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Under the background of clean and low-carbon energy transformation, renewable
distributed generation is connected to the distribution system on a large scale. This
study proposes a probabilistic assessment method of hosting capacity considering
wind–photovoltaic–load temporal characteristics in distribution networks. First, based
on time series of wind, photovoltaic, and load demands, a discretization–aggregation
technique is introduced to generate and filter extreme combinations. The method can
effectively reduce the scenarios that need to be evaluated. Then a holomorphic embedding
method considering generation and load scaling directions is proposed. The holomorphic
function of voltage about an embedding variable is established, and it is analytically
expanded in the form of series. The hosting capacity restrained by the voltage violation
problem is calculated quickly and accurately. Finally, the proposed stochastic framework is
implemented to evaluate hosting capacity involving renewable energy types, penetration
levels, and locations. The hosting capacity of single energy and hybrid wind–solar
renewable energy systems is evaluated from the perspective of probability analysis.
The results verify the outstanding performance of the hybrid wind–solar energy system
in improving the hosting capacity.

Keywords: distributed renewable energy, hosting capacity, holomorphic embedding method, time series, voltage
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INTRODUCTION

In response to climatic deterioration and energy shortage, all countries are accelerating the process of
new energy. Distributed renewable energy sources have become the mainstay to promote the
development of new energy with the advantages of being clean, green, flexible, and efficient (IEA,
2019). Wind energy and solar energy are the most promising renewable energy sources. However,
their access to the distribution network also brings uncertainty and intermittence. The booming
development of distributed generation (DG) may lead to the violation of system operation
constraints such as overvoltage (Ismael et al., 2019; Zhu et al., 2020), overloading of
transformers and feeders (Shen et al., 2021), conductor thermal capacity (Zhang and Luo, 2018),
and protection failure (Singh, 2017; Zobaa et al., 2020). In order to overcome the challenges of
renewable energy source integration, it is of significant importance to evaluate the number of DGs
that can be integrated into a given distribution network without violating the operating standards.
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The concept of hosting capacity (HC) was first proposed by
André Even in the context of distributed generation and
improved by Bollen and Hassan (2011). The hosting capacity
is defined as the maximum capacity of DGs that can be integrated
into the distribution system, above which the performance of the
system becomes unacceptable. Recently, many scholars have
studied hosting capacity assessment in distribution networks.
There are four main methods: the deterministic method, the
stochastic method (Yang et al., 2019), the optimization-based
method (Shen et al., 2017; Injeti and Thunuguntla, 2020), and the
time series method (Abideen et al., 2020; Mulenga et al., 2020).

In earlier studies, the analysis methods were often used to
calculate the HC at a specific DG access location by deriving the
performance index of the system. In the study of Fan et al. (2017)
and Li et al. (2021), the formula of voltage difference values at
continuous buses of three-phase feeders is derived, and the
maximum number of DGs at a specific bus is calculated.
Ampofo et al. (2017) studied the impact of voltage rise and
thermal loading on HC considering DG access to the end of
feeders or the load center. HC is calculated in different scenarios
by iteratively increasing the number/capacity of wind generation
units and continuously calculating the power flow (PF) until one
of the performance standards is violated (Papaioannou and
Purvins, 2014; Gonzaga et al., 2019). It is evident that the
deterministic method cannot consider the uncertainty of
modern power systems, and its application range is limited.

When DGs with high uncertainty characteristics are
connected to the distribution network, there are many
unknown variables in the calculation of HC. Thus, the
randomness of these variables needs to be considered; Monte
Carlo simulation (MCS) is often used to generate different
scenarios. Zio et al. (2015) proposed a probabilistic power flow
method and simulated the variability of customer demand based
on MCS but did not consider the variability of DG. The
randomness of both DG access locations and load demand are
considered (Kolenc et al., 2015; Shen and Raksincharoensak,
2021). In Al-Saffar et al. (2019), the probabilistic power flow is
implemented under the scenarios with different photovoltaic
(PV) penetration levels, and the HC of three real regions is
determined, respectively. Mulenga et al. (2021) classify two
types of uncertainties, namely, aleatory uncertainties and
epistemic uncertainties. The HC is estimated by applying the
transfer impedance matrix and the superposition principle to
determine the voltage rise due to PV. In addition, using spatial
and temporal uncertainties associated with PV, a new
spatiotemporal probabilistic voltage sensitivity is proposed. It
can calculate the probability distribution of voltage change at a
specific bus, due to random change of PV power in the random
position of the network (Munikoti et al., 2022).

The optimization-basedmethod is also a common approach to
determine the HC. The objective is to maximize the DG injection
while constraints are met. In the study of Zou et al. (2016), Alturki
et al. (2018), and Shen et al. (2020), based on deterministic
optimization algorithms, the best access location is regarded as
the main solution. But in fact, the inherent uncertainty of
DG needs to be considered. Therefore, the trend is combining
the stochastic method and the optimization-based method

(Shen et al., 2021). A stochastic multi-objective optimization
model was proposed in the study by Rabiee et al. (2017),
which aims to maximize the HC for wind power and minimize
the energy procurement costs, and then it is solved with the NSGA-
II algorithm. Otherwise, the chance-constrained method was
adopted, and the probabilistic power flow method was used to
deal with the randomness problem (Sun et al., 2018; Wu et al.,
2019). However, the optimization-based model is generally highly
complex and non-linear, and for actual networks, the existing
methods may not produce global optimal solutions.

Besides, in some studies (Khoshkbar-Sadigh et al., 2015; Fan
et al., 2016; Shen and Raksincharoensak, 2021), the historical data
of both demand and renewable production are used as the input,
and it can provide a more realistic distribution network. Chen
et al. (2018) considered temporal characteristics of wind power,
PV, and load; the joint probability distribution method and the
scene reduction technique were used to solve the DG capacity.
Mulenga et al. (2021) studied the influence of time of day on the
HC calculation results. However, the time series method
considering time-varying renewables and demands are highly
dependent on data, and a large amount of data enlarge the
computing scale, which tends to be laborious or intractable.
Some scholars study the security-constrained unit
commitment (SCUC) (Yang et al., 2018; Liu et al., 2020; Yang
et al., 2021). Yang et al., 2021 is a pioneer study for SCUC
problems that proposes an expanded sequence-to-sequence
(E-Seq2Seq)–based data-driven SCUC expert system. It can
accommodate the mapping samples of SCUC and consider the
various input factors that affect SCUC decision-making,
possessing strong generality, high solution accuracy, and
efficiency over traditional methods. To mitigate the excessive
computational burden, Ochoa et al. (2010) proposed a processing
technique for long-term time data, namely, the
discretization–aggregation method. It can generate and screen
out the reasonable combinations of renewables and demand to
simplify data.

When excessive DG penetrates in the distribution network, the
radial distribution system with the single power becomes a
complex system with multiple power supplies. Then there are
reverse power flows, which may lead to voltage rise (Mulenga
et al., 2020; Shen et al., 2020; Wang et al., 2021). The studies have
shown that the voltage rise is the main restriction considered in
the research of HC (Torquato et al., 2018; Dong et al., 2019).

In this study, a stochastic framework of hosting
capacity assessment is proposed considering the uncertainty
of DG penetration levels, locations, and types, and
extreme combinations are introduced to process
wind–photovoltaic–load time series data. This effectively
reduces the number of scenarios to be evaluated. Moreover,
traditional methods of hosting capacity assessment are
scenario-based and complex as they rely on the iterative PF
algorithm. To avoid a large number of PF calculations, a novel
holomorphic embedding method (HEM) based on the recursive
algorithm is used to obtain the equivalent analytical formula of
voltage (Trias. 2012). The HC corresponding to voltage violation
can be directly solved without checking a large number of
scenarios, which further significantly reduces the
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computational burden. In the simulation analysis, hosting
capacity assessments of both single resource and hybrid cases
are performed, and the results provide planners with a better
understanding of the energy integration.

The rest of this article is organized as follows: Processing of
Renewables and Demand Data discusses the processing
technology of time series data of renewables and demand.
Holomorphic Embedding Method introduces the holomorphic
embedding method. Then the stochastic framework of the
hosting capacity assessment is illustrated in Framework for
Hosting Capacity Assessment. Numerical Results presents the
results and discussions to evaluate the hosting capacity of
single and hybrid cases on the IEEE 33-bus system. Finally,
Conclusion summarizes the main conclusions.

PROCESSING OF RENEWABLES AND
DEMAND DATA

Discretization–Aggregation Method
Due to the uncertainty and volatility of renewable generation and
load, the temporal characteristics of both generation and load
demand need to be considered in the hosting capacity assessment.
However, long time series will bring a significant number of
calculations. Therefore, the discretization–aggregation method is
introduced to reduce the computational burden. The technology
was first proposed by Ochoa et al. (2010), which only considers
wind and load. Furthermore, if we consider the correlation
between wind power, PV power, load demand, and time, each

data point needs a multidimensional representation. The method
has the potential to deal with the problems of
multidimensionality.

The method mainly includes two steps: 1) in the discretization
process, the historical data of renewables and demand are
allocated into a series of bins covering the range between zero
and the peak value; and 2) in the aggregation process, the bins of
renewables and load demand are grouped into multiple
combinations. To illustrate the approach, Figure 1 presents
the discretization–aggregation process with only two
dimensions in the following example. Figure 1A shows a 5-
day historical data sample of wind power and load with an
interval of 15 min, and their values are normalized against
respective peak values. Figure 1B shows the discrete time
series. When the width of bins is set to 0.1 p.u, six load
demand ranges (e.g., [0.4, 0.5], (0.5, 0.6], . . .) and nine
generation ranges (e.g., [0, 0.1], (0.1, 0.2], . . .) are used. Then
the time-varying data are allocated to a series of bins. Figure 1C
presents the distribution with combinations of wind power and
load. The combines of “similar” characteristics are aggregated
into the same bin. For instance, the yellow block indicates the data
where demand is 0.6 and wind is 0.2.

Extreme Combinations
The discretization–aggregation method allocates time series data
into a finite number of combinations, which reduces the number
of combinations to be evaluated, and retains the relevance
between renewables and demand. Importantly, it does retain
extreme characteristics. The “coincidence” between maximum

FIGURE 1 | Procedure of discretization and aggregation of time series data.

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7676103

Du et al. Hosting Capacity Assessment

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


generation and minimum demand is normally regarded as the
extreme combination for voltage violation and the main
constraint of the hosting capacity assessment.

The discretization–aggregation process goes through each
possible combination and sums the occurrence periods, which
captures the full range of generation and load. Figure 2
presents all combinations of data above and their
occurrence periods. The combinations labeled with red
represent the extreme conditions of maximum power
generation and minimum load demand. If the voltage

constraint is not violated in these combinations, it is
unlikely to be violated in other combinations.

It is obvious that different combinations will be obtained by
selecting different widths. The smaller the width, the more
detailed the bins to be evaluated. Figure 3 shows the
combinations of wind and load when the width is set to 0.05
p.u. The total number of combinations increases significantly,
and the number of extreme combinations has only increased by
one compared with the results in Figure 2. Therefore, the
selection of bin width may affect the scale and accuracy of the

FIGURE 2 | (A) Occurrence periods for all combinations when the bin width is 0.1 p.u; (B) visualization of all wind–load aggregated combinations.

FIGURE 3 | (A) Occurrence periods for all combinations when the bin width is 0.05 p.u; (B) Visualization of all wind–load aggregated combinations.
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hosting capacity assessment. Moreover, when an additional PV
power is added, the discretization–aggregation process remains
unchanged, but the dimension is increased.

HOLOMORPHIC EMBEDDING METHOD

The holomorphic embedding method was applied to the PF
problem by Dr. Antonio Trias for the first time (Trias, 2012),
to avoid the non-convergence problem of the traditional iterative
PF methods. In this study, the conventional HEM is improved
considering the direction of generation and load change. The
equivalent analytical formulations of voltage can be obtained by
only one PF calculation. It can establish the dependence between
the embedding parameter and the actual operation level.

Direction-of-Change Scaling Holomorphic
Embedding Model
Consider an N-bus system, the power balance equation (PBE) can
be expressed as follows:

∑N
k�1

Yik
_Vk �

_Spi
_Vp
i

, (1)

where Yik is the (i, k) element of the bus admittance matrix, _Si and
_Vi are the complex power injection and voltage at bus i,
respectively.

The non-holomorphic PBE is converted into holomorphic
functions by embedding a complex parameter _s. Considering
different types of buses, the improved holomorphic embedding
formulas are given, where Eq. 2 represents the voltage magnitude
constraint for slack bus, Eq. 3 represents the PBE for the PQ
buses, Eq. 4 represents the PBE for the PV buses, and Eq. 5
represents the voltage magnitude constraint for the PV buses. The
formulas allow the load at all buses and the real power generation
at the PV buses to be scaled directionally.

_Vi( _s) � Vsp
i , i ∈ Nslack , (2)

∑N
k�1

Yik
_Vk( _s) �

_Spi0 + _sΔ _Si
_Vp
i ( _sp)

, i ∈ NPQ, (3)

∑N
k�1

Yik
_Vk( _s) � (Pi0 + jQLi0) + _s(ΔPi + jΔQL) − jQGi( _s)

_Vp
i ( _sp)

, i ∈ NPV,

(4)

_Vi( _s) _Vp
i ( _sp) �

∣∣∣∣Vsp
i

∣∣∣∣2, i ∈ NPV, (5)

where Pi0, ΔSi_, ΔPi, ΔQi are given as follows:

Pi0 � PGi0 − PLi0, (6)

Δ _Si � kLi _Spi0, (7)

ΔPi � kGiPGi0 − kLiPLi0, (8)

ΔQLi � kLiQLi0, (9)

where Vsp
i is the reference voltage amplitude; PGi0 and QGi0

represent the active injection power and active load of bus i

under the initial loading level, respectively; QLi0 is the
reactive load of bus i under the initial loading level; and
kGi and kLi are generation growth coefficient and load growth
coefficient, respectively, which can represent the change
direction of generation and load. Nslack, NPQ, and NPV

represent the sets of slack bus, PQ buses, and PV buses,
respectively.

Since _Vi( _s) and QGi( _s) are holomorphic functions of the
parameter _s, they can be expanded in the following Maclaurin
series form:

_Vi( _s) � ∑∞
n�0

_Vi[n]( _s)n, (10)

QGi( _s) � ∑∞
n�0

QGi[n]( _s)n, (11)

where the voltage sequence coefficients _Vi[n] are complex
numbers, and the power sequence coefficient Qgi[n] are real
numbers.

The Maclaurin series for _Vp
i ( _sp) is given as follows:

_Vp
i ( _sp) � ∑∞

n�0
_Vp
i [n]( _s)n. (12)

Additionally, let W(s) represent the inverse of the voltage
function V(s), defined as follows:

_W( _s) � 1
_V( _s) �

_W[0] + _W[1] _s +/ + _W[n] _sn. (13)

The relationship between _Wi( _s) and _Vi( _s) is shown as
follows:

_Wi( _s) _Vi( _s) � ( _Wi[0] + _Wi[1] _s +/ + _Wi[n] _sn)•( _Vi[0]
+ _Vi[1] _s +/ + _Vi[n] _sn) � 1.

(14)

The relationship between _Wi[n] and _Vi[n] is obtained as given
in Eq. 15 by equating the coefficients of the same order of s on
both sides of Eq. 14.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

_W[0] � 1
_V[0],  n � 0(a)

_W[n] � −∑n−1
τ�0 _W[τ] _V[n − τ]

_V[0] , n≥ 1(b)
, (15)

where Eq. 15b can also be formulated as follows:

_V[0] _W[n] + _W[0] _V[n] � −∑n−1
τ�1

_W[τ] _V[n − τ], n≥ 1. (16)

By substituting Eqs 10–13 into Eqs 2–5, we obtain the
following:

_Vi[n] � 0 n≥ 1, i ∈ Nslack , (17)

∑N
k�1

Yik
_Vk[n] − _Spi _Wp

i [n] � Δ _Spi _Wp
i [n − 1], i ∈ NPQ, (18)
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∑N
k�1

Yik
_Vk[n] − (Pi0 + jQLi0) _Wp

i [n] + jQGi[n] _Wp
i [0]

+ jQGi[0] _Wp
i [n]

� (ΔPi + jΔQLi) _Wp
i [n − 1]−

j⎛⎝∑n−1
τ�1

QGi[τ] _Wp
i [n − τ]⎞⎠, i ∈ NPV, (19)

_Vi[0] _Vp
i [n] + _Vi[n] _Vp

i [0] � −∑n−1
τ�1

_Vi[τ] _Vp
i [n − τ] n≥ 1, i ∈ NPV.

(20)

Thus, we establish the recursion relationship from the
aforementioned holomorphic embedding formulas to obtain
the equations. Then _Wi[n] and _Vi[n] are divided into real
parts and imaginary parts for calculation, respectively, and the
voltage sequence is solved. Finally, the equivalent analytical
expression of voltage can be obtained.

Reference State Calculation
To solve the system of equations above, the reference state at s � 0
is given as follows:

_Vi[0] � Vsp
i , i ∈ Nslack, (22)

∑N
k�1

Yik
_Vk[0] �

_Spi0
_Vp
i [0]

 , i ∈ NPQ, (23)

∑N
k�1

Yik
_Vk[0] � (Pi0 + jQLi0) − jQGi[0]

_Vp
i [0]

 , i ∈ NPV, (24)

_V[0] · _Vp
i [0] �

∣∣∣∣Vsp
i

∣∣∣∣2, i ∈ NPV. (25)

Notice that the meaning of the reference solution of the
improved HEM is different from that of the conventional
HEM (Rao et al., 2016). The reference solution of the
conventional HEM represents the power system with no load
and no generator, while the reference solution of the improved
HEM represents the voltage and reactive power injections at the
buses for the power system under the initial loading level. The
solution process is as follows:

_Vi[0] andQGi[0] are expressed as the holomorphic function, so a
complex parameter _σ is embedded in Eqs 22–25, and we obtain:

_Vi 0( _σ) � 1 + _σ(Vsp
i − 1), i ∈ Nslack , (26)

∑N
k�1

Ytr
ik
_Vk 0( _σ) � _σ _Spi0

_Vp
i 0( _σp)

− _σYsh
i
_Vi 0( _σ) , i ∈ NPQ, (27)

∑N
k�1

Ytr
ik
_Vk 0( _σ) � _σ(Pi0 + jQLi0) − jQGi 0( _σ)

_Vp
i 0( _σp)

− _σYsh
i
_Vi 0( _σ), i ∈ NPV, (28)

_Vi 0( _σ) _Vp
i 0( _σp) � 1 + _σ(∣∣∣∣Vsp

i

∣∣∣∣2 − 1), i ∈ NPV, (29)

whereYsh
i corresponds to the shunt part of the admittance matrix,

Ytr
ik corresponds to the “non–shunt-branch” part of the

admittance matrix, and Ytr
ik � Yik − Ysh

i .

To establish the recursive relationship of variables, a new
variable δni is defined as follows:

δni � { 1, n � i
0, else

. (30)

For the slack bus, the power series coefficient expression is
written as follows:

_V
re

i 0[n] � δno + δn1(Vsp
i − 1), i ∈ Nslack. (31)

The voltage power series coefficients of PQ bus and PV bus are
solved, we can obtain the following equations:

∑N
k�1

Ytr
ik
_Vk 0[n] � −Ysh

i
_Vi 0[n − 1], i ∈ NPQ, (32)

∑N
k�1

Ytr
ik
_Vk[n] + jQGi 0[0] � −j⎛⎝∑n−1

τ�1
QG i[τ] _W

p

i 0[n − τ]⎞⎠
− Ysh

i
_Vi 0[n − 1], i ∈ NPV, (33)

_V
re

i 0[n] � δno + δn1
(Vsp

i )2 − 1
2

−1
2
⎛⎝∑n−1

τ�1
_Vi 0[τ] _Vp

i 0[n − τ]⎞⎠, i ∈ NPV, (34)

where _V
re
i 0[n] is the real part of _Vi 0[0].

According to the recursive relationship of Eqs 31–34, let
_σ � 1. _Vi[0] and QGi[0] can be solved. Obviously, the process
of solving the reference solution of the improved HEM is the
same as that of the conventional HEM when the embedded
variable is 1, which is actually the voltage solution of the
traditional power flow equation (Eq. (1)). Therefore, the
Newton–Raphson method can also be used to solve the PF at
the initial loading level to obtain the reference solution.

Calculation Process
The process of using improved HEM to solve a PF problem and
voltage violation is as follows:

1) The PBEs are embedded with the parameter _s, the voltage and
the active power injections become the holomorphic function
of _s, and the holomorphic embedding models are established.

2) Taking the direction of generation and load change into
account, the growth coefficients kGi and kLi are defined,
and then ΔṠi, ΔPi, and ΔQi are calculated.

3) The function _Vi( _s) and _Qgi( _s) are represented in Maclaurin
series with coefficients to be solved.

4) Calculate the reference state _Vi[0] and Qgi[0] when _s � 0.
5) Solve the recursive equations and calculate the coefficients of

the series _Vi[n] and Qgi[n].
6) Let _s � 1, the solution of PF is obtained under the initial

loading level. Then judge whether the PF mismatch power
error is less than the set tolerance, if so, continue the following
step, otherwise return to step (4).

7) The voltage sequence coefficients and the voltage function
_V( _s) can be obtained. Then solve the value of _s , which is only
a real number when _V( _s) � 1.05 and s has a corresponding
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relationship with the hosting capacity when the voltages
exceed the restriction.

FRAMEWORK FOR HOSTING CAPACITY
ASSESSMENT

Considering the temporal characteristics of renewable energy
generation and load demand, this study proposes a
framework for evaluating the hosing capacity in
distribution networks with DGs. The framework consists
of three modules, as shown in Figure 4.

1) Module 1: Deployment schemes of DGs.

This module generates multiple potential DG deployment
schemes. The variables include DG location penetration, the
locations of DGs, and the types of DGs. The steps are as
follows:

Step 1: Identify the location penetration Loci. DG location
penetration is defined as the ratio of the number of selected DG
locations to the number of all potential locations. The location
penetration is increased by a fixed step (e.g., 10%) from 0 to 100%.
Let Loci ∈ 10%, 20%, . . . , i × 10%, 100%}{ , (i � 1, 2, . . ., 10).

FIGURE 4 | Stochastic framework for the hosting capacity assessment.

FIGURE 5 | Time series data.
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Step 2: Generate DG locations. For each location
penetration level Loci, MCS is performed to generate k DG
deployment schemes. Then the deployment scheme is
represented as Dij (j � 1, . . ., k).

Step 3: Set the types and shares of DGs. For example, 50%wind
and 50% PV.

Step 4: Determine a base DG capacity (e.g., 1 MW). For each
deployment scheme, the initial rated power of DGs is allocated
based on the corresponding peak load.

2) Module 2: Calculation method of the hosting capacity. This
module studies the calculation method of the hosting capacity
based on the improved HEM, considering temporal
characteristics of DGs and load demand. The steps are as follows:

Step 1: Process the historical data of wind, PV, and load. By the
discretization–aggregation method, select the proper bin width
and obtain m extreme combinations Sn (n � 1, . . ., m).

Step 2: For a specific deployment scheme Dij, perform HEM
calculation on different extreme combinations, respectively. Then
obtain the equivalent analytical functionVi( _s) of all buses on each
combination.

Step 3: If none of the bus voltages exceed 1.05 p.u, let |Vi( _s) | �
1.05, and calculate the value of _s.

Step 4: Compare the minimum value of _s on each extreme
combination Sn, that is, _s min corresponds to the maximum
hosting capacity under deployment scheme Dij.

3) Module 3: Analysis of hosting capacity results. Repeat steps in
Module 2 to obtain the hosting capacity results for each
deployment scheme Dij, and obtain the hosting capacity
results HC � {HC1, . . . , HCk}. Then perform statistical
analysis for the obtained hosting capacity results. The steps
are as follows:
1) Histogram of HC is obtained based on the results HC �

{HC1, . . . , HCk}, and the probability density function
(PDF) based on Kernel density estimation is helpful to
understand the probabilistic HC at a specific
penetration level.

FIGURE 6 | Visualization of aggregated combinations: (A) wind power–load; (B) PV–load; (C) PV–wind power.

TABLE 1 | Results of extreme combinations.

Renewables and load Extreme combinations {(renewables],
(load]}(p.u)

Wind and load {(0.65 0.70], (0.45 0.50]}, {(0.75 0.80], (0.50 0.55]}
{(0.80 0.85], (0.55 0.60]

PV and load {(0.05 0.10], (0.45 0.50]}, {(0.50 0.55], (0.50 0.55]}
{(0.55 0.60], (0.55 0.60]}, {(0.80 0.85], (0.60 0.65]}
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2) Cumulative distribution function (CDF) curve of HC is
helpful for planners to estimate the probability that the HC
does not exceed a specific value.

3) Histogram of total delivered generation. The total delivered
generation of DG is a valuable quantitative indicator of the use
of renewable energy (Bawazir and Cetin, 2020). Therefore,
some statistical data of total delivered generation in a year can
provide the energy utilization of different types of renewable
energy.

NUMERICAL RESULTS

The simulations are carried out on the IEEE 33-bus distribution
system. The detailed parameters of the test system are available in

Baran andWu. (1989). Bus 1 is set as the slack bus and the voltage
is set to 1.0 p.u. Other nodes are PQ buses. The reference voltage
is 12.66 kV and the reference capacity is 10 MV A. The upper
voltage limit of each bus is set to 1.05 p.u. Nodes 2–33 are
candidate buses accessible to DG.

In this section, initially, the historical data of wind, PV,
and load demand are processed by the
discretization–aggregation method, and the extreme
combinations are filtered. Then the proposed HEM is used
to solve the voltage violation problem on extreme
combinations. For a specific deployment scheme, the
hosting capacity results with different bin widths are
discussed. Finally, detailed hosting capacity assessments of
both single resource and hybrid cases are performed.

Renewables and Demand Data
The simulations use the historical data of wind speed, solar
irradiation, and load demand from a typical distribution
system. The data of one year have a total of 35,040 data
points with 15-min temporal resolution. The levels of load
demand, wind, and PV output are normalized against peak
values, as shown in Figure 5. It can be seen that load demand
and PV have both obvious seasonal characteristics. The load in
summer is relatively lower than that in winter, and the PV
generation in summer is significantly higher than that in
winter, but for wind power, the feature is not so obvious. It
should be noted that different buses are close geographically in
the test system, and the potential of renewable energy power
generation is similar to a certain extent. So it is assumed that DGs
follow the same time series curves.

The combinations of wind, PV, and load demand are obtained
by the discretization–aggregation technology in Introduction.
Figure 6 shows the combinations and occurrence periods of
renewable generation and load when the bin width is 0.05 p.u.

For the wind–load case, there are a total of 400 combinations,
but only 175 contain non-zero occurrence periods. Similarly, for

TABLE 2 | Hosting capacity results with different bin widths.

Bin width Number of
extreme combinations

HC results
(MW)

Error (%) Computational burden
(s) (HEM)

Computational burden
(s) (NR)

0.1 2 9.464 12.97 0.1107 0.6981
0.05 3 10.224 5.98 0.1362 0.8766
0.01 10 10.768 0.92 0.4082 1.5878
0.001 26 10.86 0.09 1.0365 2.7859

FIGURE 7 | Voltage violation scenarios.

TABLE 3 | Statistical results of HC with different penetration levels.

DG location penetration (%) HC results of wind power (MW) HC results of PV (MW)

Mean value Standard deviation Mean value Standard deviation

30 7.086 3.987 7.381 4.203
50 7.671 1.925 7.979 1.974
70 7.775 0.794 8.104 0.860
90 7.843 0.247 8.160 0.276
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the PV–load case, the occurrence periods of only 133
combinations are non-zero. For renewable energy, wind power
and PV are negatively correlated. PV generation mainly depends
on solar radiation, and solar energy at night can be ignored. In
contrast, the wind power during the day is usually less than that at
night. Therefore, there is a certain complementarity between
wind power and PV (Miglietta et al., 2017; Guozden et al., 2020).

The extreme cases of maximum generation and minimum
demand are critical on the hosting capacity assessment restrained

by voltage rise. The results of extreme combinations are given in
Table 1. For thewind–load case and the PV–load case, only three and
four extreme combinations need to be considered, respectively. For
the wind–PV–load case, there are 2,567 combinations. It is difficult to
show them in visual graphics, but 394 extreme combinations can be
screened by the discretization–aggregation technique. Compared
with the use of original historical data, the introduction of
extreme combinations can significantly shrink the calculation scale
of multidimensional problems.

FIGURE 8 | PDF under 50% penetration level.

FIGURE 9 | CDF under 50% penetration level.

TABLE 4 | Statistical results of total delivered generation with different penetration levels.

DG location penetration (%) Mean value of
total delivered generation

of wind power
(MW·h/year)

Mean value of
total delivered generation

of PV (MW·h/year)

30 16,034.368 7,667.258
50 17,329.495 8,288.603
70 17,593.677 8,418.886
90 17,746.554 8,476.710
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Hosting Capacity Assessment
Hosting Capacity Calculation of a DG-Specific
Deployment Scheme
Taking a specific DG deployment scheme as an example, the
influence of bin width is discussed. And the rapidity and
effectiveness of the hosting capacity calculation method based
on HEM are verified. Wind power is connected at Bus 2, 7, 24,
and 33. Four widths are considered, namely, 0.1 p.u, 0.05 p.u,
0.01 p.u, and 0.001 p.u. The hosting capacity is calculated
according to Module 2 in Framework for Hosting Capacity
Assessment. For comparison, the Newton–Raphson power
flow method is used to calculate the hosting capacity on
each extreme combination, by increasing the total DG
capacity until the upper voltage is violated. The hosting
capacity result is 10.872 MW from all historical data, which
is regarded as the accurate value. Using the calculation
method based on HEM in this study, the results of extreme
combinations and the hosting capacity with different bin
widths are shown in Table 2.

The results in Table 2 show that the method proposed in this
study can greatly shorten the calculation time and improve the
calculation efficiency. When the bin width is set to 0.1 p.u, the
result is 12.97% smaller than the accurate value. Therefore, larger
width may underestimate the hosting capacity and lead to
conservative results. On the contrary, when the width is less
than or equal to 0.01 p.u, the relative error is less than 1%.We can
conclude that when the appropriate bin width is selected, the
calculation scale can be simplified by using the proposed extreme
combinations. More importantly, the hosting capacity calculation
method based on HEM can further shorten the calculation time.

Figure 7 shows that the voltage violation occurs when the
width is 0.01 p.u. Under the deployment scheme, when the

extreme scenarios are {(0.81, 0.82], (0.59, 0.60]}, Bus 24 first
exceeds the upper voltage limit.

Probability Assessment of the Hosting Capacity
In the test system, the number of DG candidate buses is 32. When
the location penetration level is 50%, the total possible number of
DG deployment schemes is more than 6 × 108. A large number of
potential DG deployment schemes bring a significant
computational burden. Therefore, MCS is used to simulate
relatively few scenarios to obtain approximate results. In this
context, we adopt the variance coefficient β (Prusty and Jena,
2017; Shen et al., 2020). β ≤ 0.5% is set as the stopping criterion of
MCS, and the results of MCS are considered to be accurate.

We performed the stochastic framework to access the hosting
capacity of a single DG case in Framework for Hosting Capacity
Assessment. The bin width is set as 0.01 p.u, and the location
penetration level is increased from 10 to 100% by a fixed step of
10%. Table 3 shows the statistical results of the wind system and
PV system at location penetration levels of 30, 50, 70, and 90%.

The mean values of the hosting capacity increase with higher
location penetration levels, while the standard deviations show
the opposite trend. The reasons are as follows: first, with the
increase of the location penetration level, DG locations increase
and the capacity allocated to each location decreases, so the total
hosting capacity of the system increases. Second, the higher
penetration level reduces the uncertainty of DG locations, so
the results of different deployment schemes are more
concentrated.

Figure 8 shows the probability density distribution of the
hosting capacity at 50% location penetration level. For the hosting
capacity of the wind system, the minimum and maximum values
are 3.995 and 14.224 MW, respectively. For the hosting capacity
of the PV system, the results of the hosting capacity are 4.236 and
14.472 MW, respectively. The difference between extreme values
is due to the location distribution of DGs.

Figure 9 shows the cumulative probability distribution of the
hosting capacity, which can provide planners with the probability
that the hosting capacity in distribution networks is lower than a
specific value. For example, the probability of the hosting
capacity, which is no more than 10 MW in the wind system, is
0.9359, while in the PV case, the result is 0.9097.

The total delivered generation can realistically reflect the
energy utilization. Therefore, when planning the distributed
system, not only the maximum hosting capacity of the system
but also the total delivered generation is needed to be considered.
The comparison of the mean values of total delivered generation
of the wind system and the PV system is presented in Table 4.
Although the hosting capacity of the PV system is slightly higher
than that of the wind system, the total delivered generation of PV

FIGURE 10 | PDF of the hosting capacity with different shares of wind
and PV.

TABLE 5 | Mean values of the hosting capacity and delivered generation.

Mean value of
the hybrid system

Mean value of wind
power

Mean value of PV

HC results (MW) 9.396 7.040 2.356
Total delivered generation (MW·h/year) 17,999.262 15,617.893 2,381.369
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is less than 50% of that of the wind system. The main reason for
the difference is the higher correlation and capacity coefficient
between wind resource and load demand.

There is complementarity between wind energy and photovoltaic
energy, and their joint action may affect the hosting capacity of the
system. However, the existing literature rarely discusses the hosting
capacity of hybrid wind–PV energy systems. The proposed stochastic
framework is used to analyze whether hybrid renewable energy helps
improve the available hosting capacity.

A variety of deployment schemes are generated by MCS.
Figure 10 shows the probability distribution of HC results
obtained with different shares of wind and PV at the 50%
penetration level. It can be seen that the PDF curve of the single
energy power generation hosting capacity is on the left side of the
PDF curve of the hybrid energy hosting capacity.With the increase of
wind power share, the PDF curve of the hosting capacitymoves to the
right until the share of wind power generation reaches 75%, and then
the PDF curve of the hosting capacity moves to the left. It indicates
that hybrid power generation has advantages in improving the level of
the hosting capacity.

According to the results, when the wind power share reaches 75%,
the hosting capacity of the hybrid wind–PV system reaches the
maximum. Table 5 shows the mean values of hosting capacity and
delivered generation. The mean value of the total hosting capacity is
9.396MW, while the mean values of wind and PV hosting capacity
are 7.040 and 2.356MW, respectively. Compared with the results of
the single wind case and PV case, the hosting capacity increases by
about 1.22 times and 1.18 times, respectively. Meanwhile, the mean
value of total annual delivered generation is 17,999.262MWh, of
which wind power generation accounts for about 87% and PV
accounts for about 13%. Compared with the single wind case and
PV case, the total delivered generation increases by about 1.04 times
and 2.17 times, respectively.

Wind power plays a leading role in hybrid wind–PV systems. PV
accounts for a relatively small proportion, but as a supplement to
energy, it is also essential to increase the total hosting capacity and
total delivered generation. The results show that the complementarity
between wind power and PV is conducive to distribution networks to
accommodate more distributed renewable resources. It can leverage
more renewable generation capacity to be utilized, thereby promoting
higher energy export.

CONCLUSION

Due to the inherent uncertainty of renewable energy resources,
the hosting capacity in distributed networks is not an immutable
value. Meanwhile, it is important to consider the uncertainties of
penetration levels, locations of DGs, and shares of wind and PV.
Thus, HC needs to be expressed in some statistical ways. In this
study, based on the wind–photovoltaic–load temporal
characteristic, a stochastic framework for the hosting capacity
is proposed. The main conclusions are as follows:

1) The uncertainty of wind power, PV, and load demand is
considered through time series data. The
discretization–aggregation method is introduced to process

time series data and generate extreme combinations. It
reduces the number of scenarios to be evaluated and
significantly mitigates computational complexity.

2) The holomorphic embedding model is proposed considering
the direction of generation and load change. The equivalent
analytical formula of voltage establishes the corresponding
relationship between the actual operation level and the
embedding parameter. The improved HEM can improve
the efficiency of the hosting capacity assessment.

3) Hosting capacity of the wind system, PV system, and hybrid
wind–PV system is studied from a probabilistic view.
Compared with the single resource case, the hybrid case has
the advantage in power generation. Due to the
complementarity between wind power and PV, the hybrid
wind–PV system has the potential to increase the hosting
capacity and energy production in distributed networks. The
performance in promoting energy integration and improving
utilization varies according to different shares of wind and PV.

From the development trend of the low-carbon goal, a large
amount of distributed renewable energy will inevitably lead to more
significant changes in distribution networks. This study proposes a
method to quantify the hosting capacity in distribution networks with
DGs based on the holomorphic embedding method. It offers
assistance in understanding the level of renewable energy
generation, making better use of the available renewable resources,
and promoting the application of distributed hybrid power
generation in the power grid. Furthermore, we will combine the
optimization algorithm to plan the optimal access scheme of
distributed generation with the method proposed in this study.
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NOMENCLATURE
DG distributed generation

HC hosting capacity

HEM holomorphic embedding method

PDF probability density function

CDF cumulative distribution function

MCS Monte Carlo simulation

PV photovoltaic
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