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There are many prediction models that have been adopted to predict uncertain and
non-linear photovoltaic power time series. Nonetheless, most models neglected the
validity of data preprocessing and ensemble learning strategies, which leads to low
forecasting precision and low stability of photovoltaic power. To effectively enhance
photovoltaic power forecasting accuracy and stability, an ensemble forecasting
frame based on the data pretreatment technology, multi-objective optimization
algorithm, statistical method, and deep learning methods is developed. The
proposed forecasting frame successfully integrates the advantages of multiple
algorithms and validly depict the linear and nonlinear characteristic of
photovoltaic power time series, which is conductive to achieving accurate and
stable photovoltaic power forecasting results. Three datasets of 15-min
photovoltaic power output data obtained from different time periods in Belgium
were employed to verify the validity of the proposed system. The simulation results
prove that the proposed forecasting frame positively surpasses all comparative
hybrid models, ensemble models, and classical models in terms of prediction
accuracy and stabilization. For one-, two-, and three-step predictions, the MAPE
values obtained from the proposed frame were less than 2, 3, and 5%, respectively.
Discussion results also verify that the proposed forecasting frame is obviously
different from other comparative models, and is more stable and high-efficiency.
Thus, the proposed frame is highly serviceable in elevating photovoltaic power
forecasting performance and can be used as an efficient instrument for intelligent
grid programming.

Keywords: artificial intelligence, ensemble forecasting system, photovoltaic power forecasting, renewable energy
management, smart grid management

1 INTRODUCTION

The exhaustion of fossil energy and global warming have been inescapable events for humans (Das
et al., 2015; Takilalte et al., 2019; Irfan et al., 2021). To work out these events, exploring and exploiting
renewable energy worldwide should be the ultimate focus of attention (Islam, 2017; Shezan et al.,
2017; Liu et al., 2020; Elavarasan et al., 2021). Photovoltaic (PV) power, which is unlimited, green,
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and available, has become a key point in new energy resource
research (Jithin and Roykumar, 2018; Shelat et al., 2019; Zhu and
Pi, 2020; Tan et al., 2021). The International Energy Agency
announced that, until 2019, the global accumulative installed
capacity of PV power exceeded 627 GW.1 Nevertheless, PV power
is labile and fluctuates at high frequency, which unpredictably
impacts the facility wastage and grid stability of the intelligent
electric system. Therefore, enhancing the forecasting accuracy
and stability of PV power must be considered to help solve the
aforementioned tasks and optimize the intelligent electric system
operation.

By reviewing past studies, we can see that several forecasting
models have been proposed and developed to enhance prediction
precision and effectiveness (Yildiz and Acikgoz, 2021). With
respect to the calculative mechanism, the forecasting model
can be summarized as the following rough categories (Abdel-
Nasser and Mahmoud, 2019; Liu et al., 2022): physical, statistical,
and artificial intelligent models. Physical models rely on sky
cameras and satellite data to forecast PV power (Dong et al.,
2020). PV power prediction with satellite imaging or sky cameras
has been developed as a key theme based on data capture and
cloud movement (Elsinga and van Sark, 2017). Physical methods
exhibit satisfactory performance when the state of the weather is
stabilized (Li et al., 2020). In contrast to physical models,
statistical models use sufficient actual data to conduct short-
term PV power forecasting, and these models with regard to
short-term forecasting surpass physical models in terms of
performance (Zhang et al., 2019). The prediction performance
of statistical models is impacted when the input variables have a
nonlinear relationship. Autoregressive moving average (ARMA)
(David et al., 2016), autoregressive integrated moving average
(ARIMA) (Pedro and Coimbra, 2012), Kalman filter (Soubdhan
et al., 2016), and other statistical models have been adopted and
gained significant prediction results. In addition, artificial
intelligent models, which incorporate artificial neural networks
(ANNs) (Yacef et al., 2014), fuzzy logic methods (Tanaka et al.,
2011), and deep learning methods (DLMs) (Jiang et al., 2020), are
widely adopted tools for short-term PV power forecasting (Yagli
et al., 2019; Devaraj et al., 2021). Based on their outstanding
capabilities, DLMs can deal with the fuzzy relationship between
the actual data and forecasting data. As a booming branch of
artificial intelligence methods, DLM has attracted wide attention
in numerous fields (Zhou et al., 2020). Compared with the two
models, DLMs depend on historical data and have high fault
tolerance, which means that DLMs can robustly and adaptively
predict PV power. In addition, DLMs can dispose of nonlinear
data, conduct adaptive forecasting, and judge fuzzy relationships
(Li, 2020). Nonetheless, DLMs have instinctive shortcomings,
including over-fitting, easy to local optimum, and low
convergence speed (Jiang and Liu, 2019). Apart from the
abovementioned forecasting models, hybrid models have also
received great attention. Hybrid approaches can overcome the
limitation of individual model by combining predictor with other
algorithms (Kushwaha and Pindoriya, 2019). For example, Qu

et al. (2021b) established a hybrid gated recurrent unit (GRU) to
forecast day-ahead PV generation and proved hybrid GRU is
superior to individual GRU in terms of forecasting accuracy.
Korkmaz (2021) used variational mode decomposition approach
and convolutional neural network (CNN) to improve PV power
forecasting ability. Relative to benchmark deep learning models,
the proposed hybrid model can provide better forecasting results.
Eseye et al. (2018) developed a novel hybrid short-term
forecasting method, which integrated wavelet transform (WT),
particle swarm optimization (PSO) with support vector machine
(SVM) to enhance PV power forecasting precision. By comparing
with various prediction approaches, the proposed model showed
excellent prediction performance, which is helpful to integrate PV
into power grid. However, forecasting performance of a definite
forecasting model is different with respect to different datasets
and observation sites. Thus, one forecasting approach cannot be
applied to all forecasting situations.

The drawbacks of the aforementioned methods can be
concluded as follows:

(1) Physical models cannot obtain satisfactory results pertaining
to short-term PV power prediction based on several
disadvantages: running efficiency is lower, consumed
computing resources are expensive, and forecasting results
are unsatisfactory. Hence, physical models cannot offer a
satisfactory service for short-term PV power forecasting.

(2) Statistical models are poor in predicting data with high
fluctuation and nonlinear characteristics. It cannot
effectively forecast PV power based on the linear
hypothesis (Niu and Wang, 2019).

(3) Compared with the aforementioned models, the artificial
intelligence model, such as DLMs, can detect the
nonlinear relationship between the historical and
forecasted values. It has attracted several researchers over
the past several years for the validity to forecast complicated
relationships (Feng et al., 2017). Nonetheless, DLMs have
instinctive shortcomings, such as over-fitting, easy to local
optimum, and low convergence speed (Iversen et al., 2016).

(4) Because of the instinctive drawbacks of each model, the
individual model cannot forecast time-series data that vary
under the changing environment, resulting in poor
forecasting performance in some situations.

To overcome the above disadvantages, the ensemble learning
strategy based on multiple forecasting models that proposed by
Bates and Granger (1969) has been widely used by researchers.
Ensemble strategy employs multiple forecasting models to
achieve an aggregated result that is superior to every base
forecasting model (Opitz and Maclin, 1999). The main
principle of this strategy is to obtain optimal weights to ensure
the minimum sum of squared errors of the training set (Hao and
Tian, 2019). By combing multiple predictors, we can better utilize
more useful information and remove particular deviations
brought by individual predictor. Moreover, the ensemble
strategy can successfully integrate the merit of all involved
sub-predictors, such as their good ability to grasp different
data characteristic and the good property to overcome1https://news.solarbe.com/202004/29/324368.html.
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negative effect (e.g., overfitting), which is proved to be effective to
improve forecasting performance inmany forecasting fields (Xiao
et al., 2015; Liu et al., 2019; Wang et al., 2021). Yang and Dong
(2018) proposed a seasonal time series ensemble model that used
six component models from different families and 8 ensemble
methods to conduct PV power output forecasting. A simple
remedy was added to the ensemble model, which was proved
to be effective to improve forecasting ability. Li et al. (2020) used
wavelet packet decomposition (WPD) to decompose PV power
data and used long short-term memory (LSTM) to forecast the
decomposed series. The predicted sub-series are ultimately
integrated based on linear weighting strategy to obtain the
final forecasting values. Simulation results verified its high-
quality forecasting ability. Sharma et al. (2021) proposed a
novel forecasting frame, where the maximal overlap discrete
wavelet transform technique was used for decomposition and
the LSTM was used for sub-series forecasting. By integrating the
sub-series forecasting results, the final PV power forecasting
results were finally obtained. More studies about ensemble
forecasting models are listed in Table 1. From the above
review, we can find that most existing ensemble models are
more likely to use a single forecasting model. However, PV
power series is fluctuant and uncertain with both intricate linear
and nonlinear characteristics, which must be captured by
different class of forecasting models. To this end, in this
paper, both statistical model and DLMs are combined
together to better grasp the linear and nonlinear
characteristics of PV power series. Moreover, some existing
ensemble models use linear weighting method to calculate the
final ensemble forecasting results. Considering linear weighting
method may not reflect the importance of the prediction results
of each component, a multi-objective optimization algorithm
(MOOA) is used to optimize the combining weights, which can
effectively improve PV power forecasting performance. Besides,
data preprocessing is an important process in PV power
forecasting because it can filter the high-frequency noise in
original time series and retain the useful information.
Nevertheless, most studies may ignore the importance of data
preprocessing or adopt poor preprocessing methods. In this
paper, an effective data preprocessing method, namely singular
spectrum analysis (SSA), is used to preprocess the historical PV
power output forecasting, which can better grasp the data

characteristic of PV power series and effectively improve
forecasting ability.

In our study, proposed ensemble forecasting frame (PEFF) is
built, which incorporates SSA, multi-objective grasshopper
algorithm (MOGOA), ARIMA, and DLMs. Specifically, SSA
was selected to eliminate irregular fluctuations of observed
values in a complex environment. SSA can effectively process
the original time series to enhance the forecasting performance.
ARIMA and three DLMs (i.e., deep belief network (DBN), GRU,
LSTM) were adopted to conduct PV power forecasting, and the
ensemble coefficient of each model was obtained using MOGOA.
ARIMA can effectively predict the linear trend of PV power
generation, whereas DLMs can effectively predict nonlinear
trends. The PEFF fills the gap between the statistical and
artificial intelligence models. MOGOA can effectively combine
forecasting results based on an effective style. The PEFF that
integrates the benefits of individual models with data
pretreatment techniques and intelligent optimization
algorithms can validly improve the PV power prediction
ability (Tian and Hao, 2018).

The leading course of our study relative to other studies in the
domain of PV power forecasting is summarized below:

(1) A data pretreatment technique was adopted to relieve the
random fluctuation of PV power sequences in real time. The
observed PV power output time series will be disintegrated
into several subseries; then, the subseries with the highest
frequency fluctuation is abnegated, and the residuals are
structured to conduct PV power forecasting. Considering
this disposal, the essential character of PV power could be
better extracted, and hence, the forecasting performance can
be greatly improved.

(2) The statistical model is beneficial to grasp linear
characteristics, while DLMs make for nonlinear
characteristics. For the sake of comprehensive control of
the linear and nonlinear characteristics of PV power,
ARIMA (the statistical model) is used to forecast the
linear trend, and three DLMs are used for the nonlinear
trends.

(3) MOGOA, as an effective parameter optimization technology,
can determine the optimal coefficient of each sub-model.
MOGOA with an archive to determine approximative values

TABLE 1 | Relevant studies.

Literature Methods of construction Year

Literature 1 (Yin et al., 2020) Extreme learning machine, non-iterative correction theory, seasonal model 2020
Literature 2 (Niu et al., 2020) Random forest feature selection, complete ensemble empirical mode decomposition, backpropagation, particle swarm

optimization
2020

Literature 3 (Zhang et al., 2020a) Dendritic neural network, wavelet transform algorithm 2020
Literature 4 (Li et al., 2020) Wavelet packet decomposition, LSTM 2020
Literature 5 (Agga et al., 2021) CNN, LSTM, ConvLSTM 2021
Literature 6 (Mellit et al., 2021) LSTM, Bidirectional LSTM, GRU, Bidirectional GRU, CNN, CNN-LSTM, CNN-GRU 2021
Literature 7 (Luo et al., 2021) Pearson correlation coefficient, LSTM, physical constraints 2021
Literature 8 (Zhen et al., 2021) Genetic algorithm, Bidirectional LSTM 2021
Literature 9 (Qu et al., 2021a) CNN, LSTM, CNN-LSTM 2021
etc.
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of the Pareto optimal solution can prompt prediction
precision and prediction stability. MOGOA can help deal
with an intricate optimization problem.

(4) The developed ensemble frame (EF) can assist in the
operation and optimization of smart grids. Based on the
realistic PV power data and comprehensive prediction
result analyses, the PEFF is verified as an effective
forecasting frame and can be applied to other forecasting
fields in future.

At present, an accurate and stable forecasting system is
urgently needed for renewable energy generation. However, in
the current study, the developed prediction models have defects.
Therefore, we propose a PEFF for PV power generation
prediction to compensate for the defects of the current
prediction model and provide a new scheme for PV power
generation prediction.

2 METHODS

In this section, SSA and MOGOA are presented in detail, and a
particular process of the PEFF is introduced.

2.1 Data Preprocessing Strategy
SSA, as an instrumental data preprocessing technique to process
the observed PV power values, has been continually adopted in
various fields, such as biology (Hassani and Ghodsi, 2015),
physics (Krishnannair et al., 2016), climatology (Unnikrishnan
and Jothiprakash, 2018), and economics (de Carvalho and Rua,
2017). The flow of the SSA is listed as follows:

Step 1. Embedding
Conversing original time series X � (x1, x2,/xN) into Z �

(z1, z2,/, zK) as Eq. 1.

X � (x1, x2,/, xN) → Z � (z1, z2,/, zK), (1)

where zi � (xi, xi+1, · · · , xi+L−1)T ∈ RL, K � N − L + 1,
L ∈ [2, N]. The consequence of this mapping is embodied as a
trajectory matrix with the mathematical expression of

Z � [Z1,Z2, · · ·,ZK] � (zij)L,Ki,j�1 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 · · · xK

x2 x3 · · · xK+1
· · · · · · · · · · · ·
xL xL+1 · · · xN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(2)

Step 2. Singular values decomposition
Given a covariance matrix (S � XXT), this step is employed to

obtain L eigenvalues (λ1, λ2, · · · , λL) and eigenvectors
(U1,U2, · · · ,UL). Suppose t � max(i, such that λι > 0) and Vi �
XTUi




λi

√ (i � 1, 2, ..., t), then, S � XXT in this step can be
indicated by

Z � E1 + E2 + · · · + Et, (3)

where Ei �



λi

√
UiVi and the rank of Zi is 1. Therefore, V1,V2, ·

· · ,Vt are the principal components, and ( 


λi

√
,Ui,Vi) denotes

the characteristic root of the trajectory matrix (Z).

Step 3. Grouping
The interval (i � 1, 2, ..., t) is disintegrated into several

components (S1, S2, · · · , Sm) without a connection between
them. Suppose that S � (s1, s2, · · · , sp), then ZS is defined as
ZS � Zs1 + Zs2 + · · · + Zsp, and Z can be disintegrated into Z �
ZS1 + ZS2 + · · · + ZSm.

Step 4. Diagonal averaging
In this step, the grouping result is converted into a sequence

with N points. Assume that Z is an L p K matrix, Lp � min(L,K)
and Kp � max(L,K). If L < K, then z*ij � zij, or else, z*ij � zji.
Finally, Z is turned into a sequence (r1, r2,/, rN) based on the
following formula:

rk �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
k + 1

∑k+1
q�1z

p
q,k−q+1, 1≤ k≤ L

*

1
Lp ∑Lp

q�1Z
p
q,k−q+1 L*≤ k≤K*

1
N −K + 1

∑N−Kp+1
q�1 Zp

q,k−q+1 K
* ≤ k≤N

, (4)

2.2 Intelligent Optimization Algorithm
MOGOA simulates the location of the grasshopper population,
which is used to search for the optimal solution to a definite
problem. Based on related articles (Mirjalili et al., 2018), the
operating mechanism of the MOGOA can be summarized as
follows:

The motion of each grasshopper is principally influenced by
individual interactions, weight, and wind strength. In addition,
Xi represents the location of the ith grasshopper, as shown in
Eq. 5.

Xi � Si + Gi + Ai, (5)

where Si,Gi, andAi denote the individual interaction, weight, and
wind strength of each grasshopper, respectively.

Si can be quantized by subsequent equations:

Si � ∑N
j�1
j ≠ i

s(dij)d̂ij, (6)

dij �
∣∣∣∣Xj −Xi

∣∣∣∣, (7)

d̂ij � (Xj −Xi)/dij, and (8)

s(r) � fe−r/l − e−r, (9)

where dij denotes the space between the ith and jth grasshopper
and d̂ij denotes a normalized vector from the ith grasshopper to
the jth grasshopper. s(r) quantizes individual interactions based
on f and l.

The weight is computed via Eq. 10:

Gi � −gêg, (10)
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Here, g denotes the gravitational coefficient, and êg defines a
normalized vector to the earth’s core. In addition, the wind
strength of each grasshopper can be calculated using Eq. 11.

Ai � uêw, (11)

Here, u defines a constant parameter, and êw denotes a vector
normalized to wind direction. Moreover, Eq. 5 can be expressed
in detail using Eq. 12.

Xi � ∑N
j�1
j ≠ i

s(∣∣∣∣Xj −Xi

∣∣∣∣)Xj −Xi

dij
− gêg + uêw, (12)

Here, N denotes population size. Moreover, the
aforementioned formulas simulate the motion of the ith
grasshopper under hypothetical status.

The force applied by gravitation is insignificant. The wind
strength is related to the orientation (T̂d). Therefore, Xi can be
extended as follows:

Xd
i � c( ∑N

j�1
j ≠ i

c
ubd − lbd

2
s(∣∣∣∣∣Xd

j −Xd
i

∣∣∣∣∣)Xj −Xi

dij
) + T̂d, (13)

Here, ubd and lbd represent the upper and lower boundaries of
the dth variable, respectively. T̂d denotes the dth variable value of
the optimal solution. In addition, c determined using Eq. 14 can
reduce exploration and improve exploitation such that the
operation speed can be correspondingly decreased based on
the iteration number.

c � cmax − l
cmax − cmin

L
, (14)

Here, cmax and cmin denote the maximum and minimum
values, respectively, and l and L represent the present iteration
and max iteration, respectively.

To conduct multi-objective optimization via GOA, a Pareto
optimal solution is adopted to modify the solution distribution.
The distance between each solution and neighboring solutions is
quantized. Then, the neighboring solution number is adopted to
measure the density of the Pareto optimal solutions. The
probability of selecting the search objective of the archive of
the current iteration is defined in Eq. 15.

Pi � 1
Ni

, (15)

Here,Ni represents the neighboring solution number of the ith
solution.

2.3 Flow of the PEFF
Bates et al. proved that the effective ensemble prediction accuracy
of different forecasting models far surpasses that of the individual
models (Bates and Granger, 1969). 1,450 values were collected
from three periods: the 1st–1160th values were selected as the
training set, the 1161st–1392nd values were considered as the
validation set, and the 1393rd–1450th values were selected as the
testing set. In prediction process, rolling forecasting mechanism is

used, and the principle of rolling forecasting is that updating the
input data by discarding the old data for each loop to perform the
forecasting. In our study, the input set for each loop is 5 samples
{yyPV(t − 4), yyPV(t − 3), yyPV(t − 2), yyPV(t − 1), yyPV(t)}, (t �
5, 6, . . ., 1,449), and the outputs of forecasting models are
{ŷPV(t + 1)}, {ŷPV(t + 2)}, and {ŷPV(t + 3)} from one-step to
three-step forecasting, respectively. In this study, PEFF forecasts
the linear and nonlinear trends of the PV power output sequence,
and the flow is listed in this subsection and exhibited in Figure 1.

2.3.1 Operating Mechanism 1: Data Preprocessing
SSA is adopted to conduct the real-time treatment of the initial
PV power series, so that the dominating feature of the PV power
sequence will be mastered, and effective forecasting will be
conducted subsequently.

2.3.2 Operating Mechanism 2: Prediction of Hybrid
Predictors
Based on the linear and nonlinear characteristics of the PV
power sequence, ARIMA and DLMs were selected to build the
PEFF. By combining SSA and these models, hybrid models
were employed as sub-models to predict PV power. The PV
power output values corresponding to the validation set were
forecasted based on the rolling forecasting mechanism. Based
on real data, hybrid models perform single-step and multi-step
predictions. The linear model (SSA–ARIMA) in sub-models
can predict the linear trend of the PV power sequence, and
nonlinear models (SSA-DLMs) can predict the
nonlinear trend.

The input vector of DLMs in the training set is as follows:

input trainDLMs

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yy(1th) yy(2th) · · · yy(5th)
yy(2th) yy(3th) · · · yy(6th)

« « 1 «

yy((1156 − k)th) yy((1157 − k)th) · · · yy((1160 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

output trainDLMs � [ y((5 + k)th) y((6 + k)th) · · ·
y(1160th) ]⊤

(17)

The input vector of ARIMA in the training set is as follows:

input trainARIMA �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yy(1th) yy(2th) · · · yy(295th)
yy(2th) yy(3th) · · · yy(296th)

« « 1 «

yy((866 − k)th) yy((867 − k)th) · · · yy((1160 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

output trainARIMA � [ y((295 + k)th) y((296 + k)th)
· · · y(1160th) ]

⊤

(19)

where k denotes the forecasting step, and y denotes the actual PV
values, and yy denotes the processed PV values.

The input vector of DLMs in the validation set is as follows:
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input validationDLMs

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yy(1157th) yy(1158th) · · · yy(1161th)
yy(1158th) yy(1159th) · · · yy(1162th)

« « 1 «

yy((1388 − k)th) yy((1389 − k)th) · · · yy((1392 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

output validationDLMs � [ y(1161th) y(1162th) · · ·
y(1392th) ]⊤

(21)

The input vector of ARIMA in the validation set is as follows:

input validationARIMA

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yy((867 − k)th) yy((868 − k)th) · · · yy((1161 − k)th)
yy((868 − k)th) yy((869 − k)th) · · · yy((1162 − k)th)

« « 1 «

yy((1098 − k)th) yy((1099 − k)th) · · · yy((1392 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

output validationARIMA � [ y(1161th) y(1162th) · · ·
y(1392th) ]⊤

(23)

where k denotes the forecasting step, and y denotes the actual PV
values, and yy denotes the processed PV values.

The input vector of DLMs in the testing set is as follows:

input testDLMs

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yy(1389th) yy(1390th) · · · yy(1393th)
yy(1390th) yy(1391th) · · · yy(1394th)

« « 1 «

yy((1435 − k)th) yy((1436 − k)th) · · · yy((1450 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

output testDLMs � [ y(1393th) y(1394th) · · · y(1450th) ]⊤
(25)

The input vector of ARIMA in the testing set is as follows:

input testARIMA

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yy((1099 − k)th) yy((1100 − k)th) · · · yy((1393 − k)th)
yy((1100 − k)th) yy((1101 − k)th) · · · yy((1394 − k)th)

« « 1 «

yy((1156 − k)th) yy((1157 − k)th) · · · yy((1450 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

output validationARIMA � [ y(1393th) y(1394th) · · ·
y(1450th) ]⊤

(27)

where k denotes the forecasting step, and y denotes the actual PV
values, and yy denotes the processed PV values.

2.3.3 Operating Mechanism 3: Ensemble Forecasting
In this stage, MOGOA is applied to determine the best
weight coefficient of the forecasting values of each sub-
model. Based on MOGOA, prediction values matching the
validation set of four prediction sub-models obtained from
Process 2 are used to search for the best weight coefficient of
each sub-model, and real values matching the testing set are
used to test the forecasting performance of the PEFF. Finally,
the final PV power prediction result is aggregated via the
prediction values matching the testing set of each sub-model
and the optimal weight coefficients corresponding to each
sub-model. The objective functions of MOGOA are
prediction accuracy and stability in PEFF, and its fitness
function is provided:

min{Ob1 � mean(abs(y − ŷ)/y) × 100%
Ob2 � std(y − ŷ) (28)

where y denotes the actual PV values, and ŷ denotes the
forecasting PV values.

The fitness function can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{w} � arg min
{w}

{Ob1 � mean(abs(y − ŷ)/y) × 100%
Ob2 � std(y − ŷ)

s.t. − 2≤w≤ 2
ŷ � sub ŷARIMA × wARIMA + sub ŷDBN × wDBN

+ sub ŷGRU × wGRU + sub ŷLSTM × wLSTM,
w � {wARIMA,wDBN,wGRU,wLSTM}

(29)

The weights are optimized to achieve good forecasting
performance in validation set by MOGOA. Ultimately,
the final forecasting results are calculated as
ŷ(1393th − 1450th).

FIGURE 1 | Flowchart of the proposed ensemble forecasting system (including data preprocessing, sub-model forecasting, and ensemble forecasting based on
MOGOA).
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2.3.4 Operating Mechanism 4: Forecasting
Performance Assessment
The forecasting accuracy and stability were assessed using four
indicators (see Table 2 for details) based on three experiments,
and five discussions were held to further analyze the prediction
effect of PEFF.

3 EXPERIMENTAL SETUP AND RESULT
ANALYSES

In this section, the experimental setup and forecasting result
analyses based on three PV power datasets are presented to verify
the forecasting ability of our PEFF.

3.1 Datasets
Initial PV power data were acquired from three datasets in
Belgium with a time interval of 15 min. When the light
intensity reaches a certain level, the PV power generation has
sufficient output; therefore, this study considers PV power
generation data from 9:00 to 16:00 every day as the
verification dataset. Specifically, 1,450 data points for
continuous 50 days from different time period were adopted as
the reference dataset. The detailed data characteristics of the
PEFF are shown in Figure 2.

There is no official or specific procedure to select the
optimal training-to-test ratio. In actual application, with the
improvement of training-to-test, the forecasting accuracy can
be obviously improved, while too many training data may
result in overfitting issue. In this paper, based on previous
experiences and researches, the ratio of training, validation,
and test set is set to 20:4:1. Specifically, the 1st–1160th values
were selected as the training set, the 1161st-1392nd values
were considered as the validation set, and the 1393th-1450th
values were selected as the testing set. The relevant data
characteristics are listed in Table 3.

3.2 Assessment Indicators of Forecasting
Performance
There must be a scientific evaluation system to determine
whether the prediction performance is satisfactory. In this
section, four indicators, including the mean absolute error
(MAE), mean absolute percent error (MAPE), root mean
square error (RMSE), and standard deviation of error (SDE),

are introduced to verify the forecasting effort of our PEFF. The
concepts and equations of the four indicators are listed inTable 2.

3.3 Experimental Setup
Based on the PV power dataset, three experiments were designed
to compare the PEFF and reference models. In these experiments,
Experiment I contrasted the prediction ability of the PEFF and
hybrid models. Experiment II compared the PEFF with the EFs,
employing different data pretreatment strategies and MOOAs in
terms of forecasting effect. Experiment III compared the
prediction capacity of the PEFF and classical models. The
prediction ability of 1-step to 3-step prediction is testified via
four indicators, and experimental result analyses are described.

Experiment I was conducted to verify the advantages of PEFF
compared with hybrid models. The parameter setting of the SSA
is the same as that of the PEFF, and the rolling number of the
models was set to 5.

TABLE 2 | Four performance indicators.

Metric Definition Equation

MAE (Aygül et al., 2019) Average absolute error MAE � ∑M
i�1|êi − ei |/M

MAPE (Zhang et al., 2020b) Mean absolute percentage error MAPE � (∑M
i�1|(ei − êi)/ei |/M) × 100%

RMSE (Nie et al., 2020) Root mean square error RMSE �














∑M

i�1(êi − ei)2/M
√

SDE (Liu et al., 2021) Standard deviation of error SDE �














∑M

i�1(ei − êi)2/M
√

Note: ei denotes the actual PV power output at point i, and êi denotes the forecasting PV power output at point i. MAE, MAPE, and RMSE are used to measure prediction accuracy, and
standard deviation is used to measure prediction stability.

FIGURE 2 | Original PV power output time series in these studied
datasets.
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Experiment II was conducted to prove that the ensemble learning
strategy of PEFF surpasses the EFs structured via other data
pretreatment techniques (complete ensemble empirical mode
decomposition (CEEMD)) and MOOAs (multi-objective dragonfly
algorithm (MODA) and multi-objective grey wolf optimizer
(MOGWO)). For each EF, the ensemble learning strategy
changes, and the input and output settings remain unchanged.

Experiment III was employed to reveal the forecasting superiority
of the PEFF with classical models (backpropagation (BP) neural
network, extreme learning machine (ELM), Elman neural network
(ENN), echo state network (ESN), least squares support vector
machine (LSSVM) and radical basis function (RBF)).

3.4 Experiment I: Comparison With Hybrid
Predictors
The experimental results are listed in Table 4. For Dataset 1,
PEFF has an unrivaled characteristic in one-step and multi-step
predictions. In particular, theMAPE value is 1.7722% in one-step,
2.5428% in two-step, and 4.3568% in three-step predictions,
which are minimum compared with the involved models. For

Dataset 2, the lowest MAE, MAPE, RMSE, and SDE were
obtained from the PEFF in one step, with values of 13.5285,
0.9495%, 21.3817, and 21.5428, respectively. In multi-step
prediction, the most satisfactory results are achieved by the
PEFF, confirming the forecasting effect of our PEFF. For
Dataset 3, the forecasting accuracy and stability of PEFF
signally precede that of the reference models. This implies that
although hybrid models can improve the prediction precision
weakly, the PEFF is better.

Remark. The PEFF obtains a more satisfactory prediction
ability with the smallest error indicator values among all of
the involved models, proving the short-term prediction
availability of the proposed PEFF in PV power output.

3.5 Experiment II: Comparison With EFs
Adopting Diverse Ensemble Strategies
Experiment II compares the EFs with different data
pretreatment techniques (CEEMD) and MOOAs (MODA
and MOGWO). The forecasting results are listed in
Table 5. For Dataset 1, the PEFF is precise and stabilized

TABLE 3 | Relevant data characteristics of three datasets.

Datasets Datasets Number Mean Std Min Max Kurtosis Skewness

Dataset 1 Training Set 1,160 830.33 476.36 32.97 2055.73 −0.41 0.54
Validation Set 232 768.81 506.05 101.23 1818.68 −1.19 0.39
Testing Set 58 1,208.61 343.51 519.97 1825.68 −0.73 −0.06
All Samples 1,450 835.62 482.98 32.97 2055.73 −0.63 0.45

Dataset 2 Training Set 1,160 1,486.61 473.34 253.56 2,320.85 −0.38 −0.56
Validation Set 232 1,281.88 453.91 363.65 2,211.87 −0.67 −0.02
Testing Set 58 1,648.02 272.66 1,101.78 2069.63 −1.10 −0.05
All Samples 1,450 1,460.31 471.21 253.56 2,320.85 −0.48 −0.48

Dataset 3 Training Set 1,160 1,083.22 497.29 183.47 2073.17 −1.06 0.15
Validation Set 232 1,067.73 473.69 252.92 2001.07 −1.21 0.07
Testing Set 58 1,507.73 322.29 786.71 1971.44 −0.87 -0.40
All Samples 1,450 1,097.72 494.67 183.47 2073.17 −1.09 0.09

TABLE 4 | Comparison of the prediction performance of the PEFF and hybrid models.

Datasets Models 1-Step 2-Step 3-Step

MAE MAPE RMSE SDE MAE MAPE RMSE SDE MAE MAPE RMSE SDE

Dataset 1 SSA-ARIMA 64.5753 6.4809 80.5735 80.6501 87.5710 6.2232 85.3681 85.3949 98.9754 7.4362 107.1025 106.0687
SSA-DBN 20.8679 2.0754 28.8039 29.0033 58.0964 5.7688 75.5247 74.8270 81.7015 7.1736 101.2765 100.4727
SSA-GRU 37.2952 3.7035 48.5440 39.1455 65.7595 5.6530 72.4347 43.8018 73.7984 7.3753 97.2019 96.0304
SSA-LSTM 41.5859 3.6510 46.4083 28.2302 57.0653 5.0747 64.8244 41.1532 71.4108 6.3817 89.8253 80.8380
PEFF 16.0007 1.7722 28.9642 28.5218 24.1139 2.5428 36.5499 36.7695 40.6881 4.3568 57.1474 57.5807

Dataset 2 SSA-ARIMA 45.1211 2.7987 49.3694 49.4504 47.5442 3.0058 65.7468 65.8141 57.7359 3.8265 86.1445 86.2185
SSA-DBN 15.1359 1.0225 22.2644 22.3720 35.4919 2.3595 51.7319 48.7248 56.1531 3.7176 81.2890 77.9517
SSA-GRU 27.8566 1.7620 32.2005 27.8333 35.5072 2.2519 45.2732 35.8688 58.4671 3.7642 94.6169 94.9409
SSA-LSTM 42.0471 2.6084 45.8709 24.1338 31.1521 2.0103 40.4655 34.0953 52.4383 3.3406 68.4523 68.8433
PEFF 13.5285 0.9495 21.3817 21.5418 18.3995 1.2623 29.2054 29.0429 31.3365 2.0810 44.2778 44.3717

Dataset 3 SSA-ARIMA 41.5486 2.9235 49.0275 49.0931 40.1157 2.9690 48.7420 48.7538 45.6637 3.5356 73.9258 73.8198
SSA-DBN 12.8713 1.0139 19.7119 19.6991 38.4924 2.8621 55.3783 55.6886 43.8516 3.2763 64.9805 62.5742
SSA-GRU 32.1875 2.2983 35.5315 18.6984 37.6604 2.7164 43.5752 29.5510 73.7979 4.8642 86.3725 61.1768
SSA-LSTM 37.6564 2.6550 40.6847 19.9823 39.9714 2.8341 46.1460 32.2411 46.0131 3.2804 58.1740 51.5115
PEFF 11.0289 0.9060 16.4936 16.6610 18.0331 1.4887 26.4301 24.4284 31.9175 2.4017 41.5250 34.7977
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in PV power prediction, which can be concluded based on the
MAPE values (1.7722, 2.5428, and 4.3568%) in each
forecasting step. For Dataset 2, the four assessment
indicator values in each forecasting step obtained from
PEFF are the most satisfactory. The MAPE in one-step
forecasting obtained from the PEFF is 0.9495%, which is
0.2132% higher than that of SSA-MOGWO-EF, which is
second in the prediction effect. As for Dataset 3, regardless
of the prediction step, the PEFF obtains the optimal
forecasting result proved by obviously lower error indicator
values. For instance, in three steps, the PEFF provides the
lowest MAE, MAPE, RMSE, and SDE of 31.9175, 2.4017%,
41.5250, and 34.7977, respectively, while the highest MAPE
was obtained from CEEMD-MOGOA-EF at 4.8862%.

Remark. The assessment indicator values in Experiment II
show that the PEFF precedes the EFs based on other ensemble
strategies in terms of forecasting precision and stability,
regardless of the prediction step and dataset.

3.6 Experiment III: Comparison With Classic
Models
The experimental results reveal the forecasting ability of the
PV power sequence by comparing the PEFF with classic
models (BP, ELM, ENN, ESN, LSSVM, and RBF). The
prediction results are listed in Table 6. For Dataset 1, with
regard to the one-step prediction, PEFF exhibits the optimal
forecasting performance. With regard to two- and three-step

TABLE 5 | Comparison of the forecasting performance of the PEFF and EFs employing other ensemble strategies.

Datasets Models 1-Step 2-Step 3-Step

MAE MAPE RMSE SDE MAE MAPE RMSE SDE MAE MAPE RMSE SDE

Dataset 1 CEEMD-MOGOA-EF 31.8597 2.4202 40.9902 40.8996 37.9407 3.8876 51.3962 49.2323 61.3274 6.2315 78.4916 73.9839
SSA-MODA-EF 18.8108 2.0113 28.5070 28.7373 37.1732 3.5273 45.4530 40.5328 60.3734 6.0215 71.5867 63.0439
SSA-MOGWO-EF 18.6543 1.9854 27.7369 27.9771 30.2334 3.0368 40.4392 39.0266 58.6560 5.7436 69.5111 57.5834
PEFF 16.0007 1.7722 28.9642 28.5218 24.1139 2.5428 36.5499 36.7695 40.6881 4.3568 57.1474 57.5807

Dataset 2 CEEMD-MOGOA-EF 15.7684 1.0647 22.4003 24.5794 31.6600 2.0732 39.0680 35.1800 56.1855 3.4025 72.8122 70.6055
SSA-MODA-EF 14.5178 1.0158 23.1657 22.5536 27.3173 1.8540 37.8721 33.7889 47.2092 3.1136 67.6010 67.5988
SSA-MOGWO-EF 13.7641 0.9688 22.8846 22.2488 23.2763 1.5750 33.9391 33.5204 41.2373 2.7012 53.5360 44.8950
PEFF 13.5285 0.9495 21.3817 21.5418 18.3995 1.2623 29.2054 29.0429 31.3365 2.0810 44.2778 44.3717

Dataset 3 CEEMD-MOGOA-EF 15.9487 1.2555 22.8784 23.0553 40.9837 3.1094 63.2146 63.0417 58.7871 4.8862 84.1269 78.6112
SSA-MODA-EF 12.4153 0.9827 18.6229 18.6425 31.6632 2.3163 40.8688 26.8852 41.0942 3.0999 55.7911 47.0912
SSA-MOGWO-EF 11.8032 0.9550 18.3029 18.4288 23.8026 1.8575 32.7021 25.9686 40.6278 3.0528 54.5274 44.3540
PEFF 11.0289 0.9060 16.4936 16.6610 18.0331 1.4887 26.4301 24.4284 31.9175 2.4017 41.5250 34.7977

TABLE 6 | Comparison of the prediction performance of the PEFF and reference models.

Datasets Models 1-Step 2-Step 3-Step

MAE MAPE RMSE SDE MAE MAPE RMSE SDE MAE MAPE RMSE SDE

Dataset 1 BP 36.1011 6.5977 81.6468 81.7840 83.3276 18.1566 132.0443 131.5471 105.8290 20.7587 164.0412 164.1236
ELM 42.5785 7.5592 91.4609 91.6177 81.1682 15.0630 142.4280 142.5972 122.4549 21.9137 205.6969 206.0437
ENN 39.7156 7.4723 84.4419 84.5207 82.3793 14.7120 143.5108 143.7415 119.3047 21.7489 203.0020 203.3021
ESN 46.5811 8.7681 98.2482 98.3220 90.3716 17.6039 143.7276 143.9530 133.0377 26.0459 189.5262 189.8139
LSSVM 42.4525 7.4831 92.1394 91.9860 78.2665 14.5620 141.7317 141.6096 116.6006 21.9949 190.9299 190.8851
RBF 44.9547 8.4727 102.9092 102.9386 83.7915 16.1391 159.0064 159.1626 120.7738 23.7272 196.3467 196.4828
PEFF 16.0007 1.7722 28.9642 28.5218 24.1139 2.5428 36.5499 36.7695 40.6881 4.3568 57.1474 57.5807

Dataset 2 BP 32.5137 3.7464 75.4105 75.5294 64.2328 7.6081 117.2039 117.1351 96.1471 11.1675 156.8650 156.7773
ELM 36.3188 4.3381 77.0213 77.0773 65.9400 7.5464 116.5061 116.6311 98.3678 11.1553 155.4301 155.2397
ENN 35.6443 4.1737 77.1195 77.1545 68.5001 7.8467 119.2438 119.2861 96.3027 10.9769 154.5617 153.9480
ESN 46.7721 4.9832 108.2536 108.4385 86.3844 9.1621 145.8431 145.9740 122.5856 12.9829 183.3423 183.1392
LSSVM 45.1141 5.6019 97.4178 97.5851 70.9837 7.9522 128.6216 128.7701 93.4934 9.9382 155.3779 155.4104
RBF 35.4258 4.2141 78.9399 79.0719 63.1031 7.1286 116.0497 116.2490 89.6376 9.9341 149.9513 150.1800
PEFF 13.5285 0.9495 21.3817 21.5418 18.3995 1.2623 29.2054 29.0429 31.3365 2.0810 44.2778 44.3717

Dataset 3 BP 30.2430 4.0074 64.9896 64.9369 61.3442 7.6853 109.0110 109.1889 89.7525 11.4595 146.1884 146.3795
ELM 29.6854 3.9093 65.1172 65.1585 63.7582 7.9744 111.1659 111.2437 96.6048 11.8075 151.4255 151.1732
ENN 31.3175 4.0124 66.2060 66.2620 62.3144 8.0096 108.9393 108.8660 95.4399 11.9277 150.2073 150.0207
ESN 36.2387 4.2851 80.6081 80.5945 71.8532 8.2486 123.1829 122.9609 110.2528 12.5923 166.9108 166.8145
LSSVM 29.0768 3.7328 64.2934 64.3394 59.7767 7.5425 105.9502 106.0854 92.8919 11.5781 145.6523 145.8945
RBF 30.0137 3.8859 64.9002 64.9930 62.5905 7.9905 108.4614 108.6286 95.1872 11.9129 148.0287 148.2561
PEFF 11.0289 0.9060 16.4936 16.6610 18.0331 1.4887 26.4301 24.4284 31.9175 2.4017 41.5250 34.7977
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forecasting processes, the assessment indicators of the PEFF
are minimally compared with the classical models, which
indicate that the PEFF is more valid in PV power
prediction. For Dataset 2, classical models achieved
unsatisfactory prediction effects with higher values of MAE,
MAPE, RMSE, and SDE. Specifically, in 2-step forecasting, the
MAPE values of BP, ELM, ENN, ESN, LSSVM, and RBF are
7.6081, 7.5464, 7.8467, 9.1621, 7.9522, and 7.1286%,
respectively, and the MAPE values of PEFF were 1.2623,
6.3458, 6.2841, 6.5844, 7.8999, 6.6899, and 5.8664%. As for
Dataset 3, the PEFF precedes other involved models with
average values of the evaluation criteria of 20.3265,
1.5988%, 28.1495, and 25.2957, respectively, in three steps.

Remark. Based on the results of this experiment, we can
conclude that the PEFF has a stronger effect than the classical
models in short-term PV power prediction.

4 DISCUSSION

In this section, the PEFF is discussed in detail, including the
significance, sensitivity analysis, operational efficiency, practical
applications, defects, and future directions of the PEFF.

4.1 Forecasting Significance of the PEFF
To investigate whether there is a prominent difference in the
prediction ability between the PEFF and reference models, the
Diebold–Mariano (DM) test (Jiang et al., 2021) was conducted.
The concrete theory of this test can be found in (Zhang et al.,
2021).

As for our study, Table 7 lists the DM values from 1-step to 3-
step prediction based on the three datasets. First, the PEFF is
different from classical models (BP, ELM, ENN, ESN, LSSVM,
and RBF) at a significance level of 99%. Moreover, although the
DM values computed based on the difference between the PEFF
and hybrid models are lower than that computed based on the
difference between the PEFF and each classical model, the PEFF

has a distinguishing prediction capacity compared with each
hybrid model at a significance level of 95%. Then, when
comparing the PEFF with the EFs adopting disparate ensemble
strategies, the DM statistical magnitude pertaining to one-step to
three-step prediction based on each dataset exceeds the critical
value at a significance level of 95%, which illustrates that there is a
95% possibility that we will not reject H1.

Based on the DM statistical magnitude, the forecasting
results of PEFF are significantly different from those of
classical models (BP, ELM, ENN, ESN, LSSVM, and RBF),
hybrid models (SSA-ARIMA, SSA-DBN, SSA-GRU, and SSA-
LSTM), and EFs using diverse ensemble strategies (CEEMD-
MOGOA-EF, SSA-MODA-EF, and SSA-MOGWO-EF). Thus,
it is valuable to exploit PEFF and employ it in practical PV
power forecasting.

4.2 Sensitivity Analysis of the PEFF
To explore the prediction ability of the PEFF when a certain
parameter changes, sensitivity analysis was performed to measure
the output result sensitivity of PEFF based on the parameter
settings of SSA and MOGOA. The standard deviation (STD) of
error indicators, as shown in Table 8, was adopted to assess the
level at which the parameter setting impacted the properties of
PEFF (Liu et al., 2021). The results of the sensitivity analysis are
listed in Table 9, where the window length and principal

TABLE 7 | DM results of the models included in this study.

Models Dataset 1 Dataset 2 Dataset 3

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

BP 8.0975a 8.2785a 8.5469a 8.9575a 8.9649a 8.1576a 8.9706a 8.9572a 8.4854a

ELM 8.3003a 7.6419a 7.9218a 8.4157a 8.2922a 8.4595a 8.1557a 7.5357a 8.3491a

ENN 9.4340a 9.1787a 9.2577a 9.2431a 8.8922a 9.1555a 8.6712a 9.2060a 8.5318a

ESN 8.7769a 8.5462a 8.5971a 9.3235a 9.1948a 8.8171a 9.4502a 8.5344a 8.9387a

LSSVM 8.0816a 8.4655a 8.4952a 7.8869a 8.1898a 8.1456a 8.3463a 8.4094a 8.4547a

RBF 6.7760a 7.1797a 7.1551a 6.6626a 6.6190a 6.9984a 7.4597a 6.8404a 7.0853a

SSA-ARIMA 2.0238b 2.5513b 2.0551b 2.3060b 2.4991b 2.6909a 2.7593a 2.3472b 1.9986b

SSA-DBN 1.9993b 2.0575b 2.6407a 2.0543b 2.6143a 2.0435b 2.7293a 2.1500b 1.9966b

SSA-GRU 2.0511b 2.4160b 2.2733b 2.1517b 2.6308a 2.3853b 2.3497b 2.7172a 2.0858b

SSA-LSTM 2.5572b 2.5537b 2.1804b 2.3678b 1.9759b 1.9740b 2.3308b 2.5792a 2.7340a

CEEMD-MOGOA-EF 2.0899b 2.5288b 2.4294b 1.9719b 2.2971b 2.1222b 2.7543a 2.2712b 2.4885b

SSA-MODA-EF 2.1256b 2.5620b 2.2230b 2.6141a 2.6492a 2.7082a 2.4105b 2.0438b 2.1890b

SSA-MOGWO-EF 2.8733b 2.1124b 2.7858a 2.4983b 2.9561a 2.0382b 2.4027b 2.0667b 2.9219a

Note:
a99% significance level (critical value � 2.576).
b95% significance level (critical value � 1.960).

TABLE 8 | Four designed indicators of sensitivity analysis.

Metrics Definition Equations

SMAE STD of MAE of n times
prediction

SMAE � Std(MAE1 ,MAE2 , ...,MAEn)

SMAPE STD of MAPE of n time
prediction

SMAPE � Std(MAPE1 ,MAPE2 , ...,MAPEn)

SRMSE STD of RMSE of n time
prediction

SRMSE � Std(RMSE1 ,RMSE2 , ...,RMSEn)

SSDE STD of SDE of n time
prediction

SSDE � Std(SDE1 ,SDE2 , ...,SDEn)
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component decomposition number (PCDN) belong to SSA and
the population size, iteration number, and archive size belong to
MOGOA.

Sensitivity analyses were conducted by changing one parameter,
and the remaining parameters remained unchanged. It must be
known that each parameter value is assigned as 40, 45, 50, 55, and
60 in terms of window length, and 10, 15, 20, 25, and 30 in terms of
PCDN, respectively. Meanwhile, the parameter is set as 10, 30, 50,
70, and 90 in terms of population size; 300, 400, 500, 600, and 700
in terms of iteration number; and 100, 150, 200, 250, and 300 in
terms of archive size.

(1) As the parameters of SSA change, the SMAE, SMAPE, SRMSE,
and SSDE values of the two parameters become higher. For
instance, in the three-step prediction based on Dataset 1, the
SMAPE value is 0.2948 for window length and 0.2097 for

PCDN, which are lower than the SSDE values but still higher
than the SMAPE values of MOGOA parameters. The above
results indicate that the SSA significantly impacts the
forecasting performance of the PEFF.

(2) When the parameter inMOGOA is altered, compared with the
sensitivity analysis results obtained from SSA, the measured
indicators of MOGOA are lower than those of SSA, indicating
that the fluctuation of forecasting performance generated by
parameter alteration in MOGOA is slight.

4.3 Operational Efficiency of the PEFF
To further explore the operational efficiency of PEFF, the run time of
eachmodel based on three datasets, regardless of the forecasting step,
is listed in Table 10. In particular, the mean value of the operational
time of the PEFF is 164.5339 s, which is shorter than the EFs based
on different ensemble strategies. The computing time of PEFF is

TABLE 9 | STD values of the results acquired by changing parameters.

Datasets Algorithms Parameters 1-Step 2-Step 3-Step

SMAE SMAPE SRMSE SSDE SMAE SMAPE SRMSE SSDE SMAE SMAPE SRMSE SSDE

Dataset 1 SSA Window Length 2.4813 0.2350 2.3475 2.3814 2.4059 0.3147 2.6224 2.9407 2.3837 0.2948 3.4107 2.7419
PCDN 2.3360 0.2054 2.3083 2.3926 2.2226 0.2817 2.8869 2.8968 2.7934 0.2097 2.4408 2.7966

MOGOA Population Size 1.1213 0.0917 1.1665 0.8483 1.7892 0.1428 1.2537 1.1912 0.4999 0.1025 1.2675 1.5429
Iteration Number 1.2564 0.0336 1.1484 1.2494 1.9742 0.1214 1.0036 1.8143 0.4316 0.0543 0.6807 0.8152
Archive Size 0.3559 0.1024 0.6964 0.4870 0.4273 0.0452 0.7552 0.8221 0.7834 0.1017 1.3152 1.3772

Dataset 2 SSA Window Length 2.3800 0.2428 1.8090 2.0273 4.4983 0.3094 4.5220 0.9046 6.5667 0.4377 5.1595 0.4256
PCDN 2.7747 0.2052 2.5614 1.7477 4.5408 0.2985 4.4322 0.9292 4.6348 0.4184 5.0983 0.4358

MOGOA Population Size 1.1489 0.0616 0.5079 0.3770 2.0190 0.1531 2.0844 0.2835 2.8884 0.2013 2.4218 0.2682
Iteration Number 1.1993 0.0717 0.6826 0.6831 2.6139 0.1805 2.4364 0.2175 1.9861 0.1461 1.7761 0.2883
Archive Size 1.3714 0.0815 1.1076 0.7743 0.9389 0.0742 0.9619 0.5533 2.0549 0.1344 1.9448 0.2166

Dataset 3 SSA Window Length 2.0610 0.1698 1.9280 2.6148 2.0962 0.1984 3.2311 3.8987 3.7061 0.2162 4.0595 4.8314
PCDN 2.2278 0.1803 2.2001 1.9136 2.8146 0.2428 2.3597 2.6772 5.3466 0.3361 6.0052 6.1229

MOGOA Population Size 0.3832 0.0237 0.3812 0.4114 1.2668 0.1207 1.8670 1.9202 0.7750 0.0640 0.4889 0.7453
Iteration Number 0.9925 0.0607 0.8133 0.7673 1.7904 0.0701 0.9975 1.8172 0.9138 0.0791 0.6670 0.5771
Archive Size 0.7819 0.0500 0.3134 0.3099 0.6165 0.0530 0.5860 1.7270 0.7736 0.0549 0.6798 0.8035

TABLE 10 | Run time of each model.

Models Dataset 1 Dataset 2 Dataset 3 Average

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

BP 1.6324 2.0975 1.2785 1.9572 2.4854 1.8003 2.1419 1.4218 1.9157 1.8590
ELM 1.0469 0.9575 0.9649 0.8922 0.9595 0.9557 1.0357 0.8491 0.9340 0.9551
ENN 5.1576 4.9706 4.9572 4.6787 4.7577 4.7431 5.3922 4.6555 5.1712 4.9427
ESN 3.9595 3.6557 3.0357 2.7655 2.7952 3.1869 3.4898 3.4456 2.6463 3.2200
LSSVM 2.4854 2.8003 3.1419 2.7060 3.0318 3.2769 3.0462 3.0971 2.8235 2.9343
RBF 7.8491 6.9340 6.6787 6.7094 6.7547 7.2760 6.6797 6.6551 7.1626 6.9666
SSA-ARIMA 15.4218 16.9157 15.7922 15.6948 16.3171 15.9502 17.0344 16.4387 16.3816 16.2163
SSA-DBN 129.6555 110.1712 112.7060 121.7513 113.2551 109.5060 113.6991 124.8909 119.9593 117.2883
SSA-GRU 144.0318 153.2769 144.0462 135.5472 126.1386 136.1493 125.2575 123.8407 124.2543 134.7270
SSA-LSTM 152.7577 161.7431 141.3922 143.1190 152.4984 145.9597 133.3404 122.5853 154.2238 145.2911
CEEMD-MOGOA-EF 209.0971 198.8235 199.6948 190.8143 191.2435 189.9293 198.3500 203.1966 211.2511 199.1556
SSA-MODA-EF 218.8147 216.9058 217.1270 218.6160 219.4733 220.3517 218.8308 217.5853 217.5497 218.3616
SSA-MOGWO-EF 223.9134 225.6324 226.0975 225.9172 226.2858 225.7572 224.7537 223.3804 225.5678 225.2562
PEFF 163.3171 160.9502 161.0344 164.0759 165.0540 163.5308 167.7792 166.9340 168.1299 164.5339

Note: The running time is measured in seconds (s).
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shorter than that of SSA-MODA-EF, which confirms the superiority
of the MOGOA adopted in PEFF. Moreover, in contrast to hybrid
and classical models, the average operational time of PEFF is longer,
which is reasonable owing to its excellent prediction ability. The
operational efficiency of the PEFF can be improved by adopting a
high-powered computer.

4.4 Practical Applications of the PEFF
In practical scenarios, real-time missions considering PV power
generation planning and grid security safeguards require effective
forecasting. In particular, precise and stable PV power prediction
can solve the challenge caused by the irregular undulations of PV
power, which is the key point for the businesslike running of PV
power generation systems and can improve the stability and
efficiency of the energy market and energy industry. Accurate
and stable PV power forecasting can also effectively boost the PV
penetration degree, reduce the use of fossil fuels, and enhance
economic and environmental benefits, which is conductive to the
sustainable development of the society.

Moreover, the forecasting results of the PV power output
support decision-makers in maintaining the power system
stability, installing large PV power stations, and monitoring the
security of power systems. When the predicted PV power output
result is inconsistent with the real data, energy producers can assess
efficiency degradation caused by motor aging or motor faults and
deal with it in time to reduce economic loss. In other words,
accurate PV output forecasting provides valuable assistance for
monitoring the running status of equipment, which saves
maintenance costs and reduces the risk of power grid breakdown.

Furthermore, accurate forecasting is essential for grid
operators to help them determine balancing power that can
satisfy unnecessary demand for fossil fuels. By referring to PV
power forecasting results, decision makers can determine
reasonable power supply volumes of PV power and fossil fuel
power plants so as to satisfy the country’s power demand.
Meanwhile, accurate PV power forecasting is conductive to
setting reasonable rotating reserve capacity so as to enhance
energy economy and reduce the risk of PV abandonment.

4.5 Defects and Future Directions
The main limitation of PEFF is that the applied area is limited to
power systems containing PV power stations, instead of finance,
such as future price predictions.

After PV power prediction, adaptable improvements for
future are as follows:

(1) Finding more effective data preprocessing methods to
process PV power data and process the irregular
characteristics of the initial PV power data more effectively.

(2) Enhancing sub-models to provide satisfactory forecasting
results for the subsequent forecasting of EF.

(3) The operation efficiency of the proposed PEFF should be
improved by GPU acceleration.

(4) More underlying external factors, such as weather and solar
irradiation, must be taken into consideration to obtain better
forecasting results for longer forecasting horizons.

5 CONCLUSION

We developed an ensemble forecasting frame that capitalizes the data
preprocessing technique and optimization algorithm to forecast PV
power. The proposed system has been proved to be effective and
efficient to improve the prediction accuracy and stability of short-
term PV power. Specifically, a data preprocessing technique is
employed to disintegrate the original PV power sequence and
integrate a processed sequence to decrease prediction errors
created by the irregular undulations of the PV power series.
ARIMA and three DLMs were adopted as sub-models to forecast
PV power sequences. Further, MOGOAwas adopted to compute the
weight of each sub-model of the PEFF and obtain the final prediction
result. Simulation results prove that the proposed system
(SSA–MOGOA–EF) surpasses the comparative models.
Specifically, in Experiment I, the lowest average MAPE based on
each dataset was obtained from PEFF with values of 2.89, 1.43, and
1.60%, which were reduced by 3.82, 1.78, and 1.54%, respectively,
compared with the maximum values obtained from SSA–ARIMA.
This revels that the proposed ensemble forecasting scheme is
obviously superior to the comparative hybrid models in terms of
accuracy and stability. The ensemble strategy can successfully
improve short-term PV power forecasting performance. In
Experiments II, the MAPE values of PEFF based on all datasets
are the most satisfactory, which implies that the PEFF based on SSA
and MOGOA technologies exceeds the comparative ensemble
models based on other data preprocessing technologies and
optimization algorithms. Thus, it is a wise choice to use
SSA–MOGOA–EF for PV power forecasting. Similarly, in
Experiment III, the improvement of the proposed forecasting
system over the classical individual models is more significant,
further testifies the effectiveness of the proposed ensemble system.
Five discussions are further conducted to testify the performance of
the proposed frame. Based on the discussions, we testify that there is
an observable difference between the prediction results of the PEFF
and the benchmark models, and the proposed forecasting frame is
less sensitive to the parameter change of MOGOA than that of SSA.
Furthermore, the proposed forecasting frame incurs a lower cost
compared with EFs adopting other ensemble strategies. Thus, we can
conclude that the PEFF successfully improves the forecasting
accuracy and stability of PV power and can achieve more efficient
and time-saving forecasting results, which can provide useful support
for smart grid planning.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Software, YL; Supervision, LL; Writing—original draft, SZ;
Writing—review and editing, YL.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 76463512

Liu et al. A Case Study

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


REFERENCES

Abdel-Nasser, M., and Mahmoud, K. (2019). Accurate Photovoltaic Power
Forecasting Models Using Deep LSTM-RNN. Neural Comput. Applic 31,
2727–2740. doi:10.1007/s00521-017-3225-z

Agga, A., Abbou, A., Labbadi, M., and El Houm, Y. (2021). Short-Term Self
Consumption PV Plant Power Production Forecasts Based on Hybrid CNN-
LSTM, ConvLSTM Models. Renew. Energ. 177, 101–112. doi:10.1016/
j.renene.2021.05.095

Aygül, K., Cikan, M., Demirdelen, T., and Tumay, M. (2019). Butterfly Optimization
Algorithm BasedMaximumPower point Tracking of Photovoltaic Systems under
Partial Shading Condition. Energy Sourc. A: Recovery, Utilization, Environ. Effects,
1–19. doi:10.1080/15567036.2019.1677818

Bates, J. M., and Granger, C. W. J. (1969). Combination of Forecasts. Oper. Res. Q.
Das, N., Wongsodihardjo, H., and Islam, S. (2015). Modeling of Multi-junction

Photovoltaic Cell Using MATLAB/Simulink to Improve the Conversion
Efficiency. Renew. Energ. 74, 917–924. doi:10.1016/j.renene.2014.09.017

David, M., Ramahatana, F., Trombe, P. J., and Lauret, P. (2016). Probabilistic
Forecasting of the Solar Irradiance with Recursive ARMA and GARCHModels.
Solar Energy 133, 55–72. doi:10.1016/j.solener.2016.03.064

de Carvalho, M., and Rua, A. (2017). Real-time Nowcasting the US Output gap:
Singular Spectrum Analysis at Work. Int. J. Forecast. 33, 185–198. doi:10.1016/
j.ijforecast.2015.09.004

Devaraj, J., Madurai Elavarasan, R., Shafiullah, G., Jamal, T., and Khan, I. (2021). A
Holistic Review on Energy Forecasting Using Big Data and Deep Learning
Models. Int. J. Energ. Res. 45, 13489–13530. doi:10.1002/er.6679

Dong, J., Olama, M.M., Kuruganti, T., Melin, A. M., Djouadi, S. M., Zhang, Y., et al.
(2020). Novel Stochastic Methods to Predict Short-Term Solar Radiation and
Photovoltaic Power. Renew. Energ. 145, 333–346. doi:10.1016/
j.renene.2019.05.073

Elavarasan, R. M., Leoponraj, S., Vishnupriyan, J., Dheeraj, A., and Gangaram
Sundar, G. (2021). Multi-Criteria Decision Analysis for User Satisfaction-
Induced Demand-Side Load Management for an Institutional Building.
Renew. Energ. 170, 1396–1426. doi:10.1016/j.renene.2021.01.134

Elsinga, B., and van Sark, W. G. J. H. M. (2017). Short-term Peer-To-Peer Solar
Forecasting in a Network of Photovoltaic Systems. Appl. Energ. 206, 1464–1483.
doi:10.1016/j.apenergy.2017.09.115

Eseye, A. T., Zhang, J., and Zheng, D. (2018). Short-term Photovoltaic Solar Power
Forecasting Using a Hybrid Wavelet-PSO-SVM Model Based on SCADA and
Meteorological Information. Renew. Energ. 118, 357–367. doi:10.1016/
j.renene.2017.11.011

Feng, C., Cui, M., Hodge, B.-M., and Zhang, J. (2017). A Data-Driven Multi-Model
Methodology with Deep Feature Selection for Short-Term Wind Forecasting.
Appl. Energ. 190, 1245–1257. doi:10.1016/j.apenergy.2017.01.043

Hao, Y., and Tian, C. (2019). The Study and Application of a Novel Hybrid System
for Air Quality Early-Warning. Appl. Soft Comput. 74, 729–746. doi:10.1016/
j.asoc.2018.09.005

Hassani, H., and Ghodsi, Z. (2015). A Glance at the Applications of Singular
Spectrum Analysis in Gene Expression Data. Biomol. Detect. Quantification 4,
17–21. doi:10.1016/j.bdq.2015.04.001

Irfan, M., Elavarasan, R. M., Hao, Y., Feng, M., and Sailan, D. (2021). An
Assessment of Consumers’ Willingness to Utilize Solar Energy in China:
End-Users’ Perspective. J. Clean. Prod. 292, 126008. doi:10.1016/
j.jclepro.2021.126008

Islam, S. (2017). “Challenges and Opportunities in Grid Connected Commercial
Scale PV andWind Farms,” in Proc. 9th Int. Conf. Electr. Comput. Eng. ICECE
2016, 1–7. doi:10.1109/ICECE.2016.7853843

Iversen, E. B., Morales, J. M., Møller, J. K., and Madsen, H. (2016). Short-term
Probabilistic Forecasting of Wind Speed Using Stochastic Differential
Equations. Int. J. Forecast. 32, 981–990. doi:10.1016/j.ijforecast.2015.03.001

Jiang, P., Liu, Z., Niu, X., and Zhang, L. (2021). A Combined Forecasting System
Based on Statistical Method, Artificial Neural Networks, and Deep Learning
Methods for Short-Term Wind Speed Forecasting. Energy 217, 119361-11936.
doi:10.1016/j.energy.2020.119361

Jiang, P., and Liu, Z. (2019). Variable Weights Combined Model Based on Multi-
Objective Optimization for Short-Term Wind Speed Forecasting. Appl. Soft
Comput. 82, 105587. doi:10.1016/j.asoc.2019.105587

Jiang, P., Liu, Z., Wang, J., and Zhang, L. (2021). Decomposition-selection-
ensemble Forecasting System for Energy Futures price Forecasting Based on
Multi-Objective Version of Chaos Game Optimization Algorithm. Resour. Pol.
73, 102234. doi:10.1016/j.resourpol.2021.102234

Korkmaz, D. (2021). SolarNet: A Hybrid Reliable Model Based on Convolutional
Neural Network and Variational Mode Decomposition for Hourly Photovoltaic
Power Forecasting. Appl. Energ. 300, 117410. doi:10.1016/
j.apenergy.2021.117410

Krishnannair, S., Aldrich, C., and Jemwa, G. T. (2016). Detecting Faults in Process
Systems with Singular Spectrum Analysis. Chem. Eng. Res. Des. 113, 151–168.
doi:10.1016/j.cherd.2016.07.014

Kushwaha, V., and Pindoriya, N. M. (2019). A SARIMA-RVFL Hybrid Model
Assisted by Wavelet Decomposition for Very Short-Term Solar PV Power
Generation Forecast. Renew. Energ. 140, 124–139. doi:10.1016/
j.renene.2019.03.020

Li, C. (2020). Designing a Short-Term Load Forecasting Model in the Urban Smart
Grid System. Appl. Energ. 266, 114850. doi:10.1016/j.apenergy.2020.114850

Li, P., Zhou, K., Lu, X., and Yang, S. (2020). A Hybrid Deep Learning Model for
Short-Term PV Power Forecasting. Appl. Energ. 259, 114216. doi:10.1016/
j.apenergy.2019.114216

Liu, L., Zhao, Y., Wang, Y., Sun, Q., and Wennersten, R. (2019). “A Weight-
Varying Ensemble Method for Short-Term Forecasting PV Power Output,”
in Energy Procedia, 158, 661–668. doi:10.1016/j.egypro.2019.01.180Energ.
Proced.

Liu, Z., Jiang, P., Wang, J., and Zhang, L. (2021). Ensemble Forecasting System for
Short-Term Wind Speed Forecasting Based on Optimal Sub-model Selection
and Multi-Objective Version of Mayfly Optimization Algorithm. Expert Syst.
Appl. 177, 114974-11497. doi:10.1016/j.eswa.2021.114974

Liu, Z., Jiang, P., Wang, J., and Zhang, L. (2022). Ensemble System for Short Term
Carbon Dioxide Emissions Forecasting Based on Multi-Objective tangent
Search Algorithm. J. Environ. Manage. 302, 113951. doi:10.1016/
j.jenvman.2021.113951

Liu, Z., Jiang, P., Zhang, L., and Niu, X. (2020). A Combined Forecasting Model for
Time Series: Application to Short-Term Wind Speed Forecasting. Appl. Energ.
259, 114137. doi:10.1016/j.apenergy.2019.114137

Luo, X., Zhang, D., and Zhu, X. (2021). Deep Learning Based Forecasting of
Photovoltaic Power Generation by Incorporating Domain Knowledge. Energy
225, 120240. doi:10.1016/j.energy.2021.120240

Mellit, A., Pavan, A. M., and Lughi, V. (2021). Deep Learning Neural Networks for
Short-Term Photovoltaic Power Forecasting. Renew. Energ. 172, 276–288.
doi:10.1016/j.renene.2021.02.166

Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., and Aljarah, I. (2018). Grasshopper
Optimization Algorithm for Multi-Objective Optimization Problems. Appl.
Intell. 48, 805–820. doi:10.1007/s10489-017-1019-8

Nie, Y., Jiang, P., and Zhang, H. (2020). A Novel Hybrid Model Based on
Combined Preprocessing Method and Advanced Optimization Algorithm
for Power Load Forecasting. Appl. Soft Comput. 97, 106809. doi:10.1016/
j.asoc.2020.106809

Niu, D., Wang, K., Sun, L., Wu, J., and Xu, X. (2020). Short-term Photovoltaic
Power Generation Forecasting Based on Random forest Feature Selection and
CEEMD: A Case Study. Appl. Soft Comput. 93, 106389. doi:10.1016/
j.asoc.2020.106389

Niu, X., and Wang, J. (2019). A Combined Model Based on Data Preprocessing
Strategy and Multi-Objective Optimization Algorithm for Short-Term Wind
Speed Forecasting. Appl. Energ. 241, 519–539. doi:10.1016/
j.apenergy.2019.03.097

Opitz, D., and Maclin, R. (1999). Popular Ensemble Methods: An Empirical Study.
jair 11, 169–198. doi:10.1613/jair.614

Pedro, H. T. C., and Coimbra, C. F. M. (2012). Assessment of Forecasting
Techniques for Solar Power Production with No Exogenous Inputs. Solar
Energy 86, 2017–2028. doi:10.1016/j.solener.2012.04.004

Qu, J., Qian, Z., and Pei, Y. (2021a). Day-ahead Hourly Photovoltaic Power
Forecasting Using Attention-Based CNN-LSTM Neural Network Embedded
with Multiple Relevant and Target Variables Prediction Pattern. Energy 232,
120996-12099. doi:10.1016/j.energy.2021.120996

Qu, Y., Xu, J., Sun, Y., and Liu, D. (2021b). A Temporal Distributed Hybrid Deep
LearningModel for Day-Ahead Distributed PV Power Forecasting. Appl. Energ.
304, 117704. doi:10.1016/j.apenergy.2021.117704

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 76463513

Liu et al. A Case Study

https://doi.org/10.1007/s00521-017-3225-z
https://doi.org/10.1016/j.renene.2021.05.095
https://doi.org/10.1016/j.renene.2021.05.095
https://doi.org/10.1080/15567036.2019.1677818
https://doi.org/10.1016/j.renene.2014.09.017
https://doi.org/10.1016/j.solener.2016.03.064
https://doi.org/10.1016/j.ijforecast.2015.09.004
https://doi.org/10.1016/j.ijforecast.2015.09.004
https://doi.org/10.1002/er.6679
https://doi.org/10.1016/j.renene.2019.05.073
https://doi.org/10.1016/j.renene.2019.05.073
https://doi.org/10.1016/j.renene.2021.01.134
https://doi.org/10.1016/j.apenergy.2017.09.115
https://doi.org/10.1016/j.renene.2017.11.011
https://doi.org/10.1016/j.renene.2017.11.011
https://doi.org/10.1016/j.apenergy.2017.01.043
https://doi.org/10.1016/j.asoc.2018.09.005
https://doi.org/10.1016/j.asoc.2018.09.005
https://doi.org/10.1016/j.bdq.2015.04.001
https://doi.org/10.1016/j.jclepro.2021.126008
https://doi.org/10.1016/j.jclepro.2021.126008
https://doi.org/10.1109/ICECE.2016.7853843
https://doi.org/10.1016/j.ijforecast.2015.03.001
https://doi.org/10.1016/j.energy.2020.119361
https://doi.org/10.1016/j.asoc.2019.105587
https://doi.org/10.1016/j.resourpol.2021.102234
https://doi.org/10.1016/j.apenergy.2021.117410
https://doi.org/10.1016/j.apenergy.2021.117410
https://doi.org/10.1016/j.cherd.2016.07.014
https://doi.org/10.1016/j.renene.2019.03.020
https://doi.org/10.1016/j.renene.2019.03.020
https://doi.org/10.1016/j.apenergy.2020.114850
https://doi.org/10.1016/j.apenergy.2019.114216
https://doi.org/10.1016/j.apenergy.2019.114216
https://doi.org/10.1016/j.egypro.2019.01.180
https://doi.org/10.1016/j.eswa.2021.114974
https://doi.org/10.1016/j.jenvman.2021.113951
https://doi.org/10.1016/j.jenvman.2021.113951
https://doi.org/10.1016/j.apenergy.2019.114137
https://doi.org/10.1016/j.energy.2021.120240
https://doi.org/10.1016/j.renene.2021.02.166
https://doi.org/10.1007/s10489-017-1019-8
https://doi.org/10.1016/j.asoc.2020.106809
https://doi.org/10.1016/j.asoc.2020.106809
https://doi.org/10.1016/j.asoc.2020.106389
https://doi.org/10.1016/j.asoc.2020.106389
https://doi.org/10.1016/j.apenergy.2019.03.097
https://doi.org/10.1016/j.apenergy.2019.03.097
https://doi.org/10.1613/jair.614
https://doi.org/10.1016/j.solener.2012.04.004
https://doi.org/10.1016/j.energy.2021.120996
https://doi.org/10.1016/j.apenergy.2021.117704
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Sharma, N., Mangla, M., Yadav, S., Goyal, N., Singh, A., Verma, S., et al. (2021). A
Sequential Ensemble Model for Photovoltaic Power Forecasting. Comput.
Electr. Eng. 96, 107484. doi:10.1016/j.compeleceng.2021.107484

Shelat, N., Das, N., Khan, M. M. K., and Islam, S. (2019). “Nano-structured
Photovoltaic Cell Design for High Conversion Efficiency by Optimizing
Various Parameters,” in 2019 29th Australas. Univ. Power Eng. Conf.
AUPEC 2019, 26–29. doi:10.1109/AUPEC48547.2019.211859

Shezan, S. K. A., Das, N., and Mahmudul, H. (2017). Techno-economic Analysis of
a Smart-Grid Hybrid Renewable Energy System for Brisbane of Australia.
Energ. Proced. 110, 340–345. doi:10.1016/j.egypro.2017.03.150

S., J., and M., R. (2018). “Reconfigurable Solar Converter with Inverter, Chopper
and Rectifier Operation for Residential PV Applications,” in Proc. 2018 IEEE
Int. Conf. Power Electron. Drives Energy Syst. PEDES 2018, 1–4. doi:10.1109/
PEDES.2018.8707571

Soubdhan, T., Ndong, J., Ould-Baba, H., and Do, M.-T. (2016). A Robust
Forecasting Framework Based on the Kalman Filtering Approach with a
Twofold Parameter Tuning Procedure: Application to Solar and
Photovoltaic Prediction. Solar Energy 131, 246–259. doi:10.1016/
j.solener.2016.02.036

Takilalte, A., Harrouni, S., and Mora, J. (2019). Forecasting Global Solar Irradiance
for Various Resolutions Using Time Series Models - Case Study: Algeria. Energ.
Sourc. Part A: Recovery, Utilization, Environ. Effects 0, 1–20. doi:10.1080/
15567036.2019.1649756

Tan, B., Raga, S. R., Rietwyk, K. J., Lu, J., Fürer, S. O., Griffith, J. C., et al. (2021). The
Impact of spiro-OMeTAD Photodoping on the Reversible Light-Induced
Transients of Perovskite Solar Cells. Nano Energy 82, 105658. doi:10.1016/
j.nanoen.2020.105658

Tanaka, K., Uchida, K., Ogimi, K., Goya, T., Yona, A., Senjyu, T., et al. (2011).
Optimal Operation by Controllable Loads Based on Smart Grid Topology
Considering Insolation Forecasted Error. IEEE Trans. Smart Grid 2, 438–444.
doi:10.1109/TSG.2011.2158563

Tian, C., and Hao, Y. (2018). A Novel Nonlinear Combined Forecasting
System for Short-Term Load Forecasting. Energies 11, 712. doi:10.3390/
en11040712

Unnikrishnan, P., and Jothiprakash, V. (2018). Daily Rainfall Forecasting for One
Year in a Single Run Using Singular SpectrumAnalysis. J. Hydrol. 561, 609–621.
doi:10.1016/j.jhydrol.2018.04.032

Wang, J., Li, Q., and Zeng, B. (2021). Multi-layer Cooperative Combined
Forecasting System for Short-Term Wind Speed Forecasting. Sustainable
Energ. Tech. Assessments 43, 100946. doi:10.1016/j.seta.2020.100946

Xiao, L., Wang, J., Dong, Y., and Wu, J. (2015). Combined Forecasting Models for
Wind Energy Forecasting: A Case Study in China. Renew. Sustain. Energ. Rev.
44, 271–288. doi:10.1016/j.rser.2014.12.012

Yacef, R., Mellit, A., Belaid, S., and Şen, Z. (2014). New Combined Models for
Estimating Daily Global Solar Radiation from Measured Air Temperature in
Semi-arid Climates: Application in Ghardaïa, Algeria. Energ. Convers. Manage.
79, 606–615. doi:10.1016/j.enconman.2013.12.057

Yagli, G. M., Yang, D., and Srinivasan, D. (2019). Automatic Hourly Solar
Forecasting Using Machine Learning Models. Renew. Sustain. Energ. Rev.
105, 487–498. doi:10.1016/j.rser.2019.02.006

Yang, D., and Dong, Z. (2018). Operational Photovoltaics Power Forecasting Using
Seasonal Time Series Ensemble. Solar Energy 166, 529–541. doi:10.1016/
j.solener.2018.02.011

Yildiz, C., and Acikgoz, H. (2021). A Kernel Extreme Learning Machine-Based
Neural Network to Forecast Very Short-Term Power Output of an On-Grid
Photovoltaic Power Plant. Energ. Sourc. Part A: Recovery, Utilization, Environ.
Effects 43, 395–412. doi:10.1080/15567036.2020.1801899

Yin, W., Han, Y., Zhou, H., Ma, M., Li, L., and Zhu, H. (2020). A Novel Non-
iterative Correction Method for Short-Term Photovoltaic Power Forecasting.
Renew. Energ. 159, 23–32. doi:10.1016/j.renene.2020.05.134

Zhang, L., Dong, Y., and Wang, J. (2019). Wind Speed Forecasting Using a Two-
Stage Forecasting System with an Error Correcting and Nonlinear Ensemble
Strategy. IEEE Access 7, 176000–176023. doi:10.1109/ACCESS.2019.2957174

Zhang, L., Wang, J., Niu, X., and Liu, Z. (2021). Ensemble Wind Speed Forecasting
with Multi-Objective Archimedes Optimization Algorithm and Sub-model
Selection. Appl. Energ. 301, 117449. doi:10.1016/j.apenergy.2021.117449

Zhang, T., Lv, C., Ma, F., Zhao, K., Wang, H., and O’Hare, G. M. P. (2020a). A
Photovoltaic Power Forecasting Model Based on Dendritic Neuron Networks
with the Aid of Wavelet Transform. Neurocomputing 397, 438–446.
doi:10.1016/j.neucom.2019.08.105

Zhang, W., Zhang, L., Wang, J., and Niu, X. (2020b). Hybrid System Based on a
Multi-Objective Optimization and Kernel Approximation for Multi-Scale Wind
Speed Forecasting. Appl. Energ. 277, 115561. doi:10.1016/j.apenergy.2020.115561

Zhen, H., Niu, D., Wang, K., Shi, Y., Ji, Z., and Xu, X. (2021). Photovoltaic Power
Forecasting Based on GA Improved Bi-LSTM in Microgrid without
Meteorological Information. Energy 231, 120908. doi:10.1016/
j.energy.2021.120908

Zhou, Q., Wang, C., and Zhang, G. (2020). A Combined Forecasting System Based
on Modified Multi-Objective Optimization and Sub-model Selection Strategy
for Short-Term Wind Speed. Appl. Soft Comput. 94, 106463. doi:10.1016/
j.asoc.2020.106463

Zhu, E., and Pi, D. (2020). Photovoltaic Generation Prediction of CCIPCA
Combined with LSTM. Complexity 2020, 1–11. doi:10.1155/2020/1929372

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Liu, Li and Zhou. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 76463514

Liu et al. A Case Study

https://doi.org/10.1016/j.compeleceng.2021.107484
https://doi.org/10.1109/AUPEC48547.2019.211859
https://doi.org/10.1016/j.egypro.2017.03.150
https://doi.org/10.1109/PEDES.2018.8707571
https://doi.org/10.1109/PEDES.2018.8707571
https://doi.org/10.1016/j.solener.2016.02.036
https://doi.org/10.1016/j.solener.2016.02.036
https://doi.org/10.1080/15567036.2019.1649756
https://doi.org/10.1080/15567036.2019.1649756
https://doi.org/10.1016/j.nanoen.2020.105658
https://doi.org/10.1016/j.nanoen.2020.105658
https://doi.org/10.1109/TSG.2011.2158563
https://doi.org/10.3390/en11040712
https://doi.org/10.3390/en11040712
https://doi.org/10.1016/j.jhydrol.2018.04.032
https://doi.org/10.1016/j.seta.2020.100946
https://doi.org/10.1016/j.rser.2014.12.012
https://doi.org/10.1016/j.enconman.2013.12.057
https://doi.org/10.1016/j.rser.2019.02.006
https://doi.org/10.1016/j.solener.2018.02.011
https://doi.org/10.1016/j.solener.2018.02.011
https://doi.org/10.1080/15567036.2020.1801899
https://doi.org/10.1016/j.renene.2020.05.134
https://doi.org/10.1109/ACCESS.2019.2957174
https://doi.org/10.1016/j.apenergy.2021.117449
https://doi.org/10.1016/j.neucom.2019.08.105
https://doi.org/10.1016/j.apenergy.2020.115561
https://doi.org/10.1016/j.energy.2021.120908
https://doi.org/10.1016/j.energy.2021.120908
https://doi.org/10.1016/j.asoc.2020.106463
https://doi.org/10.1016/j.asoc.2020.106463
https://doi.org/10.1155/2020/1929372
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Ensemble Forecasting Frame Based on Deep Learning and Multi-Objective Optimization for Planning Solar Energy Management: A  ...
	1 Introduction
	2 Methods
	2.1 Data Preprocessing Strategy
	2.2 Intelligent Optimization Algorithm
	2.3 Flow of the PEFF
	2.3.1 Operating Mechanism 1: Data Preprocessing
	2.3.2 Operating Mechanism 2: Prediction of Hybrid Predictors
	2.3.3 Operating Mechanism 3: Ensemble Forecasting
	2.3.4 Operating Mechanism 4: Forecasting Performance Assessment


	3 Experimental Setup and Result Analyses
	3.1 Datasets
	3.2 Assessment Indicators of Forecasting Performance
	3.3 Experimental Setup
	3.4 Experiment I: Comparison With Hybrid Predictors
	3.5 Experiment II: Comparison With EFs Adopting Diverse Ensemble Strategies
	3.6 Experiment III: Comparison With Classic Models

	4 Discussion
	4.1 Forecasting Significance of the PEFF
	4.2 Sensitivity Analysis of the PEFF
	4.3 Operational Efficiency of the PEFF
	4.4 Practical Applications of the PEFF
	4.5 Defects and Future Directions

	5 Conclusion
	Data Availability Statement
	Author Contributions
	References


