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Power systems are crucial for low-carbon energy applications. Condition maintenance
plays a vital role in reducing the maintenance cost of renewable power systems without
sacrificing system reliability. This paper proposes a hybrid method to effectively deal with
the operational changes and uncertainties of state maintenance within the power system of
renewable energy applications. Specifically, a multi-objective evolutionary algorithm is first
adopted to maintain key components when only considering system variables and overall
performance. During operation, numerous variations in offshore substations are detected
from power grids and other equipment, such as continuous aging, weather, load factors,
measurement, and human-judgment factors. Then, the advisor implements a system
optimization maintenance plan in the substation, which can predict changes in load
reliability based on the type 2 fuzzy logic and hidden Markov model technology. The
reliability of the load point of each substation would also be obtained. Illustrative results
indicate that these serious deteriorations would cause substation for the re-optimization
maintenance and optimization activities to meet expected reliability. Through connecting
an offshore substation to a medium-sized offshore substation, the uncertainties in
condition-based maintenance of renewable energy applications can be well handled.

Keywords: renewable energy, power system, offshore substation, multi-objective evolutionary algorithm, type 2
fuzzy logic, minimum cut set

INTRODUCTION

A reasonable state maintenance solution is crucial for extending the service life of a power system in
renewable energy applications. However, due to the lack of data updates, uncertainties in the
reliability of power system components generally exist (Mohanta et al., 2004). Therefore, in order to
make continuous monitoring more convenient, more powerful tools are required to deal with these
uncertainties (Mechefske and Wang, 2003; Lu et al., 2007; Strachan et al., 2007; Wang et al., 2008).
Reliability analysis is an important part of condition maintenance (Endrenyi et al., 2001). When the
condition changes, it is often difficult to obtain accurate reliability indicators by using traditional
reliability analysis methods due to the uncertainties inside and outside equipment. Zadeh (1965)
utilized the fuzzy set theory to represent and process inaccurate information, and to generate correct
decisions by using approximate information, further imitating human reasoning under uncertain
conditions. This method is called the type 1 fuzzy logic, which has been successfully applied in many
application fields (Chang et al., 1997; Mendel, 2001; Tan and Kamal, 2006). In order to analyze the
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uncertainty of power system maintenance, the type 1 fuzzy logic
has been adopted (Suresh et al., 1994; Tanrioven et al., 2004;
Mohanta et al., 2005; Khanlari et al., 2008) to estimate the
consistency of reliability measures. The fuzzy Markov model is
used to describe the transition rates, and the fuzzy mean time to
failure and fuzzy mean time to repair could be adopted to deal
with the uncertainty related to the generating units (Tanrioven
et al., 2004; Mohanta et al., 2005). Then, the type 2 fuzzy logic is
further proposed by Zadeh (1975), which presents greater design
freedom and success rate than type 1 fuzzy sets in dealing with
uncertainties (Zadeh, 1975; Uncu and Türks, 2007; Hwang and
Rhee, 2007; Mendel et al., 2006; Noor and McDonald, 1996).

Besides, as another powerful tool, the hidden Markov model
has been widely used in many applications such as system
monitoring, partial discharge, image classification, and fuzzy
spatial pattern processing (Satish and Gururaj, 1993; IEEE
APM Subcommittee, 1999; Li et al., 2000; Xu and Ge, 2004;
Popescu et al., 2006). Through combining the type 2 fuzzy logic
learning analysis system with the hidden Markov model, this
paper proposes a hybrid method of using the type 2 fuzzy hidden
Markov model to analyze the reliability indicators of the offshore
power systems (Anders et al., 1990; Grall et al., 2002; Papoulis and
UnnikrishnaPillai, 2002; Yang et al., 2008). In the previous work,
the maintenance optimizer is proposed by formulating the best
maintenance plan to achieve the suitable balance between grid
reliability and cost, further providing a self-contained system for
offshore substations based on the maintenance consultant
(Billinton et al., 1985; Endrenyi et al., 1998; Garibaldi et al.,
2005; Garibaldi and Jaroszewski, 2008; Wang et al., 2009). In this
study, the previous work is extended by linking the uncertain type
2 fuzzy intelligent maintenance consultant with the system
maintenance optimizer, as shown in Figure 1. Specifically, the
maintenance advisor receives the updated maintenance plan from
the system maintenance optimizer, which considers the
optimization of maintenance activities from two aspects of
main system variables and the overall system performance.
During operation, the offshore substation will be affected by
many factors and produce uncertainty, such as the continuous
aging of components, weather, load, measurement, and human
subjective judgment. The variations of reliability parameters
caused by the operational changes and uncertainties of key

components would be sent to the maintenance optimizer.
Then, the reliability of the load point will be evaluated, and
any variations in the substation can be reported to re-optimize the
maintenance activities of the substation for meeting the expected
reliability during operation. To achieve reliability modeling of
operational changes and uncertainties in offshore substation
condition maintenance, type 2 fuzzy logic is adopted here.

RELIABILITY MODELS IN SYSTEM
MAINTENANCE OPTIMIZER
Hidden Markov Model for Individual
Component
Figure 2 outlines the type 2 fuzzy hidden Markov model for
individual offshore power equipment. Di, i � 1, 2, . . . n. D1

denotes the “as good as new” state, D2, D3,. . ., Dn are the
states with different levels of deteriorations, and Df is the
failed state. The transition rates among different states form
the matrix Λ.

Different from the regular Markov model, the state Di is
invisible, but the output Oi depending onDi is visible. Therefore,
the hidden Markov model can be assumed as a regular Markov
model with unobserved states. The visible output sequence
provides some information about possible invisible states. In
the hidden Markov model (Equation 1), the difference ΔΛ(T)
between the transition matrix of the invisible state Di and the
transition matrix of the observed state Oi can express the change
and uncertainty of the operation as

ΔΛ(t) � fT2(C(t)) (1),

where C(t) is the operating condition of a single component in
the time interval t and fT2 represents the mapping function from
C(t) to ΔΛ(t).

C(t) is designed for each type of component, and its
combination will seriously affect the reliability of components.
In this work, C(t) trf represents the operation condition of the
transformer, including life, load, previous maintenance time, and
working environment. C(t) cb is the operating condition of the
circuit breaker, including the previous maintenance life and time.

FIGURE 1 | Adaptive condition-based maintenance scheme for the
offshore substation.

FIGURE 2 | Type 2 fuzzy hidden Markov model.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7623602

Xiang et al. Power System Maintenance Solution

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The operational variables of C(t) are mapped with each other
by fuzzy language rules. Once the rules are established, the
fuzzy system can be regarded as a mapping function fT2 from
input to output. Fuzzy language rules are derived from expert
knowledge and mathematical strategies (Mendel, 2001; Zadeh,
1975; Mendel et al., 2006). Therefore, Equation 2 can be used
to obtain the transfer matrix of Di, and then the reliability
index, mean time to failure (MTTF), and failure probability of a
single component can be calculated according to the standard
steps of the Markov model (Papoulis and UnnikrishnaPillai,
2002):

ΛD(t) � ΛO(t) + ΔΛ(t). (2)

System-Specific Model
The configuration of the power system with suitable protection
solutions would directly affect the reliability of related renewable
energy systems. In this study, the minimum cut set method is
used to analyze the impact of configuration on system reliability.
According to the definition, the minimal cut set belongs to a
group of irreducible components whose failure could definitely
lead to system failure. The method from Yang et al. (2008) has
been applied to the reliability estimation of complex systems,
which cannot be simplified to a simple configuration.

From the perspective of reliability, the reliability of a system
can be expressed as the block diagram of the minimum cut set
that causes system failure, as shown in Figure 3. Here, Fmn

represents the fault n in the minimum cut set m. As can be
seen from Figure 3, all faults within a minimum cut set can be
regarded as parallel, and all minimum cut sets are in series.
Therefore, the reliability of the system can be easily evaluated
according to the rules for a simple configuration.

It should be noted that the failure modes include the first-
order fault events, second-order passive fault, and main
protection fault. In a substation with multiple loads, each load
will be assigned a different priority to ensure that the load can be
transferred to a more important load first. After meeting the
higher priority load requirements, the excess load will be
transferred to other loads.

The unavailable energy E within the power system can be
calculated in the following way:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Di � ∑
M

j�1
Dij,

E � ∑p
i�1

Ei•Di,

(3)

where Dij represents the duration of the minimum cut set j of
load point i and Di is the failure duration of load point i.

INTELLIGENT MAINTENANCE ADVISOR
WITH TYPE 2 FUZZY LOGIC SYSTEM
General Scheme of Quadratic Uncertain
Variant Type 2 Fuzzy Logic System
In a fuzzy logic system, the rule-based expert system can capture
the overall impact of uncertainty on reliability, and the method of
spreading uncertainty between rules is very important for the
reasoning engine and is accomplished by the experts who are well
acquainted with the operational characteristics of power systems.
The input and output of the fuzzy logic system can be combined
by experts using the “if-then” rule given by the fuzzy reasoning
engine to obtain fuzzy output. Then, the output is defuzzified to
get a clear value.

The format of the rule is as follows: If the input is [(the
working environment is good) and (the load factor is low), and
(the time from previous maintenance is short) and (the
equipment age is old)], then the output is [(the transition
rates will be decreased by a related percentage value)].

We take an example to show how this fuzzy logic works. A
transformer with the operation hours less than 8,760*16 h is
considered “young,” while the one with operation hours between
8,760*12 and 8,760*40 is considered “middle-aged.” Therefore, a
transformer with the operation hours of 8,760*14 is considered
both “young” and “middle-aged” with different levels of
confidence. And this particular component is more reliable
because of its slower deterioration rate than the older ones if
the other operational variations are the same.

Unlike type 1 fuzzy sets with a single membership value, type 2
fuzzy sets are specially designed to deal with secondary
uncertainties by introducing a membership value range
associated with each value of the main variable. However, due
to the significant increase of computational complexity, their
implementations are limited.

In this study, a simpler method to realize type 2 fuzzy logic is
proposed, that is, type 2 fuzzy logic system with quadratic
uncertainty change. Secondary uncertainties are captured by
initializing a set of primary membership functions. As shown
in Figure 4, for a specific value, the membership function takes
the value at the position where it intersects the vertical line. As a
result, there are a certain range of membership values at
x � x’(xϵX), and each value is given by a specific membership
function. The selection of main membership functions is
determined by the rules, and the format is as follows:

If the input is secondary uncertainty and Y is B4 (Figure 4B),
THEN the output is a primary membership function and the
choice is A4 (Figure 4A).

With these rules, the number of primary membership
functions for each primary linguistic variable equals the
number of linguistic variables of its associated secondary
uncertainty. As shown in Figure 4, five primary membership
functions correspond to the five linguistic variables for secondary
uncertainty, respectively.

FIGURE 3 | Block diagram of minimum cut sets.
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Membership functions are required for secondary uncertainty,
which is the third dimension of type 2 fuzzy logic. In addition, the
domain of the secondary membership functions at input x’ is
determined by the range of amplitudes of primary memberships
u(x’), (0<Ulow(x’)<U(x’)<Uupp(x’)< 1), which is depicted in
Figure 4.

Although many factors affect reliability, this study mainly
focuses on the effects of component aging, load, and different
maintenance strategies for individual components, which are
“primary variables.” The “primary variables” are taken as
input to this type 2 fuzzy logic system. The uncertainty in the
primary variables is “primary uncertainty.” Besides, additional
uncertainty of variations is treated as “secondary uncertainty.”
Taking one of the primary variables, time from previous
maintenance, as an example, the secondary uncertainty comes
from different maintenance extent (minor, medium, and major
maintenance).

Figure 5 is a schematic diagram of the type 2 fuzzy logic
system of the second uncertainty change. As shown in Figure 5,
the implementation of the fuzzy logic system includes two steps:
1) the choice of primary membership functions and 2) mapping
the primary input to output. For example, if the input time from
previous maintenance is “short” and the previous maintenance is
“secondary maintenance,” the primary membership function is

first selected and then sent to fuzzier 1. After that, information 1
will map this primary input to an output based on Rule 1. If we
want to consider more operation changes, we can combine their
influences by more fuzzy inputs and modify the fuzzy inference
engine.

Figures 6, 7 show the membership functions of type 2 fuzzy
logic systems for transformers and circuit breakers, respectively.
The uncertainty caused by various operation changes will affect
the reliability of transformers and circuit breakers (annual MTTF
and annual failure probability). Table 1 lists the major and minor
uncertainties of operational changes.

Generally, the reliability of the transformer will decrease with
the aging of insulation. The discourse range of each fuzzy variable
is quantified as many overlapping fuzzy sets. These variables are
called linguistic variables, as shown in Figure 6(a-1), and are
represented by Gaussian membership functions. For the fuzzy
variable “insulation age,” the discourse range is the service life of
the transformer about 50 years, which is quantified into three
linguistic variables, namely, “young,” “middle-aged,” and “old.”
Similarly, the age-specific secondary uncertainty (component
condition) is quantified as three linguistic variables, namely,
“good,” “normal,” and “poor.” For the “young” transformer, if
its state is “good,” the membership degree of “young” is higher
than that of “bad” state at the same age, so the reliability is higher.
The increase of load will reduce the reliability of the transformer.
Therefore, as shown in Figure 6(a-2), the other major variable
“load” is quantified into three variables, “light,” “medium,” and
“heavy.” There is no quadratic uncertainty associated with this
variable.

The reliability of the transformer will decrease with the
increase of previous maintenance time. Figure 6(a-3) shows
the third major variable “time of previous maintenance,”
which is quantified as three variables: "short,” “normal,” and
“long.” In addition, compared with small-scale maintenance, the
improvement of reliability is more significant in large-scale
maintenance. Therefore, the influence of maintenance degree
is a secondary uncertainty, which is represented by the Gaussian
membership function.

The reliability of the transformer is also affected by the
working environment as the fourth main variable. As shown
in Figure 6(a-4), the “working environment” is quantified into

FIGURE 4 | Secondary-uncertainty–varying membership functions (A) and further illustration (B).

FIGURE 5 | Schematic diagram of the secondary-uncertainty–varying
type 2 fuzzy logic system.
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three variables: "fine,” “normal,” and “adverse.” For offshore
power plants, ambient temperature is one of the most important
factors. Therefore, weather is selected as the factor to bring the
secondary uncertainty into the operating environment. The
membership function of weather is also shown in Figure 6(a-4).

The reliability output of the transformer and the change
percentage of the transition rate of Markov model (ΔΛ(t)) are
quantified into five variables, namely, “MS,” “SS,” “UC,” “SL,” and

“ML,” as shown in Figure 6B. “MS” means much smaller, “SS”
means smaller, “UC” means unchanged, “SL” means larger, and
“ML” means much larger. The smaller the transition rate, the
higher the reliability. Using Equation 2, a transition matrix

FIGURE 6 |Membership functions for transformers: (A) primary and secondary membership functions of inputs (age, load factor, time from previous maintenance,
and working environment); (B) membership functions of output (percentage of change to the transition rates of the Markov model).

FIGURE 7 |Membership functions for circuit breakers: (A) primary and secondary membership functions of inputs (age and time from previous maintenance); (B)
membership functions of output (percentage of change to the transition rates of the Markov model).

TABLE 1 | Operational variations and uncertainties in type 2 fuzzy rules for
individual components.

Primary uncertainty Secondary uncertainty

Transformer

Age Component condition
Load —

Time from previous maintenance Maintenance extent
Operation environment Weather

Circuit breaker
Age Component condition
Time from previous maintenance Maintenance extent

FIGURE 8 | Configuration of bus 07 in the IEEE-RTS.
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corresponding to the monitoring condition can be obtained as
ΛD(t), and reliability can be evaluated.

For circuit breakers, the main variables we focus on are the
time and duration of previous maintenance because the reliability
of circuit breakers is not sensitive to weather or load. Similar to
transformers, age is quantified as three variables: “young,”
“middle-aged,” and “old.” The secondary uncertainty of age is
the component condition, i.e., “good,” “normal,” or “bad,” as
shown in Figure 7(a-1). The second “main variable,” the time of
previous maintenance, is quantified as “short,” “normal,” and
“long.” The secondary uncertainty factor is “maintenance
degree,” i.e., “minor maintenance,” “medium maintenance,” or
“major maintenance” [Figure 7(a-2)]. The output variables are
the same as the transformer variables but are represented by
triangular membership functions, as shown in Figure 7B.

RESULTS AND DISCUSSION

Case Study and Parameters
Figure 8 shows the ring configuration of bus 07 in the IEEE-RTS,
which can be regarded as an offshore substation. The reliability of
the load point is affected by the reliability of the transformer and
circuit breaker in the substation. The adaptive maintenance
consultant first obtains the initial maintenance plan from the
system maintenance optimizer. The research period is set at
20 years.

Table 2 lists the basic fault data of transformers and circuit
breakers without any maintenance during the first maintenance
interval, which are obtained from the existing work (Billinton
et al., 1985). Different priorities are assigned to each load point to
reflect the importance of the load they transmit. In this study,
load point 2 has priority 1 because it transfers the load back to the
medium-sized system to which it is connected, while load point 1
has lower priority because it provides the load to individual
customers.

Advantage of
Secondary-Uncertainty–Varying Type 2
Fuzzy Logic
Taking the fuzzy logic system designed for the transformer as an
example, it is shown that the proposed type 2 fuzzy logic system is
easy to implement. Several items including the age, load, last
maintenance time, working environment, load factor, and
maintenance information have been utilized as the inputs of
the transformer. In this type 2 fuzzy system, each input has three

membership functions. Three additional uncertainties are
superimposed on three inputs, which are represented by three
fuzzy sets. In a word, the two kinds of fuzzy systems generate
rules. Class 1 fuzzy systems with rules can represent the same
uncertainty. Therefore, in dealing with other uncertainties, type 2
fuzzy logic is superior to type 1 fuzzy logic in computational
complexity.

Impacts of Operational Variations and Their
Secondary Uncertainties
Figures 9, 10 are used as the inputs of quadratic uncertainty type
2 fuzzy logic to calculate the reliability index of each component.

TABLE 2 | Failure data of the transformer and circuit breaker.

F/Yr F/Yr F/Yr Hr Hr

Active failure
rate

Passive failure
rate

Total failure
rate

Repair time Switching time

Transformer 0.01 0.01 0.02 768 1
Circuit breaker 0.0066 0.0005 0.0071 108 1

FIGURE 9 | Varying operation conditions of transformers: (A) operation
variations; (B) secondary uncertainty of each operation variation.

FIGURE 10 | Varying operation conditions of circuit breakers: (A)
operation variations; (B) secondary uncertainty of each operation variation.
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When maintenance is not carried out, the Markov model is used
to calculate the annual MTTF and failure probability.

When calculating the MTTF and failure probability, the
operation change and its secondary uncertainty should be
considered and then compared with the MTTF and failure
probability under average conditions (Table 3). Figures 11, 12
show the changes of failure probability and MTTF of the
transformer under different service life, load, time from
previous maintenance, and working environment, respectively.
Considering the secondary uncertainty, these two reliability
indexes are different from those only considering the main
operation differences. The results show that the second fuzzy
logic system successfully captures the quadratic uncertainty.
Similar results for circuit breakers are shown in Figures 13, 14.

Impacts of Operational Variations and Their
Secondary Uncertainties
These conditions may vary from time to time due to component
aging, weather conditions, load requirements, and previous
maintenance times. Therefore, it is not enough to carry out
maintenance according to the schedule set at the beginning of
the long-termmaintenance plan. The purpose of the maintenance
plan is to achieve the best reliability at the lowest operating cost
under any different conditions. The maintenance plan is carried

out under the same three conditions: 1) average condition; 2)
considering operational changes without secondary uncertainties;
and 3) considering secondary uncertainty.

In order to evaluate the reliability of the whole system, it is
necessary to determine the minimum cut-off points of each load
point, which are listed in Table 4.

TABLE 3 | Average conditions.

Age (Yr) Load factor (%) Time from previous
maintenance (mth)

Working environment factor

Transformers 25 50 10 50
Circuit breakers 60 — 11 —

FIGURE 11 | Failure probability variation of the transformer with each
individual operation condition. FIGURE 12 | MTTF variation of the transformer with each individual

operation condition.

FIGURE 13 | MTTF variation of the circuit breaker with each individual
operation condition.
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The effects of operational variations on maintenance
scheduling are shown in Figures 15, 16. As can be seen in
Figure 16, the positions of the two Pareto fronts with varied
operation conditions are allocated above the one with average
conditions. As a result, in order to achieve the same reliability or
budget, the maintenance schedule should be changed according
to the operation variations. For example, in order to maintain the
operation cost at $6*105 when the operation conditions vary from
average conditions, the maintenance schedule A2 should be
chosen instead of A1, and the energy not served will be
480 MWh/Yr, which is 9 MWh/Yr higher than the one with
average conditions. The higher energy not served also

indicates that the monitored conditions which are more severe
than average will cause worse reliability. A similar change also
happens on the Pareto fronts in Figure 16.

Furthermore, the secondary uncertainty of the operational
variations can also be well handled in the maintenance scheduling
problem by this type 2maintenance advisor. Figure 16 shows that
the secondary uncertainty of the operational conditions also leads
to the change of maintenance schedules. For example, in Figures
15, 16, the schedule A2 will be replaced by A3 because of the
secondary uncertainty in the operational conditions.

CONCLUSION

Power systems are crucial for low-carbon energy applications.
This paper proposes a hybrid method for implementing system
optimization maintenance plans in offshore substations and
estimating the reliability changes at load points due to
operational variations and the uncertainty of key components.
The maintenance consultant will report any sharp drop in the

FIGURE 14 | Failure probability variation of circuit breakers with each
individual operation condition.

TABLE 4 | Minimum cut sets for load points 1 and 2.

Load point Minimum cut set

Total
loss of continuity

Partial
loss of continuity

1

T4 G1, T1, G2, T2, G3, T3
CB1(P)+CB2(P) CB1(P)+CB5(P), CB4(P)+CB5(P)
CB1(A) CB3(P)+CB4(P)
CB2(A) CB3(A), CB5(A), CB4(A)
T1+CB1(S) G1+G2, G1+T2, T1+G2
CB5(A)+CB1(S) T1+T2, G1+G3, G1+T3
CB5(A)+CB4(S) T1+G3, T1+T3, G2+G3
CB3(A)+CB2(S) G2+T3, T2+G3, T2+T3
CB4(A)+CB5(S) T1+CB5(s), T2+CB5(s)

T2+CB4(s), T3+CB4(S)
CB3(A)+CB4(S)

2

T5 G1, T1, G2, T2, G3, T3
CB2(A) CB1(P)+CB5(P), CB5(P)+CB4(P)
CB3(A) CB3(P)+CB4(P)
T3+CB3(S) CB1(A), CB1(A)+CB5(S)
CB1(A)+CB2(S) CB5(A), G1+G2, G1+T2
CB4(A)+CB3(S) T1+G2, T1+T2, T2+CB5(S)
CB4(A)+CB5(S) T1+CB5(S), G2+G3, G2+T3
CB5(A)+CB4(S) T2+G3, T2+T3, CB4(A)

T2+CB4(S), T3+CB4(S)
G1+G3, G1+T3, T1+G3
T1+T3

FIGURE 15 | Pareto front of the wind power plant: energy not served vs.
operation cost.

FIGURE 16 | Pareto front of the wind power plant: failure cost vs.
operation cost.
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reliability of load point in the substation, which may lead to re-
optimization of the substation’s maintenance activities for
achieving the required reliability during operation. Facts have
proved that when modeling the operational changes and
uncertainties of substation transformers, type 2 fuzzy logic is
better than type 1 fuzzy logic. Breaker failure and substation
configuration have a significant impact on the reliability of
the load point. Another contribution of this study is to
propose a type 2 fuzzy hidden Markov model for offshore
substations, which is used to model the relationship between
non-linear performance characteristics and offshore equipment
in the power system, further benefitting low-carbon renewable
energy applications.
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