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In order to reduce the impacts caused by large-scale renewable energy resources
accessing the utility grid, the micro-energy grid system, as a natural extension of the
microgrid in the energy internet era, is proposed and developed to provide a new solution
for the optimal utilization of renewable energy resources. In this paper, a multi-energy
integrated micro-energy system is proposed which contains wind, PV, bedrock energy
storage, magnetic levitation electric refrigeration, solid oxide fuel cell, solar thermal
collector, energy storage, and V2G technologies, and detailed models of the energy
generation/conversion/storage devices are formulated. Besides this, the uncertainties of
renewable energy resources and cold/heat/electricity loads are considered, and the
optimal dispatch problem of the micro-energy system is established from day-ahead
and real-time time scales based on a model predictive control method. The day-ahead
optimal scheduling aims at economic optimization and guides real-time scheduling, and
real-time scheduling utilizes rolling optimization and a feedback correction mechanism to
effectively correct the deviation of renewable energy generations and loads at a real-time
horizon, which improves the optimization control accuracy, follows the day-ahead
dispatch plan, and ensures the economics of real-time scheduling at the same time.
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1 INTRODUCTION

In the context of the carbon peak and carbon neutrality goal, vigorously developing clean energy and
renewable energy and reducing the proportion of fossil energy is the only way to eradicate smog and
reduce greenhouse gas emissions. The randomness and volatility of new energy represented by wind
and solar energy are strong, and this determines the uncertainty of its power generation. The access
of large-scale new energy sources to the power grid will have a huge impact on the power grid and
bring severe challenges to the safe and stable operation of the power system (Li et al., 2021; Xu et al.,
2021). In this context, the research and construction of a new energy system represented by the
micro-energy grid (MEG) provides a new solution for the optimization and utilization of renewable
energy.

Edited by:
Bin Zhou,

Hunan University, China

Reviewed by:
Li He,

The University of Texas at Dallas,
United States
Qifang Chen,

Beijing Jiaotong University, China
Tianyang Zhao,

Jinan University, China

*Correspondence:
Xurui Huang

huangxurui@hotmail.com

Specialty section:
This article was submitted to
Process and Energy Systems

Engineering,
a section of the journal

Frontiers in Energy Research

Received: 28 August 2021
Accepted: 20 October 2021

Published: 30 November 2021

Citation:
Huang X, Yang B, Yu F, Pan J, Xu Q
and Xu W (2021) Optimal Dispatch of
Multi-Energy Integrated Micro-Energy

Grid: A Model Predictive
Control Method.

Front. Energy Res. 9:766012.
doi: 10.3389/fenrg.2021.766012

Abbreviations: BES, bedrock energy storage; DA, day-ahead; DG, diesel generator; EES, electric energy storage; EHP, electric
heat pump; EV, electric vehicle; HTWT, high temperature water tank; LBR, lithium bromide refrigerator; MEG, micro-energy
grid; MLER, magnetic levitation electric refrigeration; MPC, model predictive control; MTWT, medium temperature water
tank; PV, hotovoltaic; RER, renewable energy resources; RT, Real-time; SCS, solar collector system; SOC, state of charge; SOFC,
solid oxide fuel cell; V2G, Vehicle-to-grid; WT, wind turbine.

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7660121

ORIGINAL RESEARCH
published: 30 November 2021

doi: 10.3389/fenrg.2021.766012

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.766012&domain=pdf&date_stamp=2021-11-30
https://www.frontiersin.org/articles/10.3389/fenrg.2021.766012/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.766012/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.766012/full
http://creativecommons.org/licenses/by/4.0/
mailto:huangxurui@hotmail.com
https://doi.org/10.3389/fenrg.2021.766012
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.766012


The MEG is a micro-integrated energy system, which is a
natural extension of the microgrid under the background of the
energy Internet. The MEG involves the production, transmission,
storage, conversion, and utilization of various forms of energy,
such as cooling, heating, and electricity. It connects the power
grid, natural gas pipeline network, heating pipeline network, and
other energy networks through energy hubs to meet the needs of
end users for cooling, heating, and electricity energy. While
making full use of renewable energy, the MEG realizes multi-
energy complementary and coordinated operation, ultimately
achieving the goal of environmental friendliness and
sustainable development. Effective optimization scheduling
methods determine the quality of the energy management of
the MEG and the overall performance of the system (Zhou et al.,
2021).

Until recently, there has been some research on the energy
management and optimal dispatching of MEGs. The concepts
and design principles of a smart MEG are proposed in (Mei et al.,
2017), and an engineering game theory–based energy
management system with self-approaching-optimum capability
is investigated to realize the vision of the smart MEG. A novel
battery energy management system for an MEG is proposed in
(Thirugnanam et al., 2018), which considers multiple types of
batteries’ characteristics and the reduction of DGs’ operating
hours simultaneously. There are multiple stakeholders in the
MEGs, including users, equipment operators, and system
operators. How to take into account the demands of various
stakeholders is the key and difficult point in the energy
management of MEGs. A multiparty energy management
framework of MEG is considered in (Liu et al., 2018a; Liu et al.,
2018b; Liu et al., 2020a), which formulate the utility models for the
system operator and prosumers, respectively, and an optimization
model based on Stackelberg game is designed for the energy
management of MEGs. Besides this, how to deal with uncertainty
is also a difficult problem in the energy management of MEGs. The
processing methods of existing literature are roughly divided into
scene-based random optimization (Neyestani et al., 2015; Pazouki
and Haghifam, 2016; Alipour et al., 2018) and robust optimization
(Zugno et al., 2016; He et al., 2018). However, the former requires an
accurate probability distribution of uncertain factors to give a
statistically optimal solution, and the latter needs to optimize the
worst scenarios that rarely occur in practice in a predefined set of
uncertainties, which make its optimization strategy too conservative.

Most of the abovementioned works study the DA optimal
scheduling of MEGs on a single time scale, and the forecast errors
caused by the uncertainty of renewable energy outputs are not
taken into consideration so that the results of decision making in
accordance with the abovementioned strategies in the actual
operation of the system is suboptimal or even infeasible.
Therefore, shorter time scale forecasting and scheduling are
required for energy management of MEGs, and the
combination of multiple time scales can make the energy
management of MEGs more accurate and practical (Sharma
et al., 2019). A two-stage optimal scheduling model is
proposed in (Daneshvar et al., 2020) and (Liu et al., 2019) to
improve the profits of commercial microgrids equipped with
100% RERs and determine the most economic operational mode

of CCHP commercial building system integrated with a three-
way valve, respectively. The above two-stage optimization
scheduling method greatly improves the utilization of
renewable energy, but these works are all open-loop control
methods, and there is no feedback mechanism to correct the
optimization control process. Model predictive control (MPC), as a
modern control theory method, is used in many engineering
practices, and the ideas of rolling optimization and feedback
correction can better solve the uncertainty problem and have
strong robustness (Solanki et al., 2017; e Silva et al., 2020). In
Liu et al. (2020b), an optimizationmodel for themanagement of an
isolated microgrid is formulated via hybrid economic model
predictive control using weather forecasts performed by a
mesoscale meteorological model. Considering the operating
characteristics of various devices in the MEG and demand
response simultaneously, a multi-time scale MEG energy
management model based on model predictive control is
established in Hu et al. (2020). However, the above research
based on the MPC method are mostly aimed at microgrids or
relatively simpleMEGs. The energy forms involved and the various
links of energy generation, conversion, transmission, storage, and
utilization in MEGs are not considered in enough detail.

The contributions of this paper are summarized as follows:

1) A detailed analysis and modeling method is proposed in this
paper for the abundant energy generation, conversion, and
storage equipment based on the actual MEG system with eight
kinds of energy integrated.

2) A two-stage optimal scheduling method based on model
predictive control is proposed for the energy management
of the actual MEG system to improve the optimization control
accuracy.

2 SYSTEM MODEL

2.1 The Structure of MEG
The system structure of the multi-energy integrated MEG is
shown in Figure 1. The corresponding energy-generation
devices are wind turbine (WT), PV, diesel generator (DG),
solar collector system (SCS), and solid oxide fuel cell (SOFC)
system. The energy storage equipment are the bedrock energy
storage (BES) and electric energy storage (EES) systems
(Figure 2). The energy conversion equipment are medium-/
high-temperature water tanks (MTWT/HTWT), electric heat
pump (EHP), lithium bromide refrigerator (LBR), and
magnetic levitation electric refrigeration (MLER) system, and
the load demands contain electricity, heat, cold, and electric
vehicles (EVs).

2.2 Equipment Model
2.2.1 Solid Oxide Fuel Cell System
A SOFC is a kind of all-solid energy conversion device that
directly converts chemical energy in fuel and oxidized gas into
electrical energy, which has the structure of the general fuel cell.
The input fuel is natural gas, and the output electrical and thermal
power are given as follows:
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PSOFC � ηhVCH4FSOFC (1)

HSOFC � (1 − ηh)ηkVCH4FSOFC (2)

where PSOFC andHSOFC denote the output electrical and thermal
power, ηh is the reversible thermodynamic efficiency of the fuel
cell, which is the ratio of Gibbs free energy of per unit fuel to the
contained thermal energy of the fuel, ηh is the residual energy
thermal efficiency, and FSOFC are natural gas low calorific value
and natural gas consumption, respectively. Owing to the
existence of the voltage and fuel utilization losses in the
reaction process of SOFC, the practical output electrical and
thermal power can be updated as

PSOFC � ηhηvηgVCH4FSOFC (3)

HSOFC � (1 − ηhηvηg)ηkVCH4FSOFC (4)

where ηv and ηg are the voltage and fuel utilization efficiency.

2.2.2 Solar Collector System
An SCS is a kind of energy-conversion devices that converts the
radiant energy of the sun into thermal energy. It uses the coating
to focus sunlight scattered in parallel and collect heat. According
to the law of conservation of energy, the effective energy obtained
by the collector in each time slot equals the solar radiation energy
absorbed by the collector minus the energy loss of the collector
lost to the surrounding environment (Cheng et al., 2021):

Qu � S − Ql (5)

where S and Ql are related to factors such as the solar radiation,
thermal collector parameters, and ambient temperature;
therefore, the effective energy is calculated as Qu:

Qu � ApI(τα)e − APUL(Tp − Ta) (6)

where Ap and Tp are the area and average temperature of the
STC’s absorption plate, I is the solar irradiance, UL is coefficient
of total heat loss, and Ta is the ambient temperature.

2.2.3 Electric Energy Storage System
The state of charge (SOC) of the EES system is denoted as

SOCt
EES � (1 − σe)SOCt−1

EES + (Pt
chη

e
ch

EEES
− Pt

dis

ηedisEEES
) (7)

where σe is the self-discharge coefficient and Pt
ch and ηech are the

charge power and efficiency, respectively. Pt
dis and ηedis are the

discharge power and efficiency and EEES is the capacity of the EES
system.

2.2.4 Bedrock Energy Storage System
The BES system utilizes drilling holes in the underground
bedrock to store heat in the bedrock and then release the
heat when needed. There is little energy loss and
high conversion efficiency. Similar to the update rule of SOC
of the EES system, the SOC of the BES system is calculated as:

SOCt
BES � (1 − σh)SOCt−1

BES + (Ht
chη

h
ch

QBES
− Ht

dis

ηhdisQBES
) (8)

where σh is the self-discharge coefficient and Ht
ch and ηhch are the

charge power and efficiency, respectively. Ht
dis and ηhdis are the

discharge power and efficiency, and QBES is the capacity of the
BES system.

2.2.5 Energy Conversion Devices
First, the thermal energy (hot water) of the SOFC and solar
thermal collector can make the hot water temperature meet the
requirements of the LBR through the HTWT, and then be

FIGURE 1 | Schematic diagram of the multi-energy integrated MEG.
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refrigerated to supply the cold loads of users. Second, the hot
water that cannot be used for refrigeration enters the low
temperature tank, and then outputs hot water with a specified
temperature to meet the hot water loads of users. Third, if there is
still remaining hot water, then it is stored in the BES system; if the
hot water is deficient, then the hot water stored in the BES system
is released to supply.

The energy conversion devices can be represented by the
following unified model:

Pt
out,i � ηi · Pt

in,i (9)

where Pt
in,i and P

t
out,i are the input and output power of the device

i at time slot t, and ηi is the conversion efficiency of device i.

2.2.6 Electric vehicle
An EV is an important part of the MEG and plays an important
role in system peak-load shifting, demand response, fossil energy
consumption reduction, and climate change mitigation.
Considering the interaction between EVs and the MEG, EVs
are special mobile storage devices with different traveling habits
and electricity demands; therefore, they have different trading-
related parameters. For any EV, its parameters can be denoted as
A � [Tdep

EV , Tarr
EV, SOC

dep
EV , SOCarr

EV], Tdep
EV and Tarr

EV are the time of
leaving and connecting to the MEG, SOCdep

EV and SOCarr
EV are the

corresponding SOC, which can be obtained by the Monte Carlo
method:

SOCarr
EV(x) �

1���
2π

√
σ
exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ −
(x − SOCarr

EV)2

2σ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10)

SOCdep
EV (x) � 1���

2π
√

ς
exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ −
(x − SOCdep

EV )2

2ς2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (11)

Eqs 10, 11 indicate that the SOC at the departure and access
time satisfies the normal distribution, and SOCdes

EV , SOC
arr
EV , σ and

ς are corresponding mean and standard deviation.
From the time the EV connects to the MEG to the time to

leave, its SOC can be formulated as

SOCt
EV � (1 − σev)SOCt−1

EV + (Et
chη

ev
ch

EEV
− Et

dis

ηevdisEEV
) (12)

where σev is the self-discharge coefficient, and Et
ch and ηevch are the

charge power and efficiency, respectively. Et
dis and ηevdis are the

discharge power and efficiency, and EEV is the capacity of the EV.

2.3 Day-Ahead Optimization Scheduling
DA optimization scheduling is an important part to ensure the safe
and economic operation of theMEG, itmakes decisions on the system
operation with the consideration of DA predictions, economic
operations, and several constraints. In this paper, the DA
optimization schedule periods are 24 h.

2.3.1 Objective Function
The objective function of DA optimization dispatch is
minimizing the operation cost, which is formulated as follows:

minC � ∑T
t�1

∑N
i�1

λiP
t
out,i +∑T

t�1
(Ct

EES + Ct
BES + Ct

DG + Ct
grid + Ct

SOFC

+ CEV)
(13)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ct
EES � KEES · (Pt

ch · ηech + Pt
dis/η

e
dis)

Ct
BES � KBES · (Ht

ch · ηhch +Ht
dis/η

h
dis)

Ct
DG � a · (Pt

DG)2 + b · Pt
DG + c

Ct
grid � λts · max(Pt

grid, 0) + λtb · min(Pt
grid, 0)

Ct
SOFC � ht · FSOFC

Ct
EV � ∑m

j�1
KEV · (Et

ch,j · ηevch + Et
dis,j/η

ev
dis)

(14)

where Eq. 14 is the cost models of the EES, BES, DG, SOFC
systems; EVs; and trading energy with the utility grid,
respectively. T is the optimization period; N is the number of
energy conversion devices; λi is the maintenance cost of device i;
KEES, KBES, KEV are unit price of charging/discharging of EES,
BES system, and EV; a, b, c are cost coefficients of DG; Pt

grid is the
trading electricity with the utility grid; Pt

grid > 0 denotes the MEG
buys energy from utility grid; denotes the power output of DG at
time slot t; λtb and λts are the electricity trading price; and ht is the
unit price of natural gas.

2.3.2 Constraints
1) System constraints

−Pmax
grid ≤P

t
grid ≤P

max
grid (15)

Pt
SOFC + Pt

dis − Pt
ch + Pt

grid + Pt
DG − Pt

MLER − Pt
EHP

� Pt
load − Pt

PV − Pt
WT (16)

Ht
EHP +Ht

SOFC +Ht
SCS +Ht

dis −Ht
ch −Ht

LBR � Ht
load (17)

Ft
MLER + Ft

LBR � Ft
load (18)

where Pmax
grid is the maximum power flow of the line between the

MEG and utility grid. Eqs 16–18 are electric, thermal, and cold
power balance constraints, respectively. Pt

MLER and Pt
EHP are the

input electric power ofMIER and EHP;Pt
PV andPt

WT are the output
power of the WT and PV system; Ht

EHP and Ht
CSC are the output

thermal power of EHP and SCS;Ht
LBR is the input thermal power of

LBR; Ft
MLER andF

t
LBR are the output cold power ofMLER and LBR;

and Pt
load, H

t
load, and Ft

load are electric, thermal, and cold loads.

2) Power output constraints⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−Prd ≤Pt

DG − Pt−1
DG ≤Pru

0≤Pt
DG ≤P

max
DG

0≤Pt
SOFC ≤P

max
SOFC

0≤Ht
EHP ≤H

max
EHP

0≤Ft
MLER ≤F

max
MLER

0≤Ft
LBR ≤F

max
LBR

(19)
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where Prd and Pru are the upper and lower limits of climbing
power. Pmax

DG , Pmax
SOFC,H

max
EHP, F

max
MLER, F

max
LBR are the maximum output

power of DG, SOFC, EHP, MLER, LBR.

3) Constraints of EES⎧⎪⎪⎪⎨⎪⎪⎪⎩
ntch + ntdis ≤ 1
Pmin
ch · ntch ≤Pt

ch ≤P
max
ch · ntch

Pmin
dis · ntdis ≤Pt

dis ≤P
max
dis,t · ntdis

SOCmin
EES ≤ SOCt

EES ≤ SOC
max
EES

(20)

Eq. 20 is the operation constraints of EES, including the
charging and discharging state constraint, charging and
discharging power constraint, and SOC constraint. ntch and
ntdis are binary variables denoting the charging or discharging
state; ntch � 1 denotes the EES is charging; Pmin

ch , Pmax
ch , Pmin

dis , and
Pmin
dis are the minimum and maximum charging and discharging

power of EES, SOCmin
EES, and SOCmax

EES are the upper and lower
limits of SOC.

4) Constraints of BES⎧⎪⎪⎪⎨⎪⎪⎪⎩
mt

ch +mt
dis ≤ 1

Hmin
ch ·mt

ch ≤H
t
ch ≤H

max
ch ·mt

ch

Hmin
dis ·mt

dis ≤H
t
dis ≤H

max
dis,t ·mt

dis

SOCmin
BES ≤ SOC

t
BES ≤ SOC

max
BES

(21)

Eq. 21 is the operation constraints of BES, including the
charging and discharging state constraint, charging and
discharging power constraint, and BES capacity constraint.

5) Constraints of EES⎧⎪⎪⎪⎨⎪⎪⎪⎩
δtch + δtdis ≤ 1
Emin
ch · δtch ≤Et

ch ≤E
max
ch · δtch

Emin
dis · δtdis ≤Et

dis ≤E
max
dis,t · δtdis

SOCmin
EV ≤ SOCt

EV ≤ SOCmax
EV

(22)

δtctd + δtdtc ≤ 1 (23)

δtctd − δtdtc � δt+1dis − δtdis (24)∑td−1
t�tc

(δtctd + δtdtc)≤NEV (25)

Eq. 22 is the operation constraints of EV, including the
charging and discharging state constraint, charging and
discharging power constraint, and EV capacity constraint. Eq.
23 is the state transmission constraint, δtctd is the binary variable
denoting the state of EV from charging transformed into
discharging, and δtdtc is the binary variable denoting the state
of EV from discharging transformed into charging. Eq. 24
indicates that the transition state in the current period is
related to the transition state in the adjacent period, tc and td
are the time periods with the EV connected to and off the MEG,
andNEV is maximum charging or discharging times when the EV
is connected to the MEG.

3 REAL-TIME OPTIMIZATION
SCHEDULING

Owing to the uncertainty and fluctuations of renewable energy
output and cold/heat/electricity loads, RT prediction is more
accurate than DA prediction. DA scheduling has errors and
cannot perfectly match the RT system state, so RT
rescheduling is required on the basis of DA scheduling. MPC
can update the scheduling decisions in a real-time horizon
according to the latest status of the micro energy network.
The time step is 15 min.

MPC is a kind of model-based finite-time domain, closed-loop
optimal control method with consideration of future time steps,
which includes three parts: predictive model, rolling
optimization, and feedback correction. The essential thing is
predicting the system input at each time step and obtaining
the output according to the historical information and the
prediction model. The output of the first time step in the
period is taken as the scheduling result of the time step, the
results of the remaining time steps are ignored, and the operation
is repeated when the next time step comes, and the RT
optimization scheduling result is finally obtained. Schematic
diagram of MPC is shown in Figure 2.

3.1 Prediction Model
The function of the prediction model is to minimize the
objective function and to obtain the dispatch results

FIGURE 2 | Schematic diagram of MPC.
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according to the DA planning, the output of renewable energy
and prediction of loads in the future time step. DA optimization
scheduling ensures the operation economy of the micro energy
system and plays a guiding role for the RT dispatch. The
objective function of RT optimization scheduling is divided
into two parts to ensure that the scheduling results track the

DA schedule results. The first part is to minimize the deviation
between the RT output of the controllable device and the energy
storage output relative to the DA optimization reference value.
The second part is to minimize the sum of the RT power output
adjustment values of the controllable devices and energy storage
system between adjacent time steps.

min∑Ts

τ�0
∑Ns

s�1
[(Pt+τ

now,s − Pt+τ
rq,s)TWerr(Pt+τ

now,s − Pt+τ
rq,s)

+ (Δut+τ
now,s)TWuΔut+τ

now,s] (26)

where t is the current time slot, Ns is the number of controllable
devices, Werr and Wu are the coefficient matrix, is the RT
dispatch decisions of controllable devices, which contains

FIGURE 3 | Flow chart of RT optimal scheduling.

TABLE 1 | Cost parameters of MEG system.

Parameters Value Parameters Value

λLBR 0.048 ¥ /kWh KEV 0.32 ¥ /kWh
λMIER 0.42 ¥ /kWh a 0.00012¥ /kWh2

λEHP 0.08 ¥ /kWh b 0.255 ¥ /kWh
KEES 0.32 ¥ /kWh c 10¥
KBES 0.06 ¥ /kWh h 2.7 ¥ /m3

TABLE 2 | Technical parameters of MEG system.

Parameters Value Parameters Value

ηh 0.83 EEES 1500kW
ηv 0.9 QBES 2000kW
ηg 0.8 EEV 18kW

ηk 0.6 SOCmin
EES,BES,EV 0.15

VCH4 10kWh/m3 SOCmax
EES,BES,EV 0.95

ηMIER 5.3 ηe,hch,dis 0.95

ηLBR 1.3 ηevch,dis 0.99

ηEHP 0.8 Pmax
ch,dis 600kW

Pmax
grid 2800kW Hmax

ch,dis 100kW

Pmax
DG 200kW Emax

ch,dis 3.3kW

Pmax
SOFC 60kW 0

Hmax
EHP 500kW 0

Fmax
MIER 3517kW 0

200kW 100kW

FIGURE 4 | Net electric load and electricity price.
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power output of each device and SOC of each storage device. Pt+τ
rq,s

is the reference value of the DA scheduling plan, and △ut+τnow,s is
the increment of the controllable device output compared with
the previous time slot.

3.2 Rolling Optimization
Rolling optimization and feedback correction make MPC different
from traditional optimization methods. The optimization process is
repeated at each time slot, and the optimization time horizons keep
moving forward to form rolling optimization. This requires a
forecast of renewable energy output and cold/heat/electricity
loads at each time step; therefore, the optimization process of
MPC is different from the traditional optimization method, it is a
repeating online rolling optimization process. Rolling optimization
of limited time horizons may not be able to get the global optimal
results, but it can constantly consider the impact of uncertainty and
make timely correction, which is more adaptable to the actual
process and has stronger robustness compared with the one-time
optimization only based on the model.

3.3 Feedback Correction
After the MPC obtains the dispatch results within a time slot
through the prediction information of the current time step, to
prevent the dispatch results from deviating from the ideal
state due to the uncertain interference, it only adopts the
scheduling results of the current time step. At the next time
step, the RT prediction information of the current time step is
used to modify the model-based prediction, and then the previous
step is repeated for a new round of optimization. At the RT scale,
the uncertainty of the output of renewable energy and cold/heat/
electric loads lead to the prediction error between the actual
power output and the RT prediction value. To express this
prediction error, normal distribution is superimposed on the
DA prediction to simulate the practical scenario:

Ynow � Yrq + 1���
2π

√
ζ
exp( − x2

2ζ2
) (27)

where Ynow and Yrq are the prediction value of the DA and RT
horizons, and ζ is the standard deviation, which is set according
to the value of the DA prediction. The optimization inMPC is not
only based on the model, but also utilizes the feedback
information, thus forming a closed-loop optimization process,
which is shown in Figure 3.

Through the MPC method, the RT operation of MEG follows
the DA plan as much as possible and smoothly controls the increase
and decrease of output of each equipment caused by uncertainty.

4 CASE STUDY

4.1 Basic Data
In this paper, a demonstration MEG system in Nansha,
Guangzhou is taken as an example to analyze the feasibility of
the proposed method. The cost and technical parameters of MEG
system are listed in Tables 1, 2, respectively (Dong et al., 2016;
Zhou et al., 2018; Cheng et al., 2021).

The electricity price, electric load, and the output of WT, PV
are shown in Figure 4. The heat load and the output of SCS are
shown in Figure 5. The cold load is shown in Figure 6.

The power of the charging pile in the MEG is 50 kW, which
can accommodate 15 EVs charging or discharging at the same
time. The time periods for EVs accessing to or leaving the MEG
are 12:00–24:00, and the SOC of EVs are shown in Figure 7.

It can be seen from Figures 4–7 that the MEG system is
characterized by a large cold load and small electric and heat loads.

4.2 Day-Ahead and Real-Time Optimization
Results
The DA optimization period is 24 h, and the time step is 1 h. The
RT optimization period is 1 h, and the time step is 15 min. The RT
optimization predicts the renewable energy output and cold, heat,

FIGURE 5 | Heat load and output of solar collector system.

FIGURE 6 | Cold load.
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and electric loads in the next hour every 15 min; the normal
distribution is superimposed on the DA prediction data, and the
standard deviation is set as 2%. Through rolling optimization and
feedback correction, the RT optimization results are obtained.

The cold loads of MEG are very large, which are satisfied by LBR
andMLER. Due to the small capacity of LBR,MLER undertakesmost
of the cold load satisfaction tasks, which requires obtaining electric
energy from the utility grid, EES, SOFC, etc. According to Figure 8,
LBR has power output in periods 1:00–8:00 and 19:00–24:00, and the
power output in other periods is almost zero. Because the cold loads
exceed 3,000 kW in these two periods, which is almost the upper limit
of the output of MLER, it is necessary to increase the output of LBR.

As LBR needs heat for refrigeration, BES and EHP are
the main heating equipment. The low electricity price during
period 1:00–8:00 guides EHP to release heat to meet the heat

demands of LBR,at the same time, and the high cold load
guides the BES to release heat to meet the heat demands of
LBR, which are shown in Figure 9.

Because a large amount of electric energy needs to
be purchased from the utility grid to convert into cold energy,
SOFC and DG are working all the time. According to Figure 10,
period 20:00–22:00 is the period with the highest electricity price,
which guides EVs and EES to discharge in this period and charge
when the electricity prices are low. The dispatching scheme
reflects the guiding effect of electricity price and load on
equipment’s power output. According to Figures 8–10, the
DA and RT scheduling trends are consistent, and electric,
heat, and cold output follow the DA scheduling results.

4.3 Real-Time and Ideal Optimization
Results
After 96 time slots of rolling prediction and optimization, the
final input sequence, which includes renewable energy output and
cold, heat, and electric loads are obtained. In this paper, the ideal
optimization scheme is introduced to compare with the proposed
scheme, which is taking this final sequence as the input and the
economic optimization as the goal. Because the RT prediction
and optimization results are continuously updated, the 24-h
renewable energy output and cold, heat, and electric loads can
be obtained only after RT optimization is completed, which leads
to the ideal optimization scheme only being used as a reference
for verifying the method in this paper.

Taking the electric power output as an example, the
dispatching results of DA, RT, and ideal situations are
compared. From Figures 10A, 11, it can be obtained that, in
the DA, RT, and ideal conditions, the electricity output has the
same trend in the total periods, and the RT dispatching results
are smoother than the ideal results. There are large fluctuations
in the periods 7:00–8:00 and 17:00–19:00 in the ideal situation,
but almost none in the RT electric power output, which

FIGURE 7 | SOC of EVs.

FIGURE 8 | DA and RT cold power output optimization result.
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indicates that the MPC RT rolling optimization tries to make the
changes of adjacent output more stable while follow the DA
optimization schedule. The advantage of MPC is sacrificing the
economy of some periods to achieve the stability and economy
of the whole periods.

Table 3 compares the total costs of the two cases. The cost of the
ideal situation is close to the DA cost, which shows the rationality
of the RT rolling prediction and scheduling results in this paper.

4.4 Robustness Analysis
The influence of uncertainty on the system and the advantages of
MPC in dealing with RT uncertainty are studied. The RT
optimization results corresponding to standard deviation of 5
and 10% are compared in Figure 12.

Figure 12 shows that most of the scheduling results with 2%
uncertainty in the figure are covered, indicating the volatility

of RT scheduling results increases with the increase of
uncertainty, which is in line with the actual situation.
However, even if the uncertainty reaches 10%, the
scheduling results continue to follow the plan of DA, which
shows that the simple feedback correction in MPC improves
robustness and has good dynamic control effect for the
uncertainty in MEG.

4.5 Deviation and Smoothness Indices
To statistically compare sensitivity under three different
uncertainty scenarios, the deviation and smoothness indices
are introduced, and the analysis is performed from both the
vertical and horizontal perspectives. The deviation index is
defined by Eq. 28. The low deviation and smoothness index
values represent the good performance of the optimization
results.

FIGURE 9 | DA and RT heating output optimization result.

FIGURE 10 | DA and RT electric power output optimization result.
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ e � ∑Ns

s�1
βs

���∑T
t�1

√√
2⎛⎝Pt

now,s − Pt
rq,s

Pt
rq,s

⎞⎠/T s.t∑Ns

s�1
βs � 1 (28)

where βs is the weighting factor. P
t
now,s and Pt

rq,s indicate the RT
power output and DA power output of device s at time t.

Under the same time scale and uncertainty, the average
absolute error of adjacent results is calculated, and its
smoothness is expressed by Eq. 29.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ r � ∑Ns

s�1
∑T−1
t�1

cs
∣∣∣∣Pt+1

s − Pt
s

∣∣∣∣/(T − 1)

s.t ∑Ns

s�1
cs � 1

(29)

where cs is the coefficient. Pt+1
s and Pt

s represent the
power output of device s at the time t + 1 and t, and the
value of βs and cs are set according to the magnitude of each
device.

Comparing the deviation and smoothness under three RT
uncertainties, the results are shown in Table 4.

According to Table 4, the deviation increases with the
uncertainty, and it has a much smaller increment than the
uncertainty. The deviation of the ideal case is large, which
indicates that the ideal scheduling is optimized based on the
RT prediction with the goal of economy rather than obeying
the DA plan. RT scheduling with uncertainty obeys the DA
plan; thus, the deviation is smaller. As the uncertainty
increases, the value of smoothness index increases, the
smoothness index of the ideal situation is between the
smoothness of 2 and 5% uncertainty.

5 CONCLUSION

In this paper, the power generation/conversion/storage
equipment in the multi-energy integrated MEG is modeled
in detail, which enriches the equipment types of the MEG,
enables synergetic management and control of a large
number of distributed resources, and enables coordination
of multi-energy, such as cold, heat, electricity, and gas. Based
on MPC method, the MEG is optimized from DA and real-
time time scales. The real-time results track the DA plan to
ensure economy and significantly reduce the impact of
renewable energy and load uncertainty. By comparing the
real-time scheduling results under different uncertainties, it is
illustrated that the model has good robustness. Even
when there is 10% uncertainty, the real-time scheduling
still closely follows the DA plan, and the fluctuation of the

FIGURE 11 | Comparison of ideal and RT electric output.

FIGURE 12 | Comparison diagram of electrical output under different
uncertainties.

TABLE 3 | DA cost and ideal situation cost.

Comparison items Total cost/￥
DA plan 34,601
Ideal situations 35,107.5

TABLE 4 | Deviation index and smoothness index.

Comparison items Deviation e (%) Smoothness r

DA plan 5.4866
Ideal situation 3.47 14.6281
RT 2% uncertainty 0.40 12.2670
RT 5% uncertainty 0.57 17.2264
RT 10% uncertainty 0.81 24.3286
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devices’ power output is far less than the increase of
uncertainty. Furthermore, the results show that the rolling
optimization and feedback correction mechanism of MPC can
fully consider the uncertainty of real-time prediction results,
effectively correct the deviation caused by real-time
fluctuations, and guarantee the economy and security of
the operation of MEG.
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