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Price tamping attacks may cause market turbulence, attack detection and defense
strategy are needed to study. Firstly, demand response characteristics are analyzed in
a User Energy System. A quantitative model is established to describe the load changes
caused by price tampering attacks. Secondly, a space-based cumulative intrusion
detection method is proposed to pick up the discrepancy under tampering attacks. To
verify the practicability of the proposedmethod, intrusion detection experiments are tested
in the Principal Information and Safety Laboratory. Then, comprehensively considering the
purchase of electricity from the power grid, self-generation, and load shedding, a
quantitative model of attack consequences is established based on the allocation
coefficient. Thus, the intrusion detection algorithm is used as a defense resource, and
a demand-side defense protection strategy is formed to find an optimal deployment
method based on non-cooperative game theory. The defensive protection strategy takes
the quantitative model of attack consequences as the solution target, and solves the Nash
equilibrium solution under different attack modes. Finally, in the IEEE-33 node system
simulations, the defense resource is deployed using intrusion detection strategy, and the
defense decision is executed to show the effectiveness of the comprehensive protection
strategies.
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1 INTRODUCTION

The cyber-physical system integrates the computing system, the communication network, and the
physical environment through computation, communication, and control (3C) technology. Thus, a
multi-dimensional heterogeneous complex system that integrates real-time sensing, dynamic
control, and information services is formed by Liu et al. (2015). In recent years, with the rapid
development of smart grid construction, the interaction between traditional power networks and
information networks has become increasingly complex. Zhao et al. (2010) indicates that The
modern power system is no longer the traditional power equipment network. It develops into a
power cyber-physical system (CPS) with various typical features.

As a private network of power industrial control systems, power communication network had the
characteristic of “secure partition, network-specific, horizontal isolation, and vertical
authentication”. And it was considered to have strong security and reliability for a long time
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which was proposed by Miao et al. (2009). However, compared
with the traditional primary power network, the research on
security protection for power communication systems
started late.

Recently, A.Ashok et al. (2017) ’s research showed that
traditional physical isolation can’t guarantee the absolute
security of power CPS. So the attack against the power system
wasn’t implemented on the physical side only. On the contrary,
current attack was more likely to happen on the information side
due to the low cost and the greater potential damage. Tang et al.
(2016) revealed the ever-changing attack methods which may
exist on the information side of the power CPS. The Ukrainian
power outage event analyzed in the literature of Tong et al. (2016)
was an example of a network attack in the power network.

Currently, false data injection attacks (FDIA) exist in all
aspects of the power CPS according to Tang et al. (2016).
Zhao et al. (2016) and Ni et al. (2016) indicated that the
attacker attacked the sensing device by injecting false data to
achieve the purpose of attacking the power grid. Wang. (2014)
described the FDIA against large, complex SCADA systems. The
relative active/passive defense methods need to be further studied
(Hahn and Manimaran, 2011; Tian et al., 2018).

At the same time, renewable energy is developing fast.
Prosumers in the smart grid have not only participated in the
production, transmission, distribution, and use of electricity as
consumers, but also have gradually participated in the distributed
generation process as the role of power producers according to
Jun et al. (2015) and Yang et al. (2018). The electricity consumed
in an area consists of two parts-traditional power and local
distributed new energy generation such as solar energy, wind
energy, etc. In this case, the regional electricity price can no longer
be fixed to a certain value. It should dynamically change with the
production of two kinds of electric energy to pursue the
maximization of their profits according to Telaretti et al.
(2014) ’s points.

This situation requires the introduction of a competitive
mechanism in the field of power generation. The business
model of the open power generation side has gradually
formed. It means that each power generation unit needs to
compete in the electricity market. In such case, Wang. (2001)
revealed that the opening of electricity prices also brought many
security risks. With the development of power CPS and new
energy technologies, the power grid has becomemore distributed.
The control center in the power grid gradually becomes more
diversified. Regional power grids often use proxy methods to
participate in electricity price decisions. In order to obtain more
benefits or implement destructive actions, malicious bidding
events occur from time to time. In the literature of Ma et al.
(2016), real-time electricity price attacks had a serious impact on
user load demand. Xia et al. (2017) conducted experiments and
found that electricity price delay attacks caused great interference
to the electricity market.

As can be seen from Jie et al. (2019), a Stackelberg game was
used to model Man-In-The-Middle (MITM) attack mode.
They compared the financial loss and the effect of cyber
security. From the result, there were great differences in the
losses and delays caused by MITM attacks before and after

defensive measures. MITM attacks were studied in VANET by
Ahmad et al. (2018). Results suggested that these attacks had a
massive influence on the network in terms of low content
delivery, high end-to-end delay, compromised messages, and
packet losses. For example, for 50% distributed MITM
attackers, the network experiences about 6.89% more loss as
compared to the network containing fleet attackers. In the field
of electricity, Chen et al. (2017) showed the man-in-the-
middle attacks against smart meters DL/T 645–2007
Protocol. Wang et al. (2015) described a false data injection
attack against multi-step electricity prices (MEP). It can be
seen that the malicious bidding behavior realized by MITM
attacks on electricity prices has gradually become a big
problem. And it needs more attention and better solutions
(Lin et al., 2013). This shows that man-in-the-middle attacks
cannot be ignored. It is gradually affecting the security of
systems that contain communications such as power CPS.

Generally, there have been two types of MITM attacks on
electricity prices (23–25) (Bharti and Mala, 2019; Singh et al.,
2019; Sun et al., 2019): 1) It attacks the information flow; 2) It
attacks the information center (Song, 2018). The first type of
MITM attacks can maliciously change the price data between the
buyer and the seller, and the second type can send false price data.
Because the first type is easy to operate, it becomes the main way
of MITM attacks on electricity prices according to Liwei and
Yang. (2019).

When MITM attacks on electricity prices occur, the load
changes according to electricity prices. Further, the load may
be mismatched with the source. When the load is larger than the
source, the voltage level would decrease and the load shedding
would occur in a large area sometimes. When the load is less than
the source, the system voltage level would rise, which may lead to
an electric accident.

In this case, Bao (2018) studied that the attacker and the
defender are clearly opposed. The attack mode of the middleman
attacker will not be static, and it will develop in the direction of
maximizing the attack benefits. In order to cope with the
changing attacks, grid defenders must also respond in a timely
manner. The attacker wants to cause the biggest grid loss. The
purpose of the defender is to reduce this loss. This process is
consistent with the process of the game.

As a powerful solution tool, the game theory had been widely
used to solve various problems in the power system. W. Lee et al.
used game theory to solve the problem of new energy
consumption (Lee et al., 2015). The game strategy was also
used by Wei et al. (2018) to solve the coordinated cyber-
physical attacks problem.

This article starts from the intrusion detection and protection
of price tampering attacks by MITM attackers. A set of defense
strategies is designed based on state estimation and game theory.
The main content of this article has the following aspects:

1) A cumulative error detection strategy based on normal
distribution is designed to detect the price tampering attack
by MITM attackers;

2) Based on the minimum comprehensive cost, a quantitative
model of attack consequences is established which considers
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three demand-side response methods of purchasing power
from the external grid, self-generation, and load shedding
comprehensively;

3) A demand-side defense protection strategy based on game
theory is established. The model uses the intrusion detection
method to deploy defend resources, and sets the demand-
responsive attack consequence quantitative model as the game
target.

2 DEMAND RESPONSE ANALYSIS UNDER
PRICE TAMPING ATTACKS

2.1 Architecture of a User Energy System
On the demand side, prosumers such as residential, commercial,
industrial consumers, have their dispatch centers to monitor their
loads and generations in a User Energy System. These dispatch
centers are managed by User Energy Management System
(UEMS) (Ma L et al., 2016). Among them, residential and
commercial electricity consumption affected by current
electricity price is small and industrial electricity consumption
is often relatively large, due to the difference in production costs
elasticity. For example, residential prosumers have micro power
generation units installed on the user side, such as photovoltaic
and wind power, and can meet part of the power demand on the
demand side through self-generation. The architecture of a User
Energy System is shown in Figure 1.

In this architecture, prosumers can be divided into several
areas for better control. Each area is controlled by a Distributed
Control Unit (DCU), which is responsible for transferring
distributed information. In UEMS, each DCU communicates
with the demand-side control center to achieve measurement

and control of the demand side. The center makes decisions based
on the information uploaded by the DCUs. These DCUs control
the energy transactions of prosumers in the area, generate
electricity prices according to the power consumption and
load type of the corresponding area, and upload them to the
demand-side control center. The demand-side control center can
communicate with the external distribution grid about its
electricity information.

The Electricity price tampering attack scenario based on
MITM attack is simulated in the experiment. MITM attack on
electricity price provide false information to interfere with the
power market. MITM attack secretly changed the
communication mode between UEMS and demand side
control center. It makes the initial connection becomes a new
connection with the intervention of a MITM attacker. Therefore,
the normal tariff transmitted in the original connection will be
replaced by malicious electricity price required by the bidder.
UEMS will no longer purchase and use power resources
according to the normal electricity price. MITM attack mode
is shown in Figure 2.

2.2 Electricity Changes Under Price
Tampering Attacks
When a price tampering attack occurs on the demand side, it will
cause demand changes to the corresponding area. Based on the
price elasticity of electricity demand (PEED) model proposed by
Hu et al. (2008), the electricity consumption change of an area
after the attack can be expressed.

1) Large power consumers consume more variable electricity
such as industrial users, and their electricity prices are higher

FIGURE 1 | User Energy System architecture under cyber attacks.
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than ordinary ones. When the price tampering attack occurs,
due to the influence of production costs, large power
consumers purchase electricity under certain restrictions.
The electricity consumption Da after the price tampering
attack is defined as:

Da � Da0 · p
p′ (1)

where p is the normal electricity price without attack, ¥/kW.
Da0 is the electricity consumption before price tampering
attack, kW. p′ is the false electricity price tampered by the
attacker, ¥/kW.

2) Small power consumers usually consume load relatively
constantly, such as residential and commercial users. They
seldom change their own electricity demand when the
electricity price changes. Suppose their electricity consumption
in a certain area is Db0, it can be considered that the price
tampering attack has no intuitive effect on their electricity
demands, the electricity consumption Db after the price
tampering attack refers to: Db0 � Db.

According to the power consumption changes of these two
types of consumers, the PEED model is used to express the
electricity consumption D of the region after the price tampering
attack:

D � (Da0 +Db0) + E · (Da0 +Db0) · [�p − p′]
p′ (2)

where �p is the benchmark electricity price from the external grid,
the unit is ¥/kW. E is the self-elasticity coefficient of electricity
demand price: E � ((Da0 −Da/Da0)/(�p − p/p)).

To sum up, if the price tampering attack is successful,
the target area has an electricity change ΔD in the total
demand:

ΔD � |D − (Da0 +Db0)| (3)

3 INTRUSION DETECTION OF PRICE
TAMPING ATTACKS

This section studies how to detect price tamping attacks based on
statistical bias and state estimation. Intrusion detection is
essential to determine whether an abnormal event occurs in
the system. It comes down to the problem of distinguishing
between “normal” and “abnormal” states. The existing anomaly
detection methods can be divided into deviation-based detection
and feature-based detection methods according to the
identification basis.

In the actual application process, the detection relying on a
single residual is likely to cause residual pollution and flooding. It
can lead to missed or false detection of abnormal data. So when
there is a lot of abnormal data in the detected data, the correlation
between the data cannot be fully utilized. This detection method
is also powerless to attack multiple nodes at the same time. The
detection accuracy of detection methods based on state
estimation will also be greatly affected.

Aiming at the shortcoming that the detection result is overly
dependent on a single residual, this section studies a cumulative
error detection strategy based on a normal distribution
under tampering attacks. The strategy improves the
detection success rate from the perspective of multi-point
cumulative deviation.

The detection of price tampering attacks is essentially a
state estimation process. Power system state estimation
processing generally analyzes low-precision, incomplete, and
occasionally bad data in power system measurement data, and
outputs high-precision, complete, and reliable data after
processing.

3.1 Basic Theory of Intrusion Detection
Here are general intrusion detection processes of the power
system:

FIGURE 2 | MITM attack mode between DCUs and dispatch center
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1) Establish state estimation functions. The state estimation
equation is: z � h(x) + e, where z � (z1, z2, . . . , zm) is the
measured value vector of the measuring component; h(x) is
nonlinear electricity balance functions; x � (x1, x2, . . . , xn) is
a state vector; e � (e1, e2, . . . , em) is the measurement error
vector.

2) Simplify the state estimation functions. In order to
facilitate calculation, assumptions are as follows: the bus
voltage value is approximately equal to 1; the shunt
component, bus, branch circuit, and reactive power flow can
be ignored. Now, h(x) can be linearized to Hx, where Hm×n is a
constant Jacobian matrix.

3) Modify the state estimation functions. When the price
tamping attack occurs, prosumers response to change the
demand loads, and the measured value vector is modified as
Za � z + a, where z is the true measured value, a �
(a1, a2, . . . , am) is a non-zero attack vector. This will cause the
state vector to change: x̂bad � x̂ + c, where x̂ is the initial state
value, c is the amount of impact of the attack.

Now, the measurement error vector after the price tamping
attack can be obtained:

‖za −Hx̂bad‖2R−1 � ‖z + a −H(x̂ + c)‖2R−1

� ‖z −Hx̂ + a −Hc‖2R−1
(4)

3.2 Cumulative Error Detection Based on
Normal Distribution
Assuming that small independent effects make an additive
contribution to each observation, the measuring datum are
random and have a multivariate normal distribution based on
historical data analysis. So a Bayesian model is established to
describe the true data z as z ∼ N(μ, σ2). When there is a price
tamping attack, some specific measures such as electricity price
and load demands are bound to be changed. The combination of
these measures will cause the state variables to move away from
their true values.

When the attacker knows the defense information of the
defender (layout H and error detection algorithm, etc.), the
covert attack can make a −Hc zero, and the deviation |zi − Zi|
generated by one measurement is not enough to be detected by
the detection system.

When the deviation of all measured values in the vector is
accumulated from the vector, the accumulated deviation will
become prominent. The detection scheme studied in this
section identifies attacks based on cumulative errors, such as
the relationship between electricity changes and abnormal pricing
measures.

Here, a space-based cumulative error detection method based
on hypothesis testing is introduced. The cumulative deviation is
as follows:

∑
n

i�1

(zi′ − Z′)2

σ ′2i
(5)

Here we consider two assumptions: H0 and H1. H0 is a null
hypothesis in which the measured load value is true; H1 is an

assumption that the cyber system has been attacked. These two
assumptions can be described as:

H0: ‖a‖0 � 0
H1: ‖a‖0 > 0 (6)

We assume that measurement vector z′ � (z1′ , z2′ , . . . , zm′)
follows a multivariate Gaussian distribution and zi′ are
independent of each other. It can be expressed as
zi′ ∼ Nm(μi′ , σ i′), i ∈ [1, m]. Here, Z′ is the average vector and
Ξ is a diagonal covariance matrix. Thus,
J(z′) � (z′ − Z′)TΞ−1(z′ − Z′), i.e., J(z′) ∼ χ2(m). Based on
the above, the hypothesis test is given by a threshold τ
corresponding to the load changes. When J(z′)< τ, H0 holds
and the attack is undetected; when J(z′)≥ τ, H1 holds and the
attack is detected.

3.3 Experiment Analysis
An intrusion detection test environment is built to check the
strategy’s effectiveness (Figure 3A). Its equivalent topology is
shown in Figure 3B. In the Test Verification Center of the
Principal Information and Safety Laboratory, the avalanche
application attack test tool, Hessman switches, and Wireshark
packet capture tools are used to test price tamping attacks. The
communication side port connection diagram for the test process
is shown in the Figure 3C.

In the experimental environment, each DCU (using 4 DCUs for
simulation test) is connected to the simulation dispatch center
through a Hessman switch. Simulated packet sending tools are
used to send GOOSE/SV messages to UEMS, which simulates the
normal output and consumption of each area on the demand side.
In each DCU, the price information is collected in the information
link through the packet capture tool and sent to the demand side
control center regularly. In the demand side control center, the
intrusion detection strategy is tested to detect the attacks. Due to
limited resources, 4 DCUs are simulated in a UEMS.

The experiment test steps are as follows:

1) The input and output ports of DCU, UEMS, avalanche
application attack tester, switch, and other devices are
connected according to the communication topology. The
DCUs are connected at all levels to the demand side control
center through the communication equipment switch.
Through the Hessman switch, the analog demand side
control center and the switch connection port are assigned
to VLAN100. Configure the DCU and switch connection
ports at all levels as TRUNK ports.

2) Connect the avalanche application attack tester to the switch,
and connect the port to VLAN200. Perform corresponding
price tampering attacks to the DCU through the switch using
MITM attack mode.

3) DCU sends the compound information message with a digital
signature to the demand side control center, and the analog
side control center detection unit uses the proposed intrusion
strategies to judge whether the price tampering attack occurs.

4) Repeat the test to obtain the detection success rate under
different price tampering attacks.
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In order to reflect the superiority of the intrusion detection
strategy, a horizontal comparison is carried out. The detection
results of traditional single-point detection, non-parametric

cumulative detection, and cumulative error detection strategies
under the same attack scheme and threshold are analyzed.

The relevant parameters of the experiment 1 are set as follows:

FIGURE 3 | Experimental environment. (A) Attack test platform. (B) Intrusion detection test environment. (C) The communication topology with 4 DCUs.

FIGURE 4 | Line chart. (A) comparison results of three detection methods. (B) The relationship between detection success rate and τ.
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1) Set the current market electricity price to 100 ¥/kW.
2) Set the attack method as follows: DCU1 price is tampered with

80% of the original electricity price, DCU2 price is tampered
with 60% of the original electricity price, DCU3 price is
tampered with the original electricity price of 100%, and
DCU4 electricity price is tampered with the original
electricity price of 100%.

3) Set the threshold as follows: τ � 40;
4) Set the number of simulations from1 to 100, and the statistics

node from 1 to 10.

The detection success rate obtained by simulation is shown in
Figure 4A. The abscissa shows the number of detections. The
ordinate is the detection success rate. 100 trials are conducted and
the detection success rate is the ratio of successful intrusion
detection number in the total number of tests. During the test, the
detection success rate varies with the number of tests. This is due
to errors (such as communication data packet loss and
communication delay) that may occur during the test. From
the overall trend, the cumulative error detection mentioned can
achieve a detection success rate of more than 76%, the cumulative
detection success rate (73% in 100 trials), and the single-point
detection success rate (66% in 100 trials). It can be seen that the
detection success rate is sorted according to size: cumulative error
detection success rate > non-parametric cumulative detection
success rate > single point detection success rate.

The relationship between detection success rate and the
threshold τ is shown in Figure 4B. The abscissa shows the
logarithmic function lg(τ/10) of the threshold τ. Different
threshold values of 20, 40, 80, . . . 2,560 are chosen for tests.
When τ ≤80, the detection success rate reaches the maximum and
will not increase. When τ > 80, the detection success rate
gradually decreases with the increment of the threshold value,
the sensitivity of the algorithm becomes insufficient, and some
price tampering attacks are missed from detection. When τ >
1,280, the detection success rate is less than 50%.

To examine the detection success of the defense strategy
against different attack methods, experiment 2 first analyzed
the detection success of the strategy when attacking different
regions with the same amount of price tampering attack, Table 1.
The parameters for experiment 2 are set as follows.

1) Set the current market electricity price to 100 ¥/kW.
2) Based on the principle of random combination, set the

following 14 attack methods when the electricity price

tampering amount is 80% of the original price in an attack
scenario containing four target areas.

3) Set the threshold values as follows: τ �40
4) Set the number of simulations to 100.

The detection success rate obtained from the simulation is
shown in Figure 5.

The horizontal coordinates of Figure 6 represent the 14 attack
methods and the vertical coordinates represent the detection
success rate. From the experimental results, it can be
concluded that the detection success rate is higher when the
tariff tampering attack attacks more DCUs, indicating that the
proposed strategy is more effective in detecting tariff tampering
attacks when they occur in more areas.

4DEFENSESTRATEGYBASEDONATTACK
CONSEQUENCES
4.1 Demand-Side Response Model With
Allocation Coefficient
4.1.1 Power Purchase Cost Model From the Power
Grid
If the price tamping attack occurs, the demand-side prosumers
respond to load shedding and power purchase from the power
grid. For the regional control center, the purchasing power should
satisfy the load demand in the current time period.

According to the demand-side response model, the demand-
side power demand has changed under the price tampering
attack. At this time, the power demand side must take certain
measures to repair or restore the energy balance on the
demand side.

In the area k ,the power purchase cost CA,k spent by the power
purchaser can be expressed as follows (Wu et al., 2002):

CA,k � λk · dbuy,k · pA,k

s.t. λk · dbuy,k ≤ qA,k
(7)

where λk represents the proportion of electricity provided by the
electricity seller in total demand. pA,k represents the power
purchase price in the electricity spot market. dbuy,k is used to
indicate the total power demand of prosumers in the area k. qA,k
represents the spot stock of the electricity seller.

4.1.2 Self-Generation Cost Model
In addition to spot price trading with the power grid, there are
also ways to purchase electricity by self-generated energy
resources. The internal energy system belongs to the user side,
and its power generation cost is the prosumer’s electricity cost. In
the area k, the power generation cost function of the internal
energy system CB,k can be expressed using a quadratic function:

CB,k � ak · (ck · dbuy,k)
2 + bk · ck · dbuy,k + ck

s.t.ck · dbuy,k ≤ qB,k
(8)

where qB,k represents the amount of electricity generated by the
internal energy system. ak, bk, ck is the cost factor for power
generation. ck indicates the ratio of the internal energy system’s

TABLE 1 | Price tampering attack methods.

Mode of attack Target of attack Mode of attack Target of attack

1 DCU1 8 DCU2,3
2 DCU2 9 DCU2,4
3 DCU3 10 DCU3,4
4 DCU4 11 DCU1,2,3
5 DCU1,2 12 DCU1,2,4
6 DCU1,3 13 DCU1,3,4
7 DCU1,4 14 DCU2,3,4
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electricity power in the total power generation. Refer to Wang
and Li. (2010), the power supply of this type is affected by user
investment, so the value ck is generally 5–20%.

In this section, two types of power purchase methods are
considered: spot transactions with the power grid, and power
purchase in internal energy system power generation. Therefore,
the following constraint exists:

λk + ck � 1 (9)

4.1.3 Load Shedding Cost Model
If the price tampering attack consequences are serious, the
purchase of electricity may not fully balance the power loss
load. At this time, in order to meet the demand-side power
supply balance, load shedding is required in an urgent state.
Following principles need to be met during load shedding: cut off
from the end to the source, give priority to protecting important
loads, and ensure normal area power supply.

According to the principle of load shedding, loads in different
areas have different importance. αk is used to indicate the relative
importance of load in the area k (Kucuk. 2018). The larger the
value αk is, the load in the area is more important, and the load
shedding loss is greater. In the process of load shedding, the area
load with low αk is preferentially removed.

Load shedding cost is introduced to quantify the loss caused by
load removal. It is related to many factors, such as user type,
advance notice time, power outage duration, power outage
occurrence time, and power shortage rate. The cost value
affected by these factors is usually obtained by user survey,
and its calculation method has been specifically analyzed by
Ren et al. (2006). The load shedding cost CC,k is as follow:

CC,k � αk · uk · dload−off ,k (10)

where uk is the load cost, the unit is ¥/kW, and its element
represents the cost of the independent load of the corresponding
area k, dload−of f ,k represents the load reduction amount in the area
k, the unit is kW.

4.1.4 Integrated Defense Cost Model
In the power defense architecture, two types of power suppliers
are considered: internal self-generation energy resource and

FIGURE 5 | Experimental results for different tampering attacks.

FIGURE 6 | The attack and defensive strategies flow chart.
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external power grid under the price tampering attack. This
means that two different types of electricity sellers need to be
considered comprehensively when purchasing electricity. In
addition, considering serious attack consequences, some areas
may not be able to restore power supply balance through the
purchase of electricity. At this time, it is urgent to consider
cutting off the loads. To avoid further losses and restore power
supply balance as quickly as possible, the system administrator
needs to make a trade-off among power purchase, internal
energy supply, and load shedding operation.

Load shedding is a serious consequence of a tampering attack
on electricity prices. If an area is not directly connected to the
external power grid after the attack, it cannot purchase the
power supply and restore the loss loads. Although the power
purchase scheme could meet the short-term power supply
balance promptly, purchasing electricity is a tampered
electricity price. The electricity price paid is higher than the
normal electricity price, the power purchase cost becomes
higher than before. Thus the hidden loss may have an impact
in a longer period. At this time, a load loss weight coefficient
βk ∈ [0, 1] is introduced to represent the ratio of load shedding
in operation methods.

For the area k(k � 1, 2, . . . , K), the integrated regional
defense cost CI,k under the price tampering attack is:

CI,k � CA,k + CB,k + CC,k (11)

To reduce the defense cost, the demand-side emergency
defense cost minimization function after the price tampering
attack is as follows:

minC � ∑
K

k�1
CI,k � ∑

K

k�1

λk · dbuy,k · pA,k + ak · (ck · dbuy,k)
2

+bk · ck · dbuy,k + ck + αk · uk · dload−off ,k
s.t.λk · dbuy,k ≤ qA,k
ck · dbuy,k ≤ qB,k
λκ + ck � 1
dbuy,k � (1 − βk) · ΔDk

dload−off ,k � βk · ΔDk
(12)

The Eq. 12 can be transformed as:

minC� ∑
K

k�1
CI,k � ∑

K

k�1
(1−ck) ·(1−βk) ·ΔDk ·pA,k +ak ·(ck ·(1−βk) ·ΔDk)2

+bk ·ck ·(1−βk) ·ΔDk + ck +αk ·uk ·βk ·ΔDk

s.t.0≤(1−ck) ·(1−βk) ·ΔDk≤qA,k
0≤ck ·(1−βk) ·ΔDk≤qB,k (13)

4.2 Demand-Side Defense Strategy Based
on Game Theory
4.2.1 Game Elements Design
The interactive process between the cyber attacker and the
grid defender is a game process. The grid defender often
doesn’t know the attacker’s offensive strategy, and there is no
partnership between the attacker and the defender. Therefore,
it is a non-cooperative game process based on incomplete
information, which can be represented by a four-tuple:
Θ � {A,D,WA,WD}. The attacker and the defender are the
players in the game. where A � {a1, a2, . . . , am, . . . , aM}

indicates the attacker’s offensive strategy space, where am
indicates the mth attack mode, m � 1, 2, . . .M; D �
{d1, d2, . . . , dn, . . . , dN} indicates the defender’s defensive
strategy space, where dn indicates the nth defense mode,
n � 1, 2, . . .N; WA � [WA(a, d)], a ∈ A, d ∈ D indicates the
attacker’s expected benefit function under the offensive
strategy a and the defensive strategy d; WD �
[WD(a, d)], a ∈ A, d ∈ D indicates the defender’s expected
benefit function under the offensive strategy a and the
defensive strategy d.

Since it is a non-cooperative zero-sum game process, the sum
of the gains of both attackers and defenders is zero. If the
attacker’s gain function Wa � minC is set to a positive value,
the defender’s gain function Wd is a negative value: Wd �
−minC.

4.2.2 Analysis of the Non-cooperative Game Process
During the non-cooperative zero-sum game process, the attacker
and the defender revolve around the reward function and adjust
their strategies to obtain the maximum benefit. When both side
players are at an equilibrium point, neither can adjust the strategy
to obtain higher returns, thus the players have reached the
equilibrium point, which is called the Nash equilibrium point.

In the price tampering attack, due to the low cost of attack and
the universality of the attackmodes, the attacker often has enough
attack resources and can choose different attack modes. On the
contrary, on the defense side, since the potential attack is
unknown and the cost of defense resources is high, it is
impossible to defend every link in each area. The specific
game process is listed as follows:

Step 1: Determine the attacker’s offensive strategy space A
including the offensive mode am and its resources. Determine the
defender’s defensive strategy space D including the defensive
mode dn and its resources. According to the offensive strategy
space A and the defensive strategy space D, the total number of
game rounds R (1≤R≤NA ×ND) is estimated, and the initial
value of the round number r is set to 1.

Step 2: In the rth round, the attacker determines the current
offensive strategy am, finds the optimal attack target area to
obtain high returns, and calculates current revenue Wa;

Step 3: In the rth round, the defender determines a possible
attacked area by the intrusion detection strategy. The defender
finds the optimal defense target by minimizing the integrated
emergency defense cost on the demand side. The defender’s gain
function Wd is calculated under the attack mode.

Step 4: Determine whether the round number r reaches the
preset total number of rounds R. If not, the Nash equilibrium
point (Ap, Dp) is solved according to the zero-sum game theory,
the attack strategy is selected against the price tamping attack.
Then, the algorithm updates r to r + 1, and returns to step 2. If it is
reached, the game process ends. The offensive and defensive
game flow chart is shown in Figure 6.

In the game process, the attacker and the defender adjust their
strategiesn in order to obtain the maximum income. When the
two sides are at an equilibrium point, neither of them can obtain
higher returns by adjusting strategies. When two sides reach an
equilibrium state, the Nash equilibrium point is (Ap, Dp).
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5 DEFENSE SIMULATION AND CASE
STUDY

5.1 Simulation Case
In this section, an improved IEEE-33 node distribution system
(Meng et al., 2015) is used to verify the effectiveness of the
proposed game model. As shown in Figure 7, the IEEE-33 node
distribution system is divided into 4 areas. Each area contains a
DCU, which is deployed on nodes 1, 2, 5, 25. The load is divided
into the industrial, residential, and commercial load. Detailed
load demand before attacks is shown in Table 2.

The distribution system sets normal electricity price p �
100 ¥/kW, �p � 98 ¥/kW, u � 200 ¥/kW. The value ranges of 4
areas are: c1 ∈ [5%, 10%], c2 ∈ [5%, 14%], c3 ∈ [5%, 16%],
c4 ∈ [5%, 20%]. The power generation cost coefficient of

each area is shown in Table 3, where a, b, c is the cost factor
for power generation.

Refer to Table 2, Da0 is the load before the price tampering
attack of the industrial load; Db0 is the load before the price
tampering attack of the residential/commercial load.
According different load ratios in each area, the
importance of 4 regions are f1 � 0.9690, f2 � 0.4953, f3 �
0.2476, and f4 � 0.6110. When the threshold is set as, the
detection result is better than others. When τ � 20, the
detection success rate is 83.0% for areas where detection
and defense resources are deployed.

5.2 The Load Change Analysis
In the scenario analysis, the attacker modifies the electricity price
to 80% of the normal electricity price to discuss the optimal
defense strategy pair. In 4 attack target areas, assuming that the
number of attack target areas is not greater than 3, there are 14
selectable offensive strategy combinations.

The load changes ΔD under various price tampering attack
modes are calculated as shown in Table 4. It shows the variation
of load under various offensive strategies. The offensive strategy
that causes the largest load change is a14, which is 534.5 kW, and
the strategy that causes the smallest load change is a1, which is
27 kW. At the same time, it can be obtained that attacking more
areas often causes more load changes than attacking a single area.
Compared to the attack modes of single target areas, a1, a2, a3,
and a4, it shows that attack on area 2 causes a greater change in
load than the attack on other areas.

5.3 Optimal ck、βk Value Calculation
According to different load changes ΔD in 14 attack modes, the
defenders can calculate optimal ck、βk to determine the ratio of

FIGURE 7 | The improved IEEE-33 node distribution system with 4 areas.

TABLE 2 | IEEE-33 node distribution system parameter value.

Industrial load Residential/Commercial load

Node Node
active load Da0/kW

Node Node
active load Db0/kW

1 100 0 0
3 120 2 90
6 200 4 60
7 200 5 60
13 120 8 60
23 420 9 60
24 420 10 45
28 120 11 60
29 200 12 60
30 150 14 60
31 210 15 60
— — 16 60
— — 17 90
— — 18 90
— — 19 90
— — 20 90
— — 21 90
— — 22 90
— — 25 60
— — 26 60
— — 27 60
— — 32 60

TABLE 3 | Power generation cost coefficient.

Area number A (¥/kW2) B(¥/kW) C (¥)

1 213 9.4523 0.003256
2 256 8.2245 0.002457
3 312 6.9443 0.005365
4 256 9.2512 0.004682
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power purchase and load shedding. Based on the quantitative
model, the optimal values of ck、βk are calculated iteratively
by particle swarm optimization algorithm as shown in
Table 5.

In Table 5, cp1, c
p
2 , c

p
3, c

p
4 are the optimal proportion of

electricity provided by the electricity seller; βp1, β
p
2, β

p
3, β

p
4 are the

optimal loss weight coefficient of 4 areas. For the attack target
area k, ck tends to its maximum value when the cost function
takes the minimum value. This is because, under current
parameters, the cost of self-generated electricity is much
smaller than the cost of purchasing electricity from the
external grid. The prosumers tend to use self-generated

electricity than purchase electricity outside. ck is chosen to its
maximum value, which is consistent with the policy of
preferential consumption of self-generated electricity. It also
shows that although the attack target area k is changed, the
optimal values ck 、 βk for the attacked area don’t change under
different attack modes.

5.4 Attack Loss Quantification
Under various attack modes, the electricity purchased from the
external grid, self-generated power, and load-shedding capacity
can be obtained, as shown in Figure 8A. The attack loss results
can be further quantified as shown in Figure 8B.

In Figure 8B, the abscissa is the attack mode and the ordinate
is the quantized loss value under attack. This illustration shows
that attack method a14 causes the largest loss value of 898000¥;
the attack mode a2 causes the smallest loss value of 86000¥.

In general, the loss value caused by the attackmodes withmore
target areas is greater than that with fewer target areas. The
overall loss value with three areas (attack modes a11-a14) as the
attack target is greater than that of targeting two areas (attack
modes a5-a10). The overall loss value of targeting two areas
(attack modes a5-a10) is greater than that of targeting a single
area (attack modes a1-a4).

5.5 Game Result Analysis
To reflect the defense deploy verification with limited defense
resources, the deployment area of the intrusion detection strategy
has been limited to less than or equal to 2, so there are currently
10 methods to deploy intrusion detecting equipment, as shown in
Figure 9. In 4 attack target areas, 14 selectable offensive strategy

TABLE 4 | The load changes under various attack modes.

Attack mode Attack area ΔD(kW) Attack mode Attack area ΔD(kW)

a1 Area1 27 a8 Area 2, 3 412.5
a2 Area 2 244 a9 Area 2, 4 375
a3 Area 3 167 a10 Area 3, 4 275
a4 Area 4 131 a11 Area 1, 2, 3 437
a5 Area 1, 2 270 a12 Area 1, 2, 4 400
a6 Area 1, 3 194 a13 Area 1, 3, 4 321.5
a7 Area 1, 4 158 a14 Area 2, 3, 4 543.5

TABLE 5 | Optimal values under different attack modes.

Attack
mode

cp1 cp2 cp3 cp4 βp1 βp2 βp3 βp4

a1 0.10 — — — 0.32 — — —

a2 — 0.14 — — — 0.25 — —

a3 — — 0.16 — — — 0.28 —

a4 — — — 0.20 — — — 0.26
a5 0.10 0.14 — — 0.32 0.25 — —

a6 0.10 — 0.16 — 0.32 — 0.28 —

a7 0.10 — — 0.20 0.32 — — 0.26
a8 — 0.14 0.16 — — 0.25 0.28 —

a9 — 0.14 — 0.20 — 0.25 — 0.26
a10 — — 0.16 0.20 — — 0.28 0.26
a11 0.10 0.14 0.16 — 0.32 0.25 0.28 —

a12 0.10 0.14 — 0.20 0.32 0.25 — 0.26
a13 0.10 — 0.16 0.20 0.32 — 0.28 0.26
a14 — 0.14 0.16 0.20 — 0.25 0.28 0.26

FIGURE 8 | (A) Purchase of electricity, self-generated power, and load shedding under different attack modes. (B) Quantification of attack consequences.
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combinations have been mentioned before, so the total number of
game rounds is R � 14 * 10 � 140.

According to the offensive strategy space and defense
strategy space, the Nash equilibrium points under various

attacks are obtained as shown in Table 6. The intersection of
the offensive strategy and the defense strategy (green block) in
Table 6 is the Nash equilibrium point under various
attack modes.

FIGURE 9 | Different deployment methods.

TABLE 6 | Nash equilibrium point under various attack modes.

Attack
mode

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

Defense
strategy

d1 — — — — — — — — — — — — —

d2 — — — — — — — — — — — — —

d3 — — — — — — — — — — — — —

d4 — — — — — — — — — — — — —

d5 — — — — — — — — — — — —

d6 — — — — — — — — — — — —

d7 — — — — — — — — — — — — —

d8 — — — — — — — — — — — — —

d9 — — — — — — — — — — — —

d10 — — — — — — — — — — — —

FIGURE 10 | (A) Comparison of losses before and after the game defense. (B) Loss value of different defense strategies under attack mode a13.

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 76326012

Fu et al. Comprehensive Game Theoretical Defense Strategy

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


It can be found that under the condition that the offensive
resources and the defense resources have sufficient configuration,
the Nash equilibrium point will appear in the place where the
attack target and the defense target are consistent, namely (a1,
d1), (a2, d2), (a3, d3), (a4, d4), (a5, d5), (a6, d6), (a7, d7), (a8, d8),
(a9, d9), (a10, d10). It matches the actual deployment situation. In
the case of insufficient defense resources, the Nash equilibrium
points are (a11, d5), (a12, d9), (a13, d6), (a14, d10). The optimal
defense strategy is not matched the actual deployment situation.

Considering 14 attack modes, the comparison of the loss value
with optimal defense strategy and without defense strategy are
shown in Figure 10A. For attack mode a1 to attack mode a14, the
loss values decreased by 61.4, 37.6, 56.3, 46.5, 73.2, 56.0, 22.8,
36.2, 56.8, 31.5, 52.1, 45.2, 57.2, 31.7%. The results show that the
optimal defense protection strategy can significantly reduce the
losses caused by attacks.

Taking attack mode a13 as an example, the loss value of
different defense strategies under 10 attack modes is shown in
Figure 10B. The abscissa represents the defense strategy, and the
ordinate represents the loss value under the current attack mode
and defense strategy. It can be seen that the defense strategy d6
has the best defense result and the loss value is 345500¥. On the
contrary, the defense strategy d2 has the worst defense result,
even if it has no defense result. In summary, Nash equilibrium
point (a13, d6) has the best deployment and defense strategy.

6 CONCLUSION

In this paper, a set of intrusion detection and defense strategies is
designed. The conclusions are as follows:

1) A space-based cumulative intrusion detection method is
proposed under the price tampering attack. The cumulative
deviation detection strategy can not only detect the measured
value of onemeasurement point based on normal distribution,
but also detect the shortcomings of the subtle tampering of the
target area. The experiment tests verified the superiority of the
strategy. The detection success rate has been increased by 14%
compared with the traditional detection strategy and by 3%

compared with the non-parametric cumulative detection
strategy.

2) A quantitative model of attack consequences is established to
minimize the integrated defense cost. The model quantifies
the changes in electricity caused by price tampering attacks,
comprehensively considering three demand-side response
methods of purchasing external grid, self-generation, and
load shedding.

3) A demand-side defense strategy is established based on non-
cooperative game theory. It deploys the defense resource using
intrusion detection strategy, and takes the quantitativemodel of
attack consequences as the game target. Taking into account
the limited nature of defense resources, the Nash equilibrium
point is solved to generate defense decisions. In the distribution
system simulations, the Nash equilibrium point is solved under
various attack strategies and a reference for defense matching
is provided. The results show that the proposed defense
protection strategy has certain effectiveness.
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