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Aiming at the state estimation error caused by inaccurate battery model parameter
estimation, a model-based state of charge (SOC) estimation method of lithium-ion
battery is proposed. This method is derived from parameter identification using an
adaptive genetic algorithm (AGA) and state estimation using fractional-order unscented
Kalman filter (FOUKF). First, the fractional-order model is proposed to simulate the
characteristics of lithium-ion batteries. Second, to tackle the problem of fixed values of
probabilities of crossover and mutation in the genetic algorithm (GA) in model parameter
identification, an AGA has been proposed. Then, the FOUKF method is used to assess
battery SOC. For the data redundancy problem caused by the fractional-order algorithm, a
time window is set to enhance the computational efficiency of the fractional-order operator.
Finally, the experimental results show that the developed AGA-FOUKF algorithm can
increase the correctness of SOC estimation.
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INTRODUCTION

Lithium (Li)–ion batteries are an essential energy source for new energy electric vehicles, and the
precise estimation of state of charge (SOC) can effectively estimate the vehicle’s mileage (Shen et al.,
2019). The accurate estimation of Li battery SOC is very vital for the battery management system
(BMS) (Wang et al., 2021). Nevertheless, it is challenge to accurately estimate the battery SOC
accurately, as the battery is a highly irregular system, and the model parameters, such as SOC,
temperature, and battery aging degree, will change with time (Tian et al., 2017).

In order to address this problem, researchers have been presentedmany SOC estimationmethods,
including the ampere-hour (Ah) counting (Cano et al., 2018), open-circuit voltage (OCV) method
(Chen et al., 2019), Kalman filter (Shrivastava et al., 2019), extended Kalman filter (EKF) (Guo et al.,
2019), nonlinear observers (Zhu et al., 2017), neural network (He et al., 2014; Li et al., 2019), and so
on. However, each method and technology have their own advantages and limitations. The Ah
counting and the OCV method are easy to implement, but the Ah counting will produce cumulative
errors and decrease the veracity of SOC estimation. The OCV of the battery needs to stand for a long
time to obtain it exactly. To solve the shortcomings of traditional algorithms, Plett adopted EKF to
assess the battery SOC (Plett, 2004). Nonetheless, the EKF algorithm adopted Taylor’s first-order
formula to linearize the nonlinear system, ignoring higher-order terms, which will reduce the
estimation authenticity of the nonlinear battery system. Therefore, researchers have been proposed
the unscented Kalman filter (UKF) algorithm (He et al., 2013). compares the SOC estimation results
of EKF and UKF, demonstrating that the UKF algorithm has a faster convergence speed and higher
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verity. Meng et al. (2016) proposed an accurate Li battery SOC
estimation algorithm based on adaptive UKF and least-squares
(LS) support vector machine. Key to the success of the algorithm
is its ability to correctly estimate the battery SOC. Sun et al. (2018)
proposed an SOC evaluation algorithm based on adaptive
correntropy UKF, which can precisely estimate the actual
measurement data in the case of non-Gaussian system noise.
The above proves that UKF has higher estimation accuracy
than EKF.

In recent years, model-based estimation methods are
commonly used in battery SOC estimation. Because of its
simplicity, the equivalent circuit model has been widely used
in battery SOC estimation (Wang et al., 2018). Hu et al. (2012)
compares and discusses some integer-order models and studies
the effectiveness of these models through comprehensive
evaluation. Notwithstanding, because of the fractional nature
of capacitors, the integer-order model will produce errors
when describing the internal conditions of the battery.
Specifically, the low-order model has a small amount of
calculation but low accuracy, and the high-order model has a
higher accuracy but a large amount of calculation. Liu et al. (2016)
proposed a fractional-order model (FOM) based on the
Partnership for a New Generation of Vehicle model and
compared it with the integer-order model (iom). Xu et al.
(2013) established a battery equivalent circuit model based on
electrochemical impedance spectroscopy (EIS) technology and
realized the SOC estimation of the battery, but the EIS model also
has the disadvantage of a large amount of calculation. The key to
the equivalent circuit model’s success is closely related to the
identification of the model parameters (Wang et al., 2021). For
the identification of nonlinear system parameters, some
algorithms have been presented to identify parameters in the
equivalent circuit, including the LS method (Chen et al., 2017),
particle swarm optimization algorithm (Zhou et al., 2021; Wang
et al., 2015), and genetic algorithm (GA) (Zhu et al., 2019). Chen
et al. (2017) utilized the LS method to assess the model
parameters and achieved the effect of model identification.
Compared with the LS method, the GA method has many
advantages, including searching from the string set, covering a
large area, being conducive to global optimization, and being
easier to implement. The model parameters are identified using a
GA and experimental data of dynamic driving cycles (Mu et al.,
2017). Pizarro-Carmona et al. (2021) put forward an
identification method of Li-ion battery model based on GA.
The results show that the identification results based on the
GA can accurately represent the highly dynamic characteristics of
Li-ion batteries, although the GA has the disadvantage of fixed
probabilities of crossover and mutation. Specifically, both good
individuals and inferior individuals have undergone the exact
probabilities of crossover and mutation operations, which affect
the efficiency of the algorithm to a certain extent. To sum up, the
primary contributions of this article are made as follows: 1) Based
on fractional calculus theory, an FOM is put forward. 2) Aiming
at the optimization problem of the equivalent circuit model
parameter identification, to overcome the disadvantage that
simple GA and some improved GA have fixed values of
probabilities of crossover and mutation, the adaptive genetic

algorithm (AGA) is proposed to identify model parameters,
and the concept of fractional-order is applied to the AGA, so
as to improve the accuracy and speed of model identification. At
the same time, it is compared with the results of integer-order LS
method and fractional-order GA identification. 3) In addition,
this article used pulse experimental data to identify the order and
parameters in the model through AGA, instead of the
individually identified order in references (Xu et al., 2013;
Wang et al., 2015), so that the parameters can more fully
show the features of the battery. 4) Based on fractional
calculus theory, the UKF algorithm is used to estimate the
battery SOC, and the time window is set to enhance the
computational efficiency of fractional-order operator. 5)
Compared with LSM-UKF based on iom and GA–fractional-
order UKF (FOUKF) based on FOM, it reveals the feasibility and
superiority of AGA-FOUKF.

The rest of this article is organized as follows: In Battery
Modeling, a battery model is described. In SOC Estimation
Method, an FOUKF technique is presented to estimate the
battery SOC. The model parameters are identified in Model
Parameter Identification. Validation and Discussion is the
verification and discussion process is given. Finally,
conclusions are given in the last section.

BATTERY MODELING

The equivalent circuit model can describe the relationship
between the external characteristics and internal parameters of
the battery. The establishment of a precise model is the basis for
SOC appraisement, and the correctness of the equivalent circuit
model will directly affect the precision of SOC evaluation. This
section studies the second-order RC model based on the
fractional-order theory.

Fractional Calculus
With the development of computing power, many researchers
have provided theories and methods for studying the theory
of fractional calculus theory. As fractional-order theory
can more faultlessly and honestly describe physical systems
than integer-order theory, fractional calculus is widely used
to deal with problems in engineering practice, such
as electronics, bioengineering, and robotics (Liu et al.,
2018), (Richard, 2010). Fractional calculus is defined as
follows:

aD
α
t �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dα

dtα
, α> 0

1, α � 0

∫t

a
(dτ)α, α< 0

(1)

where α is the fractional-order; a and t are the upper and lower
limits of calculus, respectively. Fractional calculus has three
methods: Riemann-Liouville definition, Caputo definition, and
Grünwald-Letnikov (GL) definitions (Yang et al., 2020). GL
calculus Eq. 2 is as follows:
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aD
α
t f(t) � lim

h→0

1
hα

∑(t−a)/h
j�0

ωα
jf(t − jh) (2)

where h is the sampling interval. The factors ωα
j � (−1)i( α

j
) and

ωα
j can be determined by

ωα
0 � 1,ωα

j � (1 − α + 1
j

)ωα
j−1, j � 1, 2, ...l

It should be noted that the result of fractional calculus at a
specific time is related to the information of the past time and has
memory, although considering all the past states will increase the
amount of BMS calculations. Hence, pursuant to the principle of
short memory, the past state is shortened to avoid the
computational burden and alleviate the problems caused by it.
Hence, Eq. 3 can be rewritten as:

aD
α
t f(t) � lim

h→0

1
hα

∑L
j�0

ωα
jf(t − jh) (3)

where L is the memory length.

Definition of Fractional Capacitance
Studies have shown that the capacitors have fractional-order
characteristics (Westerlund and Ekstam, 1994). Therefore, an
FOM is established to more veraciously approximate the actual
variable characteristics of the Li-ion battery more accurately. The
fractional capacitance is defined as follows:

Z(jω) � 1

Cf(jω)α, 0< α< 1 (4)

where Cf is the capacitance.

Fractional-Order Model
The structure of the FOM is illustrated in Figure 1. E is the OCV
source, U is the terminal voltage, and R0 is the ohmic resistance.
The fractional capacitance is used to replace the integer-order
capacitance to describe the impedance created by the internal
polarization influence and concentration polarization effect. The
state-space Eq. 5 can be gained as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
dα

dtα
U1

dβ

dtβ
U2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− 1
R1C1

0

0 − 1
R2C2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎣
U1

U2

⎤⎦ + ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
C1

1
C2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦I

U � [−1 −1 ]⎡⎣U1

U2

⎤⎦ − IR0 + E

(5)

Generally, SOC is obtained by Ah counting method, which is
usually expressed as follows:

SOC(t) � SOC0 +
∫t

0
ηi(t)dt
QN

(6)

where QN represents the rated capacity of the battery. η is the
Coulombic efficiency. By the definition of GL, combining Eqs 5,
6, the discrete FOM is acquired as follows:

xk � Ak−1xk−1 + Bk−1Ik−1 + ωk−1 −∑k
j�1

Kjxk−1

Uk � Ckxk − IkR0 + E + ]k

(7)

where Ak−1 � diag − hα

R1C1
,− hβ

R2C2
, 1}{ , Bk−1 � diag[hαC1

, h
β

C2
,−ηk−1h

QN
1 T] ,

Ck−1 � [−1,−1, 0]. xk � [U1(k), U2(k), SOC(k)]T is state vector.
ωk and ]k are the system process and observation noise,
respectively.

The association between OCV and SOC can be fitted through a
polynomial fitting formula. In this article, the sixth-order
polynomial formula is adopted, and OCV can be expressed as
a function including SOC:

UOCV(SOC) � A0 + A1SOC + A2SOC
2 + A3SOC

3 + A4SOC
4

+ A5SOC
5 + A6SOC

6

(8)

where Ai is a fixed value that represents the coefficient of the
polynomial equation.

SOC ESTIMATION METHOD

The FOM can more precisely describe the internal state of the
battery since the existence of the fractional order. Even so, the
traditional UKF becomes inapplicable under the FOM. Therefore,
it is necessary to make specific improvements to the traditional
UKF. The UKF method is developed for the FOUKF for solve the
FOM, and the detailed process of FOUKF is introduced.

System Description
For irregular discrete-time systems, the state and observation Eq.
9 can be expressed as:

{xk � f(xk−1, uk) + wk

yk � g(xk, uk) + vk
(9)

where xk and yk represent the system state and the measured
terminal voltage, respectively. f(.) and g(.) are the irregular
process function and the observation function, respectively.
The uk is the system input value. Q is the variance of the
process noise, and R is the variance of the observation noise
(Peng et al., 2018).

FIGURE 1 | The structure of the fractional second-order RC model.
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Fractional-Order Unscented Kalman Filter
The UKF algorithm abandons the traditional approach of
linearizing nonlinear functions and adopts Kalman linear
filtering framework. Unscented transform is applied to deal with
the nonlinear transfer problem of mean and covariance (Zhang
et al., 2015). Compared with the UKF, the FOUKF has no intrinsic
distinction apart from the initial estimation process of the states.
The implementation process of the FOUKF method is as follows:
Step 1Initialization: the state vector and the state error covariance
matrix.

⎧⎪⎨⎪⎩
x
∧+
0 � E(x0)

P
∧ +
0 � E[(x0 − x

∧+
0)(x0 − x

∧+
0)T] (10)

where x0 is the initial system parameter, and x
∧+
0 is its estimate

value. P+
x0

is the error covariance matrix.
Step 2For k � 1, 2, . . . , calculate:

A priori estimate update.

1) Calculate 2j+1 Sigma points

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x0
k−1 � x

∧+
k−1

x(i)
k−1 � x

∧+
k−1 + ( ����������(j + λ)P+

k−1
√ )

i
, i � 1, 2, ..., j

x(i)
k−1 � x

∧+
k−1 − ( ����������(j + λ)P+

k−1
√ )

i
, i � j + 1, j + 2, ..., 2j

(11)

where j refers to the dimension of the state; λ � α2(j + k) − j is a
proportional parameter. This article takes α � 0.01, k � 0, β � 2.

2) Calculate the weight

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(0)
m � λ

j + λ

ω(0)
c � λ

j + λ
+ (1 − α2 + β)

ω(i)
m � ω(i)

c � λ

2(j + λ), i � 1, 2, ..., 2j

(12)

3) Status estimation time update:

⎧⎪⎨⎪⎩
xi
k � f(xi

k−1, uk)
x
∧−
k � ∑2n

i�0
ωi
mx

i
k

(13)

4) Time update of covariance matrix:

P−
k � ∑2n

i�0
ωi
c(xi

k − x−
k

∧ )(xi
k − x−

k

∧ )T

+ Qk (14)

Measurement update.

1) Convert the sigma point to the measurement estimated point:

y
∧ i

k � g(x(i)
k , uk

∧ ) (15)

2) Calculate the average of the measurement estimates:

y
∧
k � ∑2n

i�0
ωi
m, y

(i)
k (16)

3) Calculate the covariance and Kalman gain:

Py � ∑2n
i�o

ωi
c(y∧ (i)k − y

∧−
k)(y∧ (i)k − y

∧−
k)T

+ Rk

Pxy � ∑2n
i�o

ωi
c(x∧(i)k − x

∧−
k)(y∧ (i)k − y

∧−
k)T

(17)

Kk � Pxy

Py
(18)

Posterior estimate update.

1) Update status and covariance:

x
∧+
k � x

∧−
k + Kk(yk − y

∧
k)

P
∧ +
k � P−

k −KkPyK
T
k

(19)

Step 3Skip to Step 2, k � k + 1
The battery current and voltagemeasured by the CT-4008 battery

test platform are transmitted to the algorithm for estimation. The
flowchart of the algorithm is shown in Figure 2.

MODEL PARAMETER IDENTIFICATION

Before the battery states were estimated, the parameters of the
battery model must first be obtained. The exactitude of battery
SOC estimation depends strongly on the precise model parameter
identification. As the BMS cannot directly measure battery
parameters, it is necessary to identify and calculate unknown
parameters to obtain equivalent circuit model information. In this
section, an AGA is used to identify the fractional order and other
parameters in the model simultaneously. Moreover, it is compared
with the identification result of the LSmethod based on the IOMand
the GA identification result based on the FOM.

Test for the Model Parameter Identification
The battery test platform based on CT-4008 can be used to verify
the effectiveness of this method. The composition of the bench is
shown in Figure 3. It comports a test system CT-4008, fixtures, a
host, and test objects. The measuring current precision of the
equipment is ±0.05% full scale (FS), the voltage precision is
±0.05% FS, the temperature range is 040°C, and the sampling
frequency is 10 Hz. The test object in this article is Panasonic
NCR18650B, with a nominal capacity of 3.4 Ah, a nominal
voltage of 3.7 V, a charge cutoff voltage of 4.2 V, and a
discharge cutoff voltage of 2.5 V. The corresponding
performance parameters are shown in Table 1.

The general method to identify model parameters is the battery
pulse characterization experiment. The pulse test process is as follows:
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First, fully charge the battery and let it stand for 3,600 s, and then,
release a discharge pulse with a pulse current of 1°C. Continue the
pulse discharge for 180 s to reduce the SOC value of the battery by

approximately 0.05. Let the battery standstill fully. In the experiment,
set the battery standing time to be 3,600 s. Repeat the above steps until
the voltage reaches the set voltage, as shown in Figure 4.

FIGURE 2 | Flowchart of the entire algorithm.
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Parameter Identification Based on AGA
In comparison with the LS method, the superiority of the GA is that
the optimal solution can be obtained only by determining the value
of the goal function, despite the disadvantage that GA has fixed
values of probabilities of crossover andmutation. Therefore, anAGA
is presented to identify the parameters of the battery model.

Crossover and Mutation
In the initial population, select a part of the parent individuals
who can be used for mating and performing the chromosome
crossover operation. Specifically, it refers to the process of
selecting two of these individuals to mate with each other and
exchanging some of their chromosomes with each other in a
certain way to form two new individuals. In this article, a single-
point crossover is selected in AGA. In this kind of crossover, only
one crossover point is randomly set in the individual coding
string, and the chromosomes are divided into two parts in this
kind of crossover. The left and right sides of the offspring
chromosomes are derived from the parent chromosomes,
respectively.

The new individuals were formed after the crossover
operation; there is a certain probability that gene variation will
occur in this process. As the selection operation, this operation is
based on probability. This probability becomes the mutation
probability (PM). For each bit of each offspring in the cross-
offspring set, generate a random number r belonging to [0,1]. If
r ≤ PM, and then the bit is inverted; otherwise, the bit remains
unchanged. For binary, 1 becomes 0, and 0 becomes 1.

FIGURE 3 | The configuration of the test bench.

TABLE 1 | Parameters of the battery.

Nominal capacity 3.4Ah

Nominal voltage 3.7 V
Charging cutoff
voltage

4.2 V

Discharging cutoff
voltage

2.5 V

Operation temperature ∼10–45°C (charging); ∼−20–60°C (discharging);
∼−10–45°C(storage)

FIGURE 4 | The part of the pulse characteristic curve.
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Probabilities of Crossover and Mutation
In the application of the GA, the reasonable probability of crossover
(PC) (0.5–1.0) and the smaller PM (0.001–0.05) are usually used.
However, the PC and PM homologous to the individual should be

different, Considering that those good individuals should be retained
as much as possible, and PC and PM should be small at this time.
The poor individuals should undergo crossover and mutation to
produce new individuals. At this time, the PC and PM should be
more prominent. Based on the various problems of the standard
genetic algorithm, Srinivas and Patnaik proposed an AGA in 1994
(Srinivas and Patnaik, 2002), the PC and PM as per the fitness of
the individual through the following Eqs 20, 21:

PC �
⎧⎪⎪⎨⎪⎪⎩

k1
Jmax − J(i)
Jmax − Jave

, Jave > J(i)
k2 , J(i)< Jave

(20)

PM �
⎧⎪⎪⎨⎪⎪⎩

k3
Jmax − J(i)
Jmax − Jave

, Jave > J(i)
k4 , J(i)< Jave

(21)

where k1, k2, k3, and k4 are all less than 1. Jmax and Jave are
the best and average fitness values in the population,
respectively. For the highest fitness individuals with the
largest fitness, the PC and PM are 0, as shown in Eqs 20,
21. The best individual is continuously copied to the next
generation and circulates with the selection mechanism. This
mechanism may cause the best individual to grow
exponentially in the population, which will cause premature
convergence. A default mutation probability value (0.005) is
introduced for each individual in AGA to overcome this
problem.

Fitness Function
In the GA, the function that measures each chromosome introduced
to reflect the adaptability of the chromosome is called the fitness
function. The fitness value of an individual is calculated using a
fitness function, and the optimal solution is searched according to
the fitness value. The objective function is defined as:

J(i) � ∑M
i�1
(Ub(i) − UT(i))2 (22)

where UT(i) and Ub(i) are measured output voltage and model
output voltage; M is the number of groups. The value of M
determines the size of the search range. The fitness can be
expressed as follows:

fit � Jmax − J(i)∑N
i�1(Jmax − J(i)) (23)

where Jmax represents the maximum value of the sum of squared
differences between the measured output UT(i) and the model
output Ub(i). N is the population number.

By applying the above genetic operator and fitness function to
find the optimal value, the AGA flowchart is shown in Figure 5.
The specific steps are as follows:

1) The initial population is generated randomly as the initial
value of the parameter.

2) The initial value generated in the first step is encoded and
converted into the corresponding binary code, representing
the individual gene.

FIGURE 5 | Schematic diagram of the AGA.
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3) The current population is crossed, and some gene fragments
(the binary code of the exchange part) are exchanged, and
the new individuals produced after the exchange are the
offspring.

4) Simulate the mutation behavior in the biological evolution
process, and randomly generate mutations in the genes of the
offspring. This step aims to prevent the identified parameters
from falling into the local optimal solution range.

5) The value of offspring can be obtained by decoding the
offspring after hybridization and variation.

6) Substitute the decoded offspring in Step 5 input into the
fitness function to determine whether the individual meets the
set requirements. If there was an individual that meets the set
conditions, the most eligible individual was used as the model
identification parameter; if the set conditions were not met,

TABLE 2 | Model parameter identification results.

R0 R1 R2 C1 C2 α β

58.87 mΩ 20.68 mΩ 33.67 mΩ 1,395.60 kF 275,604.71 kF 0.9232 0.9895

FIGURE 6 | Model identification results. (A) Comparison of measured values and model predictions. (B) Terminal voltage curve.

TABLE 3 | Statistical data of identification methods.

Method Model V_error_mean RMSE

LS IOM 0.0058 0.0100
GA FOM 0.0056 0.0078
AGA FOM 0.0048 0.0068

FIGURE 7 | Current and SOC curves of pulse test. (A) Current curve and (B) SOC curve.
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the offspring produced in the fifth step would be selected by
elites (the closer the individual is to the set conditions, the
greater the probability of being retained), so as to generate a
new population, and then loop the second to sixth steps
“Operate to simulate the next round of biological
evolution,” until there is an individual that meets the
adaptability conditions, or the number of reproduction
algebra exceeds the set algebra.

VALIDATION AND DISCUSSION

To prove the effectiveness of AGA identification results, it is
compared with the LS method based on IOM and the GA based
on FOM. In addition, to prove the effectiveness of the AGA-FOUKF
algorithm, comparing the parameter identification and SOC
estimation results under distinct methods and models, it is
verified that the established AGA-FOUKF algorithm can improve
the prediction authenticity.

Results of Model Parameter Identification
Data simulationwas performed using theMATLABR2018 software.
The AGA was run by setting the initial population size at 200, the
initial value of adaptivePC at 0.5, and the initial value of adaptivePM

at 0.05. The end condition is set as the terminal voltage error is less
than 0.008 V. AGA can improve the convergence of GA. The
optimal solution of the FOM parameters is given in Table 2.

To certify the accuracy of AGA identification, the battery
terminal voltage estimated based on the AGA identification result

FIGURE 8 | Under the charging procedure of the pulse test, the SOC estimation and the terminal voltage estimation are compared. (A) SOC estimation result; (B)
the errors of SOC estimation; (C) terminal voltage estimation result; (D) the errors of terminal voltage.

TABLE 4 | Statistics of estimated SOC and terminal voltage under pulse cycle.

Method SOC Terminal voltage

RMSE (%) Mean error (%) RMSE (V)

UKF 1.57 1.17 0.0075
GA-FOUKF 0.87 0.71 0.0059
AGA-FOUKF 0.82 0.64 0.0047
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FIGURE 9 | Current and SOC curves of dynamic experiment. (A) Current curve and (B) SOC curve.

FIGURE 10 | The results of dynamic discharge experiment. (A) SOC estimation result; (B) the errors of SOC estimation; (C) terminal voltage estimation result; (D)
the errors of terminal voltage.
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is compared with the measured data. At the same time, it is
compared with the LS method based on the IOM and the GA
based on the FOM. The comparison of the results is shown in
Figure 6A. In Figure 6B, it can be seen that the model voltage
estimated by the AGA identification result better follows the
measured terminal voltage of the battery. The error between the
model voltage and the measured voltage is basically within 0.01 V.
When the discharge pulse appears and ends, the load current
changes sharply. Because of the modeling error, it will be a
short-time error spike. But the error will gradually converge over
time. In addition, the AGA obviously suppresses this phenomenon
better than the other two algorithms.

In Table 3, the terminal voltage estimation of the AGA
identification based on the fractional second-order RC model is
more accurate. The root mean square error (RMSE) of the
terminal voltage identified by AGA and GA based on the
fractional second-order RC model is 0.68 and 0.78%, respectively.
The RMSE of the terminal voltage estimated by the LS method based
on the integer second-order RCmodel is 0.10%. To certify the stability
and robustness of the terminal voltage estimation, the average error is
used as an indicator. The average error of terminal voltage estimation
of LS method, GA, and AGA is 0.58, 0.56, and 0.48%, respectively. It
can be seen that the AGA improves the precision of the model.

SOC Estimation Results
SOC Estimation Under the Discharging Process of
OCV Test
To certify the validity of the AGA-FOUKF, the data of the pulse test
discharge process is used, and the current and SOC curve are shown
in Figure 7. In this article, the SOC initial value error of 0.2 is
artificially introduced. It means that there is an error in the initial
SOC value. From the topical enlargement of Figure 8A, it is clear
that the SOC prediction results of AGA-FOUKF and GA-FOUKF
are similar, which also appears in the model parameter identification
results. After the AGA-FOUKF converges, the SOC prediction error
can be restrained within 2%, as shown in Figure 8B. It can be seen
from the partially enlarged view of Figure 8C that the predicted
terminal voltage can track the measured value well after the three
methods converge. The AGA-FOUKF algorithm shows a better
convergence effect, as shown in Figure 8D.

It can be seen from Table 4 that the estimation of the AGA-
FOUKF algorithm based on the FOM is more accurate. The RMSE
of SOC and terminal voltage estimated by AGA-FOUKF based on
the FOM are 0.82 and 0.47%, respectively. The RMSE of SOC and
terminal voltage estimated by GA-FOUKF based on the FOM are
0.87 and 0.59%, respectively. The SOC and terminal voltage RMSE
estimated by the UKF algorithm based on the IOM are 1.57 and
0.75%, respectively. The average error of SOC estimation of LSM-

UKF algorithm, GA-FOUKF algorithm, and AGA-FOUKF
algorithm is 1.17, 0.71, and 0.64%, respectively. The estimation
results show that the overall performance of the FOM and battery
SOC estimation has been improved.

SOC Estimation Under the Dynamic Discharge
Experiment
In order to certify the dynamic characteristic of AGA-FOUKF,
the dynamic pulse status is used. The current and SOC curve are
shown in Figure 9. The results under dynamic discharge
experiment are given as Figure 10. The dynamic discharge
experiment results of the three methods are shown in Table 5.

CONCLUSION

The SOC prediction of Li-ion batteries is an indispensable and vital
part of BMS. In this article, considering the fractional-order nature
of capacitors, an FOM is established. To overcome the
disadvantage that GA has fixed values of probabilities of
crossover and mutation, the AGA is proposed to distinguish the
FOM parameters, and its FOM parameter identification
performance is better than the other two methods. In addition,
taking 18650 Li-ion batteries as the test object, the method of
combining AGA and FOUKF is applied to estimate battery SOC.
Using the experimental data of the CT-4008 battery test platform
for simulation, under pulse conditions, the RMSE of the battery
SOC and terminal voltage estimated by AGA-FOUKF are within 1
and 0.7%, respectively. The average error of AGA identification
based on the FOM is less than 0.7%. The performance of the above
method is verified by simulation.
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