Rij · cos(δi − δj)

ViVj

Bij �
Rij · sin(δi − δj)

ViVj

, (4)

where Pi and Qi are the active power and reactive power
injected into node i, respectively; Rij represents the resistance
of the transmission line connecting the ith node with the jth
node; N means the number of nodes in the distribution
network; Vi and δi are the voltage and angle of node i,
respectively; T is the number of simulation periods; the
value is 96.

Voltage Profile
Reasonable access of DG to the distribution network can
effectively improve the voltage profile. Therefore, this work
adopts the total voltage deviation of 96 h in four typical days
to measure the optimization effect, and the voltage profile index is
established as follows (Ali and Mohammad, 2021):

minf2(x) � ∑
T

t�1
∑
n

i�1
(VDG,i − Vrated)2, (5)

whereVDG,i is the voltage of the ith node after DG is configured in
the distribution network and Vrated is the rated voltage with a
value of 1 p.u.

Pollution Emission
In order to reduce the emission of polluting gases, this work
adopts the pollution emission considering carbon dioxide, sulfur
dioxide, and nitrogen compounds as follows (Ali and
Mohammad, 2021):

minf3(x) � ∑
T

t�1
∑
k

i�1
PDG,i · ηi,k · (ewCO2 · AEpi,co2 + ewSO2 · AEpi,so2

+ ewNOx · AEpi,NOx),
(6)

where PDG,i is the rated active power output of the ith DG; ηi,k
means the output efficiency of the ith DG at time t; k denotes the
number of DG in the distribution network; AEpi,co2, AEpi,so2, and
AEpi,NOx are, respectively, the mass of carbon dioxide, sulfur
dioxide, and nitrous oxide released by unit power output of the ith
DG. In addition, ewCO2, ewSO2, and ewNOX are the weight
coefficients among different gases, and their values are 0.5,
0.25, and 0.25, respectively.
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Economic Indicators
The economic cost of DG planning determination includes the
investment cost and average operation and maintenance cost of
all units, which can be expressed by the following formula (Ali
and Mohammad, 2021):

minf4(x) � ∑
k

i�1
(1.3Ccapital,i · PDG,i + Cmaintenance,i · PDG,i · toperation),

(7)

where Ccapital,i and Cmaintenance,i are the investment and average
operation and maintenance cost of the ith DG, respectively. It is
worth noting that toperation is the running time of DG. The total

FIGURE 4 | Computational flowchart of the proposed method.

FIGURE 5 | IEEE 33-bus distribution network.
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working time of each unit is considered to be 20 years, and the
annual working time is 300 days; that is, toperation � 144,000 h. In
addition, the cost and pollution emission statistics of different
types of DG are detailed in the literature (Ali and Mohammad,
2021).

Constraints
In order to ensure the safe and stable operation of the system, the
following constraints are designed (Bikash et al., 2020; Ali and
Mohammad, 2021):

Power Balance Constraints

∑
n

i�1
Pi � ∑

n

i�1
Pload,i + PL −∑

n

i�1
PDG,i, (8)

∑
n

i�1
Qi � ∑

n

i�1
Qload,i + QL −∑

n

i�1
QDG,i, (9)

where Pload,i and Qload,i denote the active and reactive loads at
the ith node, respectively; PDG,i and QDG,i mean the active
power and reactive power output by the ith node DG,
respectively; PL and QL are the active power losses and
reactive power losses in the distribution network,
respectively.

Power Constraints of Transmission Lines

Sl ≤
∣∣∣∣Smax

l

∣∣∣∣, (10)

where Sl is the apparent power flowing through lth line and Smax
l

is the maximum apparent power allowed to flow through lth line.

Voltage Constraint
The voltage of the jth node after DG configuration can be
calculated by (Abdurrahman et al., 2020)

Vmin
DG,j ≤VDG,j ≤Vmax

DG,j, (11)

where Vmax
DG,j and Vmin

DG,j are the voltage upper and lower limits of
the jth node after DG configuration and their values are 1.05 and
0.9, respectively (Suresh and Edward, 2020).

Distributed Power Supply Sizing Constraints

Pmin
DG ≤PDG ≤Pmax

DG , (12)

Pmin
DG � 0.1∑

n

i�1
Pload,i, (13)

Pmax
DG � 0.8∑

n

i�1
Pload,i, (14)

where Pmax
DG and Pmin

DG are the upper and lower limits of the total
active power output of PDG.

MOPSO ALGORITHM

Particle Swarm Optimization Algorithm
Particle swarm optimization is a heuristic algorithm that mimics
bird foraging, which can conduct intelligent guidance
optimization through cooperation and competition among
particles (Doagou-Mojarrad et al., 2013).

Suppose a population has m particles, each particle has an
N-dimensional variable, and the position and flight speed of
the ith particle in the kth iteration are Xk

i � [xk
i,1, x

k
i,2, . . . , x

k
i,n]

and Vk
i � [vki,1, vki,2, . . . , vki,n], respectively. Through evaluating

the fitness value of the objective function, the individual
optimal position Pk

i � [pk
i,1, p

k
i,2, . . . , p

k
i,n] and the population

optimal position Gk
i � [gk

i,1, g
k
i,2, . . . , g

k
i,n] of each particle are

FIGURE 6 | IEEE 69-bus distribution network.

TABLE 1 | Optimization results of MOPSO.

Generator Bus location DG sizing
(kVA)

Losseses function
(MW)

Voltage function
(p.u.)

Emission function
(kg)

DG cost
(¥)

The first PV 3 649.201 2108.5 53.2049 1.87 × 107 3.45 × 107

The second PV 32 401.55
The first wind turbine 31 334.646
The second wind turbine 22 453.685
Microturbine 8 16.5259
Fuel cell 9 382.853
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determined, and the velocity and position of particle I in the
next iteration are determined by (Doagou-Mojarrad et al.,
2013)

⎧⎪⎪⎨
⎪⎪⎩

vk+1i,j � ω · vki,j + c1r1 · (pk
i,j − xk

i,j)+
c2r2 · (gk

i,j − xk
i,j)j � 1, 2, . . . , n

xk+1
i,j � xk

i,j + vk+1i,j

, (15)

where r1 and r2 denote random numbers obeying uniform
distribution on the interval (0,1); c1 and c2 represent learning

factors, both of which are normal numbers. ω is the inertia weight
used to balance the global and local optimization capabilities
among particles. The value of ω is usually calculated using
(Doagou-Mojarrad et al., 2013)

w � wmax − wmax − wmin

K
k, (16)

where K is the maximum number of iterations; k is the current
iteration times; wmax � 0.9; wmin � 0.4.

FIGURE 7 | Voltage profile improvement of the IEEE 33-bus distribution network.
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MOPSO Algorithm
In order to constantly update a set of Pareto optimal solutions
obtained by MOPSO during iterations, this work designs the
historical Pareto optimal solution set and the global Pareto optimal
solution set during iterations with the help of archiving technology.
Global Pareto optimal solution set holds all Pareto optimal solutions
generated during the current iteration.

Assuming that a population contains m particles and each
particle has Nobj objective function value, the global Pareto
optimal solution set generated by each iteration is found by
the following (Doagou-Mojarrad et al., 2013):

1) Let i � 1.
2) Compare particle xi with particle xj for all j � 1, 2, . . . , m

and j≠i.
3) If j exists so that particle xj dominates xi, then particle xi is

marked as the inferior solution.
4) If i > m, turn to 5). Otherwise, let i � i + 1 and turn to (2).
5) Remove all marked solutions, and the remaining solutions

constitute the global Pareto optimal solution set of this
iteration.

Historical Pareto optimal solution set: this solution set is used
to hold the Pareto optimal solution throughout the iteration.

Update the historical Pareto optimal solution set in each iteration:
the global Pareto optimal solution set generated in this iteration is
merged into the historical Pareto optimal solution set, and
noninferior solutions are found according to the Pareto
dominant condition, while all inferior solutions are deleted.

With the increase of iteration numbers, the number of solutions in
the historical Pareto optimal solution set increases rapidly. To improve
the running speed of the algorithm, the number of solutions in the
historical Pareto optimal solution set is limited to the present valueNC.
When the number of solutions in the historical Pareto optimal
solution set exceeds NC, the sparsity ranking method based on
crowding distance is adopted to reduce the number of solutions in
the solution set to NC (Nagaballi and Kale, 2020).

In MOPSO, the individual optimal solution and the global
optimal solution of the population need to be redefined. In this
work, the individual optimal solution and global optimal solution
of MOPSO algorithm are defined as follows.

Individual optimal solution: if the particle generated during this
iteration dominates the individual optimal solution of the previous
iteration, the individual optimal solution of the particle is updated to
the particle generated during this iteration. Otherwise, the individual
optimal solution of the particle remains.

Global optimal solution: the global optimal solution is selected
from the historical Pareto optimal solution set. According to the
sparsity of each particle in the solution set, the particle with the
largest sparsity was selected as the global optimal solution of the
current iteration.

So far, the filtering mechanism of Pareto is described as follows
(Doagou-Mojarrad et al., 2013):

ki,i+1 �
(f2,i − f2,i+1)/(f2,max − f2,min)
(f1,i − f1,i+1)/(f1,max − f1,min), (17)

ki−1,i+1 �
(f2,i−1 − f2,i+1)/(f2,max − f2,min)
(f1,i−1 − f1,i+1)/(f1,max − f1,min), (18)

where ki,i+1 denotes the normalized slope between the Pareto
optimal solution I and its adjacent solution i + 1; ki−1,i+1 means
the normalized slope between the two solutions i − 1 and i + 1
adjacent to the Pareto optimal solution I. If ki,i+1>ki−1,i+1, then the
Pareto optimal solution I is close to the ideal Pareto optimal front,
and such a solution is retained. If ki,i+1≤ki−1,i+1, it indicates that
the Pareto optimal solution i deviates far from the ideal Pareto
optimal front, and such a solution is deleted. In addition, the
flowchart of MOPSO is given in Figure 4(Doagou-Mojarrad
et al., 2013).

FIGURE 8 | Pareto front results.

TABLE 2 | Optimization results of MOPSO.

Generator Bus location DG sizing
(kVA)

Losseses function
(MW)

Voltage function
(p.u.)

Emission function
(kg)

DG cost
(¥)

The first PV 14 217.713 2607.21 47.4124 1.59 × 107 4.12 × 107

The second PV 61 11.3952
The first wind turbine 26 164.807
The second wind turbine 12 329.529
Microturbine 5 326
Fuel cell 20 49.9061
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CASE STUDIES

As shown in Figure 5 and Figure 6, DG planning research on an
IEEE 33-bus and 69-bus distribution network is carried out to
verify the effectiveness of the proposed method, including PV
system (two nodes installed), wind turbine (two nodes installed),
fuel cell (one node installed), and microturbine (one node
installed). It is worth noting that fuel cell and micro-gas
turbine can carry out power output stably. When PV system
and wind turbine are used together, the defect of fluctuating

output power can be well compensated. In addition, in four
typical days, the total active power loss of the network is
4061.87 kW, while the total voltage deviation is 66.1991 p.u.
and the proposed method was coded in MATLAB 2017b.

IEEE 33-Bus Distribution Network
The simulation results obtained by MOPSO and the voltage
distribution of the optimized IEEE 33-bus distribution
network are shown in Table 1 and Figure 7, respectively.
It can be seen from Table 1 that, after MOPSO optimization,

FIGURE 9 | Voltage profile improvement of the IEEE 69-bus distribution network.
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the power losses and voltage profile of the distribution
network are significantly improved after different types of
DG are configured because DG is always installed near the
load. It is worth noting that the voltage distribution of the
whole system is improved, although the addition of the fan
makes the voltage of some nodes deteriorate. In addition, the
Pareto front obtained by MOPSO properly distributes the
weight of the objective function under the improved ideal
point decision method, which effectively carries out the
tradeoff optimization of each objective function and avoids
the influence brought by the subjective setting of the weight
coefficient. Besides, the multiobjective decision-making
method described in literature (Zeng and Shu, 2020) is
adopted in this work, while the weight coefficients of each
objective function obtained are 0.31, 0.15, 0.28, and 0.26,
respectively.

In addition, since four different indexes are optimized in
this work, Pareto solution set graph cannot be drawn in the
Cartesian coordinate system, so the method of mapping the
Pareto solution set from the Cartesian coordinate system to a
parallel lattice coordinate system is adopted. The Pareto
solution set obtained after MOPSO runs 10 times is given
in Figure 8. Different optimization objectives are mapped to
different columns of the parallel lattice coordinate system. In
addition, the ordinate represents the fitness function value
after mapping, and the dotted line connects the parallel lattice
coordinate components of the same objective vector in
different columns. In general, MOPSO can show strong
searching ability, as well as obtaining widely distributed
and uniform Pareto fronts.

IEEE 69-Bus Distribution Network
The optimization results obtained by each algorithm and the
voltage distribution of IEEE 69 node distribution network
optimized by each algorithm are shown in Table 2 and

Figure 9, respectively. It can be seen that, after MOPSO
optimization, power loss and voltage distribution of
distribution network with different types of DG are
significantly improved. Pareto front results are given in
Figure 10. The weight coefficients of each objective function
obtained are 0.28, 0.11, 0.28, and 0.33, respectively.

CONCLUSION

In this work, MOPSO is used to optimize the location and sizing
of DG, which contributions are outlined as follows:

1. The objective function with four indexes of distribution
network losseses reduction index, voltage profile index,
environmental emission reduction index, and economic
indicators is established to comprehensively optimize the
distribution network.

2. Based on an IEEE 33-bus and 69-bus distribution network, it is
effectively verified that MOPSO has strong global searching
efficiency and high convergence speed. Also, it can effectively
avoid falling into local optimum under complex objective
function.

3. Four types of DG, PV station, wind turbine, fuel cell, and
microturbine are installed, and the connection of
microturbine and fuel cell can stabilize the instability of PV
station and wind turbine. The experimental results show that
the power losseses of the distribution network optimized by
MOPSO decrease by 51.91%, and the voltage profile is also
significantly improved.

In future studies, more advanced solution algorithms and
multiobjective decision-making method will be devised to
solve this problem.
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