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The additional operation of deaeration (compaction) of powders affects the quality of many
products of chemical industries, the conditions for their delivery. Otherwise, energy
consumption increases significantly. The aim of this work is the modeling of the
deaeration of solid finely dispersed media in a gap with perforated hemispherical
shapes on the surfaces of the shaft and conveyor belt within the framework of the
mechanics of heterogeneous systems. A plane-deformation model is described,
neglecting the forces of interphase interaction and taking into account the
compressibility of a solid-particle-gas mixture without elastoplastic deformations. The
model assumes consideration of the movement of (1) the components of the solid skeleton
together with the carrying phase as a whole; (2) gas in an isothermal state through the
pores of a finely dispersed material. This work is devoted to the study of part (a),
i.e., behavior of the solid particle-gas system as a whole. The efficiency of the seal-
deaerator is estimated using the obtained analytical dependencies for the main strength
and speed indicators. The change in the degree of compaction of a spherical granule made
of kaolin with given strength characteristics is investigated. It is shown that for the initial time
interval up to 3.7#10−2 s, the growth of the porosity value relative to the horizontal
coordinate along the conveyor belt is exponential and increases by a factor of 1.1. After
eight such time intervals, the porosity values stabilize along the indicated coordinate with
an increase of more than 1.4 times from the initial value.
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INTRODUCTION

Preliminary deaeration (compaction) of powder components (Akiyama et al., 1986; Kapranova and
Zaitzev, 2011; Francis, 2016), including soot and kaolin, affects the strength characteristics of the finished
product, for example, car tires, and other polymer products. Transportation of sealed containers with a
powder product with a high content of gas in its pores, in particular, for construction or food purposes,
violates the principles of energy saving and energy efficiency. In contrast to the pressing of powders (Pizette
et al., 2010; Bayle et al., 2016; Seong et al., 2020) or larger particles (Gai et al., 2005), deaeration refers to its
initial stage, when there is no destruction of particles of the compactingmedium. If it is necessary to obtain
a special structure of a dispersed medium with given strength characteristics, it is advisable to use a
mechanical deaeration method (Akiyama et al., 1986; Kapranova and Zaitzev, 2011) in particular, when
obtaining granules from bitumen and mineral powder (Zaitsev et al., 2010), dry dye mixtures.
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The design of roller devices for the deaeration of dispersed
media is associated with the formation of theoretical foundations
(Kapranova et al., 2000; Kapranova, 2010; Kapranova et al., 2015)
for the engineering calculation of the parameters of these devices
(Kapranova et al., 2001; Kapranova et al., 2006a; Kapranova et al.,
2006b). For example, this is relevant in the manufacture of
granules (Zaitsev et al., 2010) from bitumen (Santos et al.,
2014; Fingas and Fieldhouse, 2009) and mineral powder
(Renner et al., 2007). For these purposes, as a rule, the
mechanics of heterogeneous systems are used (Nigmatulin,
1978; Generalov, 2002). The analytical results (Kapranova
et al., 2000; Kapranova, 2010; Kapranova et al., 2015) when
describing the behavior of the system solid particles-gas have
some advantages over numerical solutions, (Pizette et al., 2010;
Bayle et al., 2016; Seong et al., 2020) for example, when choosing
rational ranges for changing the main parameters of the
compaction process or when evaluating their optimal values
(Kapranova et al., 2001; Kapranova et al., 2006a; Kapranova
et al., 2006b). The importance of understanding the
mechanism of the behavior of compacted materials is obvious
for any type of modeling methods: analytical (Kapranova and
Zaitzev, 2011; Kapranova et al., 2015; Udalov et al., 2019) or
numerical (Khoei, 2005; Pizette et al., 2010; Bayle et al., 2016;
Seong et al., 2020).

There are two sufficiently developed classical approaches to the
formation of the initial model for calculating the main indicators of
the powder compaction process. In the first method (roller rolling of
metal powders) (Generalov, 2002; Wang et al., 2015), the conditions
of air outflow from volumes are experimentally investigated
depending on the shape of the constituent particles during their
granulometric analysis (Vinogradov et al., 1969; Pimenov et al.,
2015). In this case, scaling methods are used (Pimenov et al., 2015)
within the framework of the Pi-Buckingham theorem (Buckingham,
1915; Annenkov et al., 2005); equilibrium equations (Generalov,
2002; Misic et al., 2010) and the limit state in the linearized
representation (Tselikov et al., 1980; Generalov et al., 1984);
indicators of changes in the volume of the specified workpiece
(Generalov and Chainikov, 1972; Tselikov et al., 1980; Hu et al.,
2021). The second method of description (Torner, 1977) does not
make it possible to consider the compressibility of the system solid
particles - gas when air is removed from the pores.

Two factors here are two factors that determine the modeling
approach to modeling based on (Nigmatulin, 1978): (1) a
significant content of the carrier phase in the composition of
the specified system of solid particles—gas; (2) the maximum
possible value of the degree of compaction of the material. This
method makes it possible to carry out analytical calculations for
the main indicators of the process under study, depending on the
coordinates, time, design, and operating parameters, in
particular, for the porosity of the mixture of solid particles-gas
and the components of the velocity of the phases.

THEORY

Hemispherical shaft and belt surfaces are used to obtain deaerated
portions of powder (Figure 1) with radius r. The Cartesian

coordinate system Oxy and the “inverted” motion method
(Kapranova et al., 2000; Kapranova et al., 2015) are used when
the horizontal tape appears to be stationary. The planar motion of
the surfaces of the shaft forms is assumed when decomposed into
translational motion together with the Ki pole (Figure 1).

FIGURE 1 | Conditional scheme for the movement of the compacted
finely dispersed medium in the gap of the shaft-conveyor belt: 1—deaerated
granule-sphere; 2—solid finely dispersed material; 3—shaft; 4—conveyor
belt; 5—hemispherical shapes (cells).
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Let the total number of flat cells on the rim of the shaft section
beN and the number of centers belonging to a quarter of the rim
is denoted n � N/4. Then the coordinates of the points Ki, Di,
and Oi (Figure 1) are determined by the recurrent
formulas (i � 1, n0 − 1).

xKi � r;yKi � 2r sin[(i − 1)φ] + l∑i−1
j�0 sin[(2j + 1)c] (1)

xDi � r(1 − 2 cos iφ);yDi

� l∑i−1
j�0 sin[(2j + 1)c] + 2r∑i−1

j�0 sin jφ (2)

xOi �
r

R + r
yOi;yOi � yO + ω

(R + r)
sin α

(tOi − tO) (3)

Here it is indicated: n0 is the number of cells for the section of
the shaft, filled with powder; c,φ are characteristic angles; tOi �
(xOi sin α)/(rω); ω is the angular velocity of rotation of the shaft.
The values of n0, c,φ are determined by geometric parameters
(linear R, r, l,H0 and angular ψ, β ) according to Figure 1.

Let for a dispersed system solid particles-gas in further
designations the subscript “2” corresponds to the dispersed
phase (solid skeleton), the subscript “1”-to the carrier phase.
The classical conditions for the proportionality of the reduced ρi
and true ρtri values of the phase densities are valid ρi � αiρtri, i �
1, 2 (Nigmatulin, 1978). The developed method for modeling the
process of deaeration of finely dispersed media (Kapranova and
Zaitzev, 2011), due to its rather slow course, allows us to consider
the movements of (1) the components of the solid skeleton of the
dispersed medium together with the carrier phase as a whole; and
(2) gas in an isothermal state through the pores of a finely
dispersed material.

This work is devoted to the study of part (1), i.e., motion at a
speed v12 of the solid particles-gas system as a whole, when the
following conditions are met: v2 ≫ v1; v12 ≈ v2 for the velocities of
the phases vi, i � 1, 2. Part (2) was studied by the authors in
(Kapranova et al., 2010; Kapranova et al., 2011).

The following assumptions are made: ρ1 ≪ ρ2; there is no
sliding of the dispersed medium on the surfaces of hemispherical
shapes. The gravitational and inertial forces are neglected in
comparison with the action of surface forces. The flow of the
medium in the specified gap is laminar and one-dimensional with
significant compressibility and gas permeability in contrast
(Akiyama et al., 1986) to the models of the motion of polymer
compositions (Nigmatulin, 1978; Generalov, 2002). Let there be a
linear relationship between changes in the velocity components of
the rigid skeleton in coordinates and shear stresses. Similar to the
generalized Hooke’s law (Alcoverro, 2003) the linear dependence
between the components of the averaged effective stress tensor
σx, σy and of the averaged strain tensor deformations ε2x, ε2y of
the dispersed phase is reflected by expressions according to the
form

σx � α2[λ(ε2x + ε2y) + 2με2x; σy � α2[λ(ε2x + ε2y) + 2με2y], (4)

where α2 is the porosity of the powder, and λ, μ are the Lame
coefficients. Additionally, the condition of limiting equilibrium is
assumed (Kapranova and Zaitzev, 2011; Kapranova et al., 2015).
According to Kapranova and Zaitzev (2011), neglecting the

deformations of the dispersed medium along the z coordinate,
the following representations are used for the equation of porosity
change and the relation for shear stresses, respectively.

α2 � α20

(1 − ε2x − ε2y) (5)

τxy � ζ0(α2 − α20) (6)

where ζ0 ≡ λ + 2μ. Here α20 is the initial value of the porosity of
the powder. The last relation (6) was obtained from the
conditions σz � (σx + σy)/2; τxy � ζ0(ε2x + ε2y).

In addition, for shear stresses, the vertical component of the
velocity of the solid skeleton along the x coordinate is neglected,
i.e., communication is performed

τxy � μ0zv2x/zy (7)

where coefficient μ0 is determined from the condition of adhesion
of the compacted material to the surface of the hemispherical
matrix.

The system of Equations 4–6 in Cartesian coordinates is
supplemented by the equations of motion of the medium with
the true density of the solid phase ρtr2 taking into account external
pressure P.

zP

zx
� zτxy

zy
− ρtr2α2v2yzv2x

zy
(8)

0 � zτxy
zx

− ρtr2α2v2xzv2y
zx

(9)

and the following equation of continuity of the solid

v2x
zα2
zx

+ v2y
zα2

zy
� 0 (10)

System (8)–(10) allows you to obtain analytical
approximations for the main indicators of the process. The
applied solution methods include a combination of the
method of model equations and the method of substitution of
constants instead of variable parameters (Kapranova et al., 2010;
Kapranova et al., 2011; Kapranova et al., 2009).

By Equations 8–10, taking into account the slow nature of
powder deaeration, we have

α(1)
2 (x, y, t) � α20 + μ0

ζ0
[hnc1(t) + h1(x, y)c2(t)] (11)

τ(1)xy (x, y, t) � ζ0[α(0)
2 (x, y, t) − α20] (12)

v(1)2x (x, y, t) � S1(t) + h0(x, y)S2(t) (13)

v(1)2y (x, y, t) � Ω3(y)c2(t)v(1)2x (x, yt) (14)

Here are the first approximations for tangential stresses τ(1)xy ;
velocity components τ(1)xy for the rigid skeleton. Expressions (11),
(13) contain a function h0(x, y) that is determined by integration
h1(x, y) over the y -coordinate. Dependencies S1(t), S2(t) from
Eq. (13) are set according to the assumption that there is no
movement of the powder at the bottom of the cell cross-section
DK (Figure 1), then

v(1)2x (xD1, yD1, 0) � v2xA3; v
(1)
2x (0,−r, 0) � 0 (15)
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The auxiliary functions included in Expressions (11)–(14) are

c1(t) ≡
exp( t

tn
− 1) − exp(1)

1 − exp(1) ; c2(t) ≡
exp( t

tn
) − exp(1)

1 − exp(1) ;

S1(t) ≡ v2xN3c2(t)unu0 − c0hnrc1(t)
S0(t) ; S2(t) ≡ − c0

v2xA3

S0(t);
S0(t) ≡ c2(t)unu0 − c0hnr[yD1 + rc1(t)];

h0(x, y) ≡ anθ1(x)Ω1(y); h1(x, y) ≡ anθ1(x)Ω2(y);
Ω1(y) ≡ C3θ2(y) − y

c0
;Ω2(y) ≡ c2C3θ2(y) − 1

c0
;

Ω3(y) ≡ S1

c2
[ 1
c0c2C3θ2(y) − 1];

θ1(x) ≡ exp(C1x); θ2(y) ≡ exp(c2y).
In this case, the constants c0, C1, c2, C3, an, hn are set by the

values of the coordinates of the points Ki, Di from Equations
(1–3) and the characteristics of the physical and mechanical
properties of the compacted material, including the angle of
friction of the dispersed medium ρ (Kapranova and Zaitzev,
2011; Kapranova et al., 2015) and the adhesion coefficient of
the material H � ksρ (Kapranova and Zaitzev, 2011; Kapranova
et al., 2015), where ks is the parameter of caking (adhesion).

Thus, expressions (11)–(14) can be used to form engineering
methods for calculating the swath device (Kapranova et al., 2010;
Kapranova et al., 2011; Kapranova et al., 2009).

RESULTS AND DISCUSSION

The calculation of the basic characteristics of the process of
mechanical compaction of a dispersed medium Wb �
{α(1)2 , v(1)2x } when receiving granules-spheres in a roller device
(Figure 1) is carried out using the example of deaeration of
kaolin GOST 21235–75 (Figures 2A,B) according to (11) and
(13). Additionally, the dependence v(1)2y (x, y, t) was analyzed
using expression (15) (Figure 2C). The values of the main
parameters are: α20 � 2.8 × 10−2; R � 7.0 × 10−2 m;
r � 5.0 × 10−2 m; ω � 0.524 s−1; H0 � 2.0 × 10−3 m;
ρtr2 � 2.6 × 103 kg/m3; λ � 5.1 × 105 Pa; μ � 3.1 × 105 Pa;
ks � 2.65 × 104 Pa; ρ � 0.471 rad according to (Kapranova and
Zaitzev, 2011) using the techniques (Andrianov, 1982; Bessonov
et al., 2001; Kapranova and Zaitzev, 2011).

The surfaces shown in Figure 2 correspond to a fixed point in
time 3.65 × 10−2 s for the position of the form K2D2 (Figure 1).

According to the results obtained for the porosity function from
Equation (11) (Figure 2A), the process of deaeration of the powder in
the specified gap begins from the area surrounding the pointK3, s �
n0 − 1 at t0 � 0 or pointA1 (Figure 1). Stabilization of α

(1)
2 along the

indicated coordinates occurs at the last stage of closing hemispherical
shapes on the shaft and conveyor (see arc section KD, Figure 1).
Thus, for the initial time interval ( t0 ≤ t< t1 � 3.7 × 10−2 s), the
growth of α(1)2 (Figure 2A) relative to the horizontal coordinate along
the conveyor belt is exponential and increases by 1.1 times. After eight
such time intervals (at t3 � 3.21 × 10−1 s), the porosity values

FIGURE 2 | Dependencies for the main indicators of the deaeration
process of kaolin GOST 21235-75 in a spherical matrix of a roll-type
apparatus on Cartesian coordinates and time during: α20 � 2.8 × 10−2; ω �
0.524 c−1; t � 3.65 × 10−2 c; (A) α(1)2 (x, y, t); (B) v(1)2x (x, y, t); (C)
v(1)2y (x, y, t).
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stabilize along the indicated coordinate with an increase of more than
1.4 times from the initial value of α20.

Analysis of surfaces for v(1)2x (x, y, t), v(1)2y (x, y, t)
(Figures 2B,C) from Equations (13) and (14) during its
deaeration in the spherical matrix of the described
apparatus (Figure 1) showed the presence of a shift of
the layers of the compacted material, starting from the time
t0 � 0; v(1)2x (0, 0, t3)/v(1)2x (0, r, t3) ≈ 0.5; Δv(1)2y � v(1)2ymax(x, y, t3) −
v(1)2ymin(x, y, t3)≤ 2 × 10−11 m/s.

KEY FINDINGS AND RESULTS

• The plane-deformation modeling of the movement of the
solid skeleton of the dispersed medium together with the
carrier phase as a whole in the working volume of the
specified roller apparatus is carried out, as part (1) for the
complete deaeration model (Kapranova and Zaitzev, 2011).
The description of the movement of gas in an isothermal
state through the pores of a finely dispersed material, as part
(2) of this model, is discussed in the works of the authors
(Kapranova et al., 2010; Kapranova et al., 2011; Kapranova
et al., 2009).

• The theoretical substantiation of the possibility of realizing
deaeration of dispersed media in a roller device with a
spherical matrix on the surfaces of the shaft and
conveyor is obtained based on the results of the
performed simulation.

• The proposed plane-deformation model contributes to the
development of methods for modeling the behavior of
dispersed media in the working volumes of seals-
deaerators, identifying the main information variables of
the deaeration process, for example, according to the
approaches, tested for the processing of solid dispersed
materials (Kapranova et al., 2020a; Kapranova et al.,
2020b) or when transporting liquid media (Kapranova
et al., 2020c; Kapranova et al., 2020d).

CONCLUSION

An analytical method is proposed for assessing the efficiency
of the deaeration process of solid dispersed components in a
gap with perforated hemispherical shapes on the surfaces of
the shaft and conveyor belt within the framework of the
mechanics of heterogeneous systems taking into account the
compressibility. It is noted that the porosity of the finished
granule-sphere at the final stage of deaeration in the
described gap of the conveyor shaft with a spherical
matrix almost uniformly reaches its limiting value. In this
case, the difference between the maximum and minimum porosity
values does not exceed 2 × 10−12. Up to time values of 3.7 × 10−2 s, the
increase in porosity concerning the horizontal coordinate along the
conveyor belt exponentiallywith an increase of 1.1 times in comparison
with the initial value of this indicator. After eight such time intervals
(when reaching 3.21 × 10−1 s), the porosity values stabilize along the
indicated coordinate with an increase in this characteristic of the
deaeration process by more than 1.4 times from its initial value. So,
the proposed method for modeling the compaction process of solid
dispersed components provides a theoretical justification for the
possibility of implementing this technological operation in a gap
with perforated hemispherical shapes on the surfaces of the shaft
and the conveyor belt.
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