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With economic development and population growth, energy demand has shown an
upward trend. Renewable energy is inexhaustible and causes little pollution, which has
broad prospects for development. In recent years, wind energy has been developed as an
essential renewable energy source. The use of wind power is very environmentally friendly
and plays a critical role in economic growth. Assessing the characteristics and potential of
wind energy is the first step in the effective development of wind energy. The wind speed
distribution at a specific location determines the available wind energy. This paper reviews
the wind speed distribution models used for wind energy assessment, and they are
applicable to different wind regimes. All potential wind speed distributionmodels should be
considered for modeling wind speed data at a particular site. Previous studies have
selected several parameter estimation methods and evaluation criteria to estimate model
parameters and evaluate the goodness-of-fit. This paper discusses their advantages and
disadvantages. The characteristics of wind speed distribution are constantly varying
geographically and temporally. Wind energy assessment should consider local
geographical elements, such as local climate, topography, and thermal properties
difference between the land and the sea, and focus on long-term variations in wind
characteristics.

Keywords: renewable energy, wind energy assessment, wind speed distribution, parameter estimation method,
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INTRODUCTION

Energy is a necessary material basis for the survival and development of human society. In recent
years, the energy crisis has become a worldwide problem faced by humankind. With the continuous
growth of the population and the rapid development of the global economy, energy demand is also
increasing. Traditional fossil fuels (such as coal, oil, natural gas, etc.) have been widely used in almost
all areas of daily life. However, fossil fuel reserves are limited. Fossil fuels gradually formed in nature
over millions of years may be entirely exhausted by humans within a few hundred years (Baz et al.,
2021). In addition, the carbon in fossil fuels is transformed into carbon dioxide, which increases the
concentration of carbon dioxide in the atmosphere, leading to aggravation of the greenhouse effect,
changing the global climate, and breaking the ecological balance (Arenas-López and Badaoui, 2020).
As people gradually realize the importance and urgency of environmental protection, energy
conservation, emission reduction, and sustainable development, renewable energy has become
the primary energy source required for future social development and has broad potential demands.
Wind energy is one of the potential renewable energy sources that can be used for commercial
purposes. Many countries take wind power development to improve the energy structure and protect
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the ecological environment. Wind energy also plays a vital role in
economic growth, creating more employment opportunities, and
promoting the development of science and technology (Liu et al.,
2019; Kandpal and Dhingra, 2021). Wind energy has recently
attracted widespread attention in the power generation industry
(Jansen et al., 2020). Global wind-generated power has increased
significantly from 2012 to 2017 (Figure 1) (World Bank, 2017).

At present, to meet the increasing electricity demand,
researchers have focused on improving the efficiency of wind
power generation (Chen and Blaabjerg, 2009). Assessing the
characteristics and potential of wind energy is the first step in
the effective development of wind energy. Wind energy resource
assessment is an essential part of the feasibility analysis of wind
farm projects. Whether the assessment is reasonable directly
impacts the cost of power generation and economic benefits
(Mauritzen, 2020). The wind speed distribution at a specific
location determines the available wind energy and the
performance of the energy conversion system. Therefore, to
reduce the uncertainty of wind energy output estimation, it is
necessary to accurately understand the distribution
characteristics of wind speed (Celik, 2003). Two methods are
generally used to determine the wind speed distribution: 1) the
time series method (Morales et al., 2010; Katikas et al., 2021) and
2) the statistical analysis method (Ouarda et al., 2016; Elie
Bertrand et al., 2020). The result obtained by the time series
method may be more accurate because it is based on the original
wind speed data. However, with an enormous amount of data, the
processing process of the time series method is more complicated.
When there is a lack of long-term wind speed data, it is more
feasible to use statistical analysis to explain the behavior and
characteristics of historical wind speed data and estimate the
wind energy output. The statistical analysis method uses limited
parameters to characterize wind speed distribution, which is

efficient and straightforward. The process of statistical analysis
to assess the potential of wind energy is shown in Figure 2. It is
crucial to determine the most suitable probability density
function (pdf) for historical wind speed data (Alavi et al.,
2016a). The most widely used pdf in wind speed modeling is
the Weibull distribution (Petković et al., 2014; Wais, 2017a;
Sarkar et al., 2019). In recent years, researchers have
considered several pdfs to find the most accurate model for
the wind energy assessment of a particular site (Lo Brano
et al., 2011; Ouarda et al., 2015; Jia et al., 2020; Wang et al.,
2021). After determining the pdf, the value of each parameter in
the function should be estimated. The commonly used parameter
estimation methods mainly include the maximum likelihood
method (Miao et al., 2019), the least squares method (Jung
and Schindler, 2017), the moment method (Li and Miao,
2021), and the power density method (Akdağ and Dinler,
2009). Previous studies used different goodness-of-fit criteria
to evaluate the accuracy of the model. Commonly used criteria
include the coefficient of determination (ul Haq et al., 2020), the
root mean square error (Guarienti et al., 2020), the Kolmogorov-
Smirnov test statistic (Ouarda and Charron, 2018), the Anderson-
Darling test statistic (Soukissian, 2013), and the chi-square test
statistic (Wang et al., 2016).

Although the research of wind speed distribution has pursued
the unified modeling of existing wind regimes, previous studies
have not proposed a model that can provide a sufficient
description at any site. Correspondingly, different parameter
estimation methods and goodness-of-fit criteria have
advantages and disadvantages, which bring difficulties to wind
energy potential assessment. This paper reviews wind speed
models, parameter estimation methods, and goodness-of-fit
criteria and briefly discusses the advantages and disadvantages.
The aim is to analyze the reasons for the differences in the fitting

FIGURE 1 | Changes in wind energy output from 2012 to 2017 in the four countries with the highest wind power generation (China, the United States, Germany,
and India).
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effects of models in different geographical locations and time
scales.

WIND SPEED DISTRIBUTION MODELS

The kinetic energy contained in the airflow is converted into
electrical energy by the wind turbines. The wind speed presents
a positively skewed distribution with statistical characteristics.
However, wind power has randomness, volatility, and

intermittent characteristics, making the output power of wind
farms fluctuate considerably. Several probability distribution
models have been widely used in wind farm analysis, planning,
design, construction, and operation. Wind speed distribution
models can be roughly divided into two classes: parametric
distribution models and nonparametric distribution models.

Parametric Distribution Models
The theoretical average output can be calculated as follows
(Masseran, 2015):

FIGURE 2 | The process of evaluating local wind energy potential based on original wind speed data.
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�P � ∫∞
0

1
2
ρv3f(v)dv, (1)

Where �P is the theoretical average wind energy output, v is the
observed wind speed, and f(v) is the pdf of wind speed.

The observed average output can be calculated as follows：

Po � 1
2
ρ�v3, (2)

Where Po is the observed average wind energy output, v is the
observed mean wind speed.

Energy prevision bias is the percentage error between the
theoretical average output and the observed average output:

φ �
∣∣∣∣∣∣∣∣∣∣∣
�P − Po

Po

∣∣∣∣∣∣∣∣∣∣∣ × 100%. (3)

The estimation of wind power mainly depends on the f(v).
Therefore, selecting an appropriate pdf can provide more
accurate energy potential results and reduce energy
prevision bias.

Weibull Distribution
The Weibull distribution was promoted by the Swedish physicist
Weibull (Weibull, 1951), and it has been used in various fields,
such as physics, materials science, geography, medicine,
economics, etc. The pdf of the two-parameter Weibull
distribution is:

f(x) � k

α
(x
α
)k−1exp[ − (x

α
)k], (4)

where α is the scale parameter, which controls the abscissa scale of
the data distribution; k is the shape parameter of the Weibull
distribution, which determines the width of the data
distribution. The two-parameter Weibull distribution has a
simple form, high flexibility, and efficient computing
parameters, making it the most popular and famous wind
speed distribution model. The Weibull distribution has
significant advantages, especially in areas dominated by
temperate depressions (Harris and Cook, 2014). For example,
Bilir et al. (2015) used a two-parameter Weibull distribution to
evaluate wind energy resources near Ankara, the capital of
Turkey. Shu et al. (2015) used a two-parameter Weibull
model to characterize the wind speed distribution in Hong
Kong. In addition, the Weibull distribution has also been
applied to the estimation of the performance of the
automatic wind power generation system (Celik, 2006), the
simulation and prediction of the wind speed time series
(Kaplan and Temiz, 2017), the wind turbine failure analysis
(Jin et al., 2021), etc. Nevertheless, the two-parameter Weibull
distribution is not suitable for all wind regimes in nature.
Previous studies have shown that the two-parameter Weibull
distribution is less effective in fitting low wind speeds, especially
for wind speed data with considerable null wind probability
(Akgül et al., 2016). The two-parameter Weibull distribution
cannot determine the actual null wind probability, so null wind

speed data needs to be removed before fitting, making it
impossible to characterize the existing wind regimes.

A three-parameter Weibull distribution is proposed for wind
energy evaluation as an alternative probability distribution for the
two-parameter Weibull distribution (Montoya et al., 2019):

f(x) � k

α
(x − μ

α
)k−1exp[ − (x − μ

α
)k], (5)

where μ is the location parameter, which represents the minimum
wind speed. The three-parameter Weibull distribution can
estimate the probability of null wind speed and give greater
weight to low wind speeds. Wais (2017b) showed that the
accuracy of the two-parameter Weibull distribution is higher
in estimating wind power output only when the null wind speed is
insignificant. Otherwise, the relative error of the three-parameter
Weibull distribution is minor. However, adding a location
parameter may lead to the negative values of the pdf, which
requires artificial control of the lower limit of the three-parameter
Weibull distribution to avoid negative wind speed. In addition,
compared with the two-parameter Weibull distribution, the
three-parameter Weibull distribution cannot achieve the same
high value at high wind speeds. Since wind power has a cubic
relationship with the wind speed, although the three-parameter
Weibull function fits the wind speed better at some sites, it does
not necessarily mean that it estimates the output more accurately.

When the shape parameter of the two-parameter Weibull
distribution is equal to 2, the Rayleigh distribution is formed:

f(x) � x

α2
exp[ − 1

2
(x
α
)2]. (6)

Rayleigh distribution is used tomodel wind speed and evaluate
the standard performance of wind turbines (Saleh et al., 2012;
Valencia Ochoa et al., 2019). Compared with the Weibull
distribution, because the Rayleigh distribution contains only
one parameter, it is more convenient to use, and its
parameters are easier to estimate. However, the Rayleigh
distribution is based on the assumption that the long-term
mean wind vector is zero. The vector of wind prevailing at
sea, such as trade wind, deviates significantly from zero,
making the applicability of the Rayleigh distribution to sea
winds relatively limited (Perrin et al., 2006).

Extreme Value Distribution
Previous studies have shown that extreme wind speeds have
almost no effect on the parameter values of the Weibull
distribution (Wang et al., 2015). Once the wind speed exceeds
the threshold, the Weibull model is no longer applicable. There
are obvious errors in the maximum annual wind speed
distribution and the return period estimated by the Weibull
model, which affects the risk assessment of extreme winds
(Perrin et al., 2006). A practical alternative is to use extreme
value distributions.

Extreme value distributions used for wind speed modeling
include the Gumbel distribution, the inverseWeibull distribution,
and the generalized extreme value distribution. The pdf of the
Gumbel distribution is as follows:
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f(x) � 1
α
exp[ − x − μ

α
− exp(x − μ

α
)], (7)

where α is the scale parameter, and μ is the location parameter.
The pdf of the inverse Weibull distribution is as follows:

f(x) � k

α
(α
x
)k+1exp[ − (α

x
)k], (8)

where α is the scale parameter, and k is the shape parameter.
The pdf of the generalized extreme value distribution is shown

as follows:

f(x) � 1
α
[1 − k

α
(x − μ)]1

k−1
− exp{ − [1 − k

α
(x − μ)]1

k}, (9)

where α is the scale parameter, k is the shape parameter, and μ is
the location parameter.

Gumbel distribution and inverse Weibull distribution are
subsets of the generalized extreme value distribution. The
extreme value distribution is a heavy-tailed distribution whose
right tail is thicker than the Weibull distribution. Therefore, the
extreme value distribution is more accurate when estimating the
occurrence probability of extreme wind speeds. However, due to
the lack of historical extreme wind speed data, the traditional
extreme value distribution can only estimate the annual
maximum wind speed distribution and does not consider the
monthly or daily extreme winds, thus reducing the reliability of
quantifying extreme events (Torrielli et al., 2013). In addition,
studies generally believe that there is a threshold wind speed, and
the extreme value distribution is not suitable for modeling below
the threshold wind speed. However, the estimation results of
threshold wind speed are pretty different, so the applicable range
of extreme value distribution is unclear, making it difficult to
determine the most suitable type of extreme value distribution
(Kang et al., 2015).

Gamma Distribution
Gamma distribution is also one of the distributions widely used in
wind speed distribution modeling (Aries et al., 2018). The two-
parameter gamma distribution is also called the Pearson Type III
distribution:

f(x) � αk

Γ(k)x
k−1exp(−αx), (10)

where α is the scale parameter, and k is the shape parameter.
If the logarithm of a random variable conforms to the gamma

distribution, the random variable follows the Log Pearson type III
distribution:

f(x) � [ln(x) − μ]k−1 1
Γ(k)αk exp[ − ln(x) − μ

α
], (11)

where α is the scale parameter, k is the shape parameter, and μ is
the location parameter.

The random variable that obeys the Gamma distribution takes
the reciprocal to get the inverse Gamma distribution, also known
as the Pearson type IV distribution (Masseran, 2015):

f(x) � αk

Γ(k)x
−k−1exp(−α

x
), (12)

where α is the scale parameter, and k is the shape parameter.
The above distributions are subsets of the generalized Gamma

distribution. The generalized Gamma distribution is one of the
earliest probability distribution models applied to wind speed
modeling (Guedes et al., 2020), and its pdf is shown as follows:

f(x) � k(x − μ)kh−1
αkhΓ(h) exp{ − [(x − μ)

α
]k}, (13)

where α is the scale parameter, k and h are shape parameters, and μ
is the location parameter. The generalized Gamma distribution
adds a shape parameter, which significantly improves the flexibility
of the model. When the value of h is equal to 1, it is transformed
into a Weibull distribution. When the value of h is equal to 2, it is
transformed into a generalized normal distribution. When the
value of k is equal to 1, it is transformed into a Gammadistribution.
When the value of h tends to infinity, it is transformed into a
lognormal distribution (Alavi et al., 2016b):

f(x) � 1
xα

���
2π

√ exp{ − [ln(x) − μ]2
2α2

}, (14)

where α is the standard deviation of the logarithm of the random
variable, and μ is the mean of the logarithm of the random
variable.

Kiss and Jánosi (2008) proposed that the fitting effect of the
generalized Gamma distribution is significantly better than that
of theWeibull distribution, especially for high wind speeds, and is
suitable for regions with different underlying surfaces and
climatic conditions in Europe. Sarkar et al. (2017) proposed
that the fitting effect of the Gamma distribution and the
Weibull distribution are close, and the Gamma distribution
can be used as an alternative model for the Weibull
distribution in low ranges. However, the analytical expression
of the wind power density function derived from the Gamma
distribution is complicated, and the analytical expressions of the
mean, variance, skewness, and kurtosis of the wind power density
function cannot be determined, which affects the efficiency of
wind energy potential assessment (Samal, 2021). Therefore, to
simplify the calculation process, the Gamma distribution cannot
be the first choice for the wind speed distribution model.

Multi-Parameter Probability Distribution
Several probability distribution models containing more than
three parameters have been proposed to characterize the wind
speed distribution to pursue higher fitting accuracy. Commonly
used multi-parameter probability distributions include the four-
parameter Burr distribution, Johnson SB distribution, Kappa
distribution, and the five-parameter Wakeby distribution. The
pdf of Burr distribution is as follows:

f(x) � hk(x−μα )hk−1
α[1 + (x−μα )h]k+1, (15)
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where α is the scale parameter, k and h are shape parameters, and
μ is the location parameter.

The pdf of Johnson SB distribution is shown as follows:

f(x) � αk���
2π

√ (x − μ)(μ + α − x) exp⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ − h + kln( x−μ
μ+α−x)2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (16)

where α is the scale parameter, k and h are shape parameters, and
μ is the location parameter.

The pdf of Kappa distribution is shown as follows:

f(x) � 1
α
[1 − k(x − μ)

α
] 1

k−1
[F(x)]1−h, (17)

where α is the scale parameter, k and h are the shape parameters,
and μ is the location parameter. F(x) is the cumulative
distribution function (cdf) of the Kappa distribution.

The pdf of Wakeby distribution is as follows:

f(x) � {α[1 − F(x)]c−1 + k[1 − F(x)]−h−1}−1. (18)

F−1(x) � μ + α

c
[1 − (1 − F)c] − k

h
[1 − (1 − F)−h], (19)

where α and k are scale parameters, c and h are shape parameters,
and μ is the location parameter.

Lo Brano et al. (2011) proposed that the Burr distribution
provides high fitting accuracy for wind speed data in southern
Italy. The results of Jung and Schindler (2017) showed that
Wakeby distribution and Kappa distribution are suitable
choices for onshore and offshore wind speed distribution
models, respectively. Soukissian (2013) proposed that Johnson
SB fits the wind speed data measured in the Mediterranean Sea
well. Because the multi-parameter probability distribution
contains more parameters, it is more flexible, more adaptable,
and has higher fitting accuracy, which reduces the error of wind
energy estimation. However, compared with the two-parameter
or three-parameter probability distribution models, its
complexity is also greatly improved. Therefore, if the multi-
parameter probability distribution model does not significantly
improve the estimation accuracy, it is not recommended to
prioritize this type of model in most cases.

Mixture Distributions
The above models are all single wind speed distributions. The
single distribution cannot describe complex wind regimes,
especially the wind speed distribution with bimodal or
multimodal characteristics (Santos et al., 2021). Therefore,
previous studies tend to use mixture distributions to assess the
wind energy potential under complex wind regimes. The pdf of
the mixture distributions are as follows:

f(x) �∑a
i�1

ωifi(x), (20)

α is the number of mixtures, ωi is the weight of each single
distribution model, and fi(x) is the pdf of different single
distributions.

Generally, for special wind regimes, the fitting effect of
mixture distributions is better than that of single wind speed
distributions. Carta and Ramírez (2007) used a two-component
mixture Weibull distribution to describe the wind regimes at
weather stations in Spain. Ouarda et al. (2015) proposed that
mixed distributions, such as mixed Weibull and Gamma
distributions, fit bimodal wind speed regimes better than
single distributions. However, there are still some difficulties in
using mixture distributions appropriately. Firstly, it is difficult to
determine which one or several single distribution models are
used to construct a mixed distribution. The fitting effects of mixed
distributions constructed from different single wind speed
distributions are significantly different (Hu et al., 2016).
Secondly, the optimal number of single distributions to form a
mixture distribution cannot be calculated, and the researcher
often subjectively determines it (Ouarda and Charron, 2018). In
addition, the parameter estimation process of the mixture
distribution is more complicated, which leads to over-
parameterization. Therefore, the use of mixture distributions
has limitations.

Nonparametric Distribution Model
Although parametric distributions have certain advantages in
wind speed modeling, choosing a qualified distribution is still
challenging. The theoretical probability distribution model may
not describe the actual wind regimes, and the estimated
parameter values may not pass statistical tests (Xu et al.,
2015). The nonparametric model does not need to make any
assumptions about the theoretical distribution of wind speed, nor
does it need to estimate the parameters of any distribution. Its
parameters can be automatically learned from the historical data
(Qin et al., 2011). Commonly used nonparametric models include
kernel density estimation (KDE) and maximum entropy
principle (MEP).

Kernel Density Estimation
KDE can get the pdf from the sample data:

f(α) � 1
nh
∑n
i�1

K(a), (21)

where n is the number of samples, h is the bandwidth,K(α) is the
kernel function, and α is the relative difference between the
estimated value and the sample value:

α � x − xi

h
, (22)

where x is the observed value, and xi is the estimated value. There
are several kernel functions used to construct KDE functions,
among which the most widely used is the Gaussian kernel
function:

K(α) � 1���
2π

√ exp[ − (x − xi)2
2h2

]. (23)

KDEmodels have substantial flexibility and stability. Han et al.
(2019) used wind speed data from a total of 698 wind stations
across China, and the test results showed that the effect of the
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KDE model is better than that of the Weibull distribution and
other 18 commonly used parametric distribution models. The
fitting results of historical wind speed data from four wind sites in
central China showed that KDE has higher accuracy (Han et al.,
2018). KDE model needs to select an appropriate bandwidth.
Otherwise, there will be over-fitting or under-fitting, which will
significantly affect the estimated value. Although several methods
for selecting bandwidth, determining the best bandwidth is still
challenging (Tenreiro, 2011).

Maximum Entropy Principle
The content of MEP theory is that under some constraints, the
distribution model should reach the maximum remaining
uncertainty (i.e., maximum entropy):

max S � − ∫b
a

f(x)lnf(x)dx, (24)

where S is the Shannon’s entropy. f(x) is the pdf of wind speed, a
is the minimum of wind speed, and b is the maximum of wind
speed. The constraints are as follows:

∫b
a

f(x)dx � 1. (25)

∫b
a

xnf(x)dx � mn, (26)

where mn is the n-th order statistical moment:

mn � 1
N
∑N
n�1

xn, (27)

where N is the number of samples. Through Lagrangian
multiplier method, the expression of pdf can be obtained:

f(x) � exp⎛⎝β0 +∑T
i�1

βix
i⎞⎠, (28)

where β0, β1, . . . , βT is the Lagrange multipliers, and T is the
maximum of n.

MEP has strong flexibility and can describe complex wind
regimes with a large proportion of null wind and a bimodal
distribution (Zhou et al., 2010). In some cases, MEP can more
accurately characterize the wind speed distribution than
parametric distributions, and the estimation error of wind
power density is minor (Chellali et al., 2012). However, MEP
has limitations in some cases, such as the difficulty of selecting
constraint conditions (Zhang et al., 2014).

PARAMETER ESTIMATION METHOD

Particular parameters define all single distribution models and
mixed models. Determining the best value of the parameter has
a significant impact on the effect of models in fitting wind speed

data. Previous studies have used different methods to estimate
the parameters of the wind speed distribution models, but
calculating the best value of the parameters is still a
challenging task.

Maximum Likelihood Method
MLM needs first to construct a likelihood function or a log-
likelihood function and then seek the parameter value that makes
the function reach the maximum value. MLM estimates the
parameter values of the probability distribution through
numerical iteration, and the most commonly used method is
Newton’s method (Tosunoğlu, 2018). The maximum likelihood
estimator is asymptotically unbiased, consistent, and
asymptotically effective, and it can reach the minimum
variance. In addition, MLM can estimate sample variance to
construct confidence intervals and perform hypothesis testing,
suitable for analyzing wind speed data in the form of time series
(Ramírez and Carta, 2005). However, MLM is more sensitive to
the initial value. When the upper and lower limits of the
parameters are unknown, its effect is poor (Flynn, 2006). The
numerical iterative method requires a large amount of
calculation, especially when estimating the parameters of a
multi-parameter model or a mixture model, the efficiency of
MLM is low (Seo et al., 2019). Some studies have applied
improved MLM, called the alternative maximum likelihood
method (AMLM), to modeling wind speed distribution (Akdağ
and Güler, 2015). AMLM is based on the idea of linearizing the
nonlinear term in the likelihood equation through Taylor series
expansion and derives the parameter estimator in a non-iterative
manner. MLM and AMLM are often used to estimate the shape
parameter and scale parameter of the Weibull distribution.
Previous studies have shown that the accuracy of the two
methods will show differences due to the different
geographical locations of wind speed observations (Chaurasiya
et al., 2018).

Least Squares Method
LSM is known as the graphic method. The parameter value
estimated by LSM minimizes the sum of squares of the
deviations between the empirical cdf and the cdf of the model

Min S(Vmax;φ) � Min
⎧⎨⎩∑N

i�1
[Pi − F(Vmax,i;φ)]2⎫⎬⎭, (29)

where φ is a vector containing the parameters of the pdf. Divide
the observed values into N intervals: 0 − V1, V1 − V2. . .,
VN−1 − VN. Vmax is the maximum value in each interval, Pi is
the empirical cdf, and F is the cdf of the model:

F(x) � ∫ x

0
f(x). (30)

Some studies have proposed that the accuracy and robustness
of LSM are lower than other parameter estimation methods,
which may be related to the error in the definition of the cdf
(Chang, 2011). Deep et al. (2020) used the modified LSM for
parameter estimation, and the results show that its effect is not
inferior to other methods. LSM needs to linearize the objective
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function, and the logarithmic transformation is the basis of LSM.
The cdf of the Weibull and Rayleigh distributions contains the
exponential term, which is easy to perform the logarithmic
transformation, so it is more suitable to use LSM to estimate
its parameters. However, linearization of Lognormal and Gamma
distribution is more complicated, making LSM unsuitable for
these two models (Alrashidi et al., 2020).

The Method of Moments
The first step of MOM is generally to calculate the first four
moments of a random variable:

�x � 1
n
∑n
i�1

xi. (31)

s �
�����
1

n − 1

√ ∑n
i�1

(xi − �x)2. (32)

g � 1
n
∑n
i�1
(xi − �x

s
)3. (33)

w � 1
n
∑n
i�1
(xi − �x

s
)4, (34)

where �x, s, g, w are the mean, standard deviation, skewness, and
kurtosis of the wind speed series respectively; n is the length of the
wind series; xi is the wind speed of the i-th time step. The second
step of MOM is to make the sample moments equal to the
population moments. MOM is simpler and more accurate than
other parameter estimation methods, especially for multi-
parameter distributions such as Johnson SB distribution and
Wakeby distribution (Liu et al., 2015). But MOM estimator is
skewed and unstable and cannot reach the minimum variance
(Carta et al., 2009).

Some studies have proposed the linear moment estimation
method (LMOM) for parameter estimation based on MOM.
LMOM needs to calculate the probability weighted moments:

b0 � 1
Z
∑Z
z�1

xz. (35)

br � 1
Z
∑Z

z�r+1

(z − 1)(z − 2) . . . (z − r)
(Z − 1)(Z − 2) . . . (Z − r)xz, (36)

where br is the r-th order probability weighted moment (r> 0).
Then the first five linear moments can be calculated:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a1 � b0
a2 � 2b1 − b0
a3 � 6b2 − 6b1 + b0
a4 � 20b3 − 30b2 + 12b1 − b0
a5 � 70b4 − 140b3 + 90b2 − 20b1 + b0

. (37)

LMOM estimator is unbiased, it is more stable for samples
with abnormal data, and better results will be obtained with a
smaller sample size (Soukissian and Tsalis, 2018). However,
LMOM, like MOM, cannot fully utilize all the valid
information in the sample. When other parameter estimation
methods are difficult to calculate parameters, MOM and LMOM
are effective alternative methods.

Power Density Method
Akdağ and Dinler (2009) proposed a new method for calculating
the shape and scale parameters of the Weibull distribution. The
relationship between the scale parameter α of the Weibull
distribution and the average wind speed �V is:

α � �V

Γ(1 + 1
k). (38)

From Eqs 1, 28:

V3( �V)3 � Γ(1 + 3
k)

Γ(1 + 1
k)3, (39)

where V3 is the average value of the wind speed cube, V3

( �V)3 is
recorded as the energy pattern factor (Ep), and the value of Ep at a
particular site is generally regarded as a fixed value, ranging from
1.4 to 4.4. Therefore, the shape parameter k of the Weibull
distribution can be calculated by:

k � 1 + 3.69(Ep)2. (40)

As long as the average wind speed value is obtained, PDM is
applicable and does not require complete historical wind speed
data. PDM does not need to calculate complicated iterative
equations, so the numerical solution of the parameters can be
obtained easily. In addition, the wind power density can be
directly estimated by this method. The results of Shu et al.
(2015) showed that the accuracy of PDM is not worse than
other traditional parameter estimation methods. However, PDM
is currently only suitable for estimating the parameters of the
Weibull distribution. Other probability distribution models may
not be able to derive the power density expression from Eq. 1, or
the expression may be too complicated to perform the next step.
Therefore, the scope of the application of PDM is minimal.

GOODNESS-OF-FIT CRITERIA

After the distribution model and the parameter values are
determined, it is necessary to evaluate the goodness-of-fit of
the model. The goodness-of-fit criteria reflect how well the
selected model fits the wind speed data so that the
applicability of the model to the sample can be evaluated.
Choosing different goodness-of-fit criteria may lead to
different results.

Coefficient of Determination (R2)
R2 is one of the most widely used goodness-of-fit criteria. It is a
metric for estimating the consistency between the distribution
model and the observed data. R2 is expressed as the square of the
correlation coefficient between the observed value and the
estimated value:

R2 � 1 − ∑n
i�1(yi − xi)2∑n
i�1(yi − �y)2 , (41)
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yi is the i-th observed data, �y � 1
n ∑n

i�1 yi, xi is the i-th estimated
value, and n is the number of samples.

There are several commonly used variants of R2. The first is
R2
PP, which refers to R2 associated with P-P plot:

R2
PP � 1 − ∑n

i�1(Fi − F̂i)2∑n
i�1(Fi − �F)2 , (42)

where Fi is the empirical cumulative probability of the measured
data in the i-th wind speed interval, �F � 1

n ∑n
i�1 Fi, F̂i is the

estimated cumulative probability of the i-th wind speed interval.
The second variant is R2

PP, which refers to R2 associated with
the Q-Q plot:

R2
QQ � 1 − ∑n

i�1(pi − p̂i)2∑n
i�1(pi − �p)2 , (43)

where pi is the probability of the measured data in the i-th wind
speed interval, p̂i is the estimated probability of the i-th wind
speed interval, p̂i � F−1(Fi), �p � 1

n ∑n
i�1 pi.

The third variation is the adjusted coefficient of
determination (R2

a):

R2
a � 1 − (1 − R2)N − 1

N − d
, (44)

where N is the number of samples, and d is the number of
parameters in the probability distribution model.

The closer the value of R2 and its variants to 1, the better the
fitting effect of the model. Among them, R2 has the simplest
structure and is easier to use. However, R2 cannot fully reflect the
fitting effect of the theoretical distribution, and it is not
appropriate to use R2 alone to evaluate the model (Hossain
et al., 2014). The definition of R2

PP is related to the cdf, and
the gradient of the cdf reaches the maximum when the random
variable takes the middle value, so the middle part of the
distribution has a more significant influence on the value of
R2
PP. R

2
QQ is more sensitive to the maximum gradient of the

inverse cumulative distribution function, which corresponds to
the tail of the distribution. The plotting position of the Weibull
distribution provides an unbiased estimate of the cumulative
probability, so R2

PP is usually preferred to evaluate the fitting effect
of the Weibull distribution (Akdağ et al., 2010). R2

a provides
penalties for multi-parameter models and avoids overfitting.
When the gap between N and d is large, R2

a ≈ R2, indicating
that R2

a is not suitable for wind speed data with a large sample size.
Dividing the wind speed data into a histogram can significantly
improve the applicability of R2

a.

Root Mean Square Error (RMSE)
RMSE determines the accuracy of the model through the item-
by-item comparison between the observed probability and the
estimated probability. RMSE usually has two forms, RMSEPP

which is similar to R2
PP and RMSEQQ which is similar to R2

QQ:

RMSEPP � ⎡⎣1
n
∑n
i�1
(Fi − F̂i)2⎤⎦12. (45)

RMSEQQ � ⎡⎣1
n
∑n
i�1
(pi − p̂i)2⎤⎦12. (46)

The closer the RMSE value is to 0, the better the fitting effect of
the selected model. RMSE is usually used together with R2 as a
criterion for evaluating the goodness-of-fit of the model.
However, RMSE is more sensitive to abnormal data. If a
specific wind speed data deviates greatly from the expected
value, the error caused by it is more prominent. It is not
appropriate to use RMSE to evaluate the goodness of the
model in fitting short-term wind speed data. In addition,
unlike R2, the value of RMSE is related to the selected
probability distribution model, so RMSE cannot be used to
compare the goodness-of-fit of different models to the same
set of wind speed data.

Kolmogorov-Smirnov Test and
Anderson-Darling Test
The KS and AD tests are used to determine whether a given
probability distribution model is suitable for a set of wind speed
observation data. They are also used to compare the goodness-of-
fit of different models to the same set of data. Both the KS and AD
tests compare the empirical cumulative probability with the
estimated cumulative probability distribution. Specifically, the
KS test calculates the maximum difference between the two:

KS � max
∣∣∣∣Fi − F̂i

∣∣∣∣. (47)

The KS test is an accurate nonparametric test suitable for a
continuous distribution. It is more sensitive to the middle part of
the distribution.

AD test is improved based on KS test:

AD � ⎧⎨⎩ − n −∑n
i�1

2i − 1
n
[ln(F̂i) + ln(1 − F̂n−i+1)]⎫⎬⎭. (48)

The AD test is related to the weight function and is more
sensitive to the tail of the distribution. Both the KS and AD tests
have a critical value. If these two test statistics are lower than the
critical value, the assumed distribution is accepted. The critical
value of the KS test is independent of the selected model, and the
critical value of the AD test varies with the model, so the AD test
is more accurate (Saeed et al., 2021).

Chi-Square Test (χ2)
χ2 can verify whether the measured wind speed data frequency is
consistent with the frequency obtained from the assumed model.
It is often used to compare the goodness-of-fit of different
models. The chi-square test needs to divide the observation
data into several groups, and the frequency of each group is
expressed in the form of histograms. Then calculate the test
statistics:

χ2 �∑T
i�1

(Oi − Ei)2
Ei

, (49)
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where, Oi is the observed frequency of the i-th group, Ei is the
estimated frequency of the i-th group, calculated by the following
equation:

Ei � n[F(vi) − F(vi−1)], (50)

vi and vi−1 are the upper and lower bounds of the wind speed of
the i-th group, respectively.

If the value of χ2 is greater than the critical value, the assumed
model is rejected. Similar to the AD test, the critical value of the
chi-square test depends on the selected probability distribution
model. Since the frequency histogram is used, the chi-square test
is less affected by a single observation. However, the chi-square
test results show significant differences under different class
intervals, and the selection of class intervals is usually
subjectively determined, limiting its applicability (Mert and
KarakuŞ, 2015).

DISCUSSION

The fitting effect of the wind speed distribution model usually
varies according to the location of different sites (Ouarda et al.,
2016). This section uses a case study to compare the fitting
effects of the two-parameter Weibull distribution and the three-
parameter Weibull distribution at different sites. Two sites are
selected in this study. Shengsi is located in the southeast of the
Yangtze River estuary and is an island on the East China Sea.

Xianyang is a city located in the Guanzhong Basin, surrounded
by mountains (Figure 3). Table 1 introduces the altitude,
geographic coordinates, period of record, maximum wind
speed, and the probability of null wind speed of the two
sites. The wind speed data are obtained from the Integrated
Surface Database of the National Centers for Environmental
Information (www.ncei.noaa.gov/maps/hourly/). The
resolution of wind speed data is 1 m/s, and it is recorded
every three hours. Previous studies have shown that the wind
direction has almost no influence on the wind energy output,
and the output of each direction is not distinguished (Kiss and
Jánosi, 2008). Therefore, this case study uses wind speed data
aggregated from all directions.

The two-parameter Weibull distribution and the three-
parameter Weibull distribution are used to fit the wind speed
observation data of the two sites, respectively. To ensure that the
fitting effects are comparable, the Least Squares Method is used to
estimate the parameter values, and R2 is used as the goodness-of-
fit criteria. Figure 4 shows the fitting curves of the two
distributions. In Shengsi, the fitting curves of the two
distributions basically coincide. However, in Xianyang, the
three-parameter Weibull distribution obtains a more accurate
estimation of the probability of null wind speed by adjusting the
value of the location parameter μ, while the two-parameter
Weibull distribution underestimates the low wind speed
probability. By comparing the value of R2 (Table 2), it can be
concluded that the two distributions have basically the same

FIGURE 3 | The geographical location of shengsi and Xianyang.
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fitting effect on the wind speed data of Shengsi, but the fitting
effect of the three-parameter Weibull distribution is better than
that of the two-parameter Weibull distribution in Xianyang.
Considering that the two-parameter Weibull distribution has
more flexibility and its parameters are easier to estimate, it is
recommended to use the two-parameter Weibull distribution to
evaluate the wind energy in Shengsi. However, for Xianyang,
where low wind speeds account for a large proportion, it is more
suitable to use the three-parameter Weibull distribution to fit
wind speed data.

The wind speed distribution characteristics of different sites
determine the applicability of the models. Shengsi is located in the
coastal area of eastern China, where there is a thermal difference
between land and sea, coupled with the influence of the East
Asian monsoon and tropical storms, resulting in strong winds
throughout the year. Xianyang is located in the inland area,
affected by the continental climate, causing a large proportion
of null wind. In addition, the topography also affects the
characteristics of wind speed distribution (Kim and Lim,
2017). The mountains around Xianyang block the airflow
movement, while the terrain of Shengsi is flat, and the airflow
is less obstructed.

For a specific site, the wind speed distribution may have
different characteristics over time. Xiao et al. (2021) proposed
that the wind speed in the Badain Jaran Desert in China reached
the highest in April, followed by November, which was much
higher than the wind speed in other months. Usta and Kantar
(2012) proposed that the statistical characteristics of monthly,
seasonal, and yearly wind speed data, such as mean, variance,
skewness, and kurtosis, are significantly different. Therefore, the
optimal wind speed distribution model under different time
scales of wind speed data may be different. Some studies have
conducted wind energy assessments on longer time scales. Gao
et al. (2018) proposed that climate warming has led to a gradual
decline in the long-term wind energy potential of the Indian
Ocean, which will affect the economic income of wind farms. Shu
et al. (2015) proposed that long-term temperature variations will
lead to variations in wind characteristics, which will change the
energy output. However, on the one hand, the trend of climate
change is very complex and has not been fully understood,
making it difficult to predict long-term variations in wind
characteristics. On the other hand, the location of wind farms
is often determined only by wind speed observation data within
1–2 years or even less (Chen and Blaabjerg, 2009). If the wind

TABLE 1 | The altitude, geographic coordinates, period of record, maximum wind speed, and the probability of null wind speed of the two sites in Shengsi and Xianyang.

Station name Altitude(m) Latitude Longitude Period (year) Maximum (m/s) Mean (m/s) Probability of null
wind speed (%)

Shengsi 12 30.729°N 122.451°N 1958–2021 40 6.65 1.28
Xianyang 477 34.444°N 108.754°E 1956–2021 23 2.42 10.86

FIGURE 4 | Fitting curves of two-parameter Weibull distribution and three-parameter Weibull distribution at Shengsi and Xianyang sites.

TABLE 2 | Estimated parameter values and R2 values of the two sites.

Model Shengsi Xianyang

α k μ R2 α k μ R2

Two-parameter Weibull 7.46 2.08 0.990 2.78 1.42 0.897
Three-parameter Weibull 7.19 1.98 0.31 0.992 2.83 1.49 −0.12 0.994
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energy potential of the area decreases year by year due to rising
temperatures, the output of wind farms may not meet
expectations. Therefore, wind energy assessment should
consider the impact of long-term climate change rather than
focusing only on the current output of the site.

CONCLUSION

Previous studies have proposed a variety of probability
distribution models for the modeling of wind speed
distribution. In different sites, the models have shown
particular applicability, but a specific model has not been
found to have the best fitting effect on the wind speed data
recorded at all sites. In addition, the selection of parameter
estimation methods and the setting of goodness-of-fit test
statistics are not unified. They have their advantages and
disadvantages and are suitable for different observation data
and wind speed distribution models. Therefore, all potential
wind speed distribution models should be considered for
selecting the wind speed distribution model for a particular
site. According to the chosen model and the characteristics
of the wind speed observation data, the parameter
estimation method and the goodness-of-fit test statistics are
determined.

Wind characteristics determine the wind energy output of a
wind farm. The characteristics of wind speed distribution are
constantly varying geographically and temporally. The wind

characteristics at different locations are affected by various
geographical elements, such as local climate, topography, and
thermal properties difference between the land and the sea. The
variations in these geographical elements make the applicability
of a model in different regions may change significantly. The
wind speed distribution in different months, seasons, and years
may have different characteristics for a specific site. Long-term
variations in wind characteristics are a topic of great concern
because they will lead to gradual variations in wind energy
potential and affect the economic benefits of wind farms. We
suggest that wind energy assessment consider the long-term
variations in local wind characteristics instead of just focusing
on the current energy output.
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