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Recently, more and more research has been conducted to develop Connected
Autonomous Vehicles (CAVs) applications that ensures the safety driving of CAVs
under some extreme situations. This brief presents a robust control strategy for CAVs
to preserve a precise tracking performance and maintain the stability of lateral dynamics
when passing a sharp curve with uncertain road friction coefficient changes. In the
proposed robust lateral dynamics control, robust optimization-based lateral dynamics
controller is designed to achieve the stability of the lateral dynamics with the consideration
of the road friction coefficient uncertainty. Simulation validations are carried out to evaluate
the proposed control strategy. The results show that the robust optimization-based lateral
dynamics can improve the robustness even with the uncertainty of the road friction
coefficient.
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1 INTRODUCTION

Autonomous vehicles will meet more emergency scenarios when leaving the research laboratory and
entering public roads (Kritayakirana and Gerdes, 2012; Shen and Raksincharoensak, 2021). Vehicle
stabilization under uncertain scenarios is one of the most important issues in the control of
autonomous vehicles (Yue et al., 2019; Shen et al., 2020a; Guo et al., 2020). Recently, Model Predictive
Control (MPC) has been used to improve the vehicle dynamics stability (Yuan et al., 2019). In
(Taghavifar, 2019), neural network autoregressive with exogenous input system has been applied to
obtain an accurate and explicit model in order to contribute to the control of the system over the
prediction horizon. (Weiskircher et al., 2017). proposed a MPC-based predictive trajectory guidance
and tracking control framework for autonomous and semiautonomous vehicles in dynamic public
traffic. Moreover, a data-driven predictive control is proposed in (Li and Schutter, 2021) which is
model-free predictive control method.

However, the normal MPCwithout considering the uncertainty is not able to address the problem
caused by environment uncertainty. The state space model-based prediction has large variance and
even mean bias if there are any uncertainties in disturbance or the system parameters (Shen et al.,
2020b). If there is uncertain road friction changes when passing a sharp curve and the model used in
MPC cannot reflect the uncertainty, MPC will lose some precise on the lateral dynamics control. To
improve the robustness against uncertainty, it is necessary to design a robust controller. In
(Heshmati-Alamdari et al., 2020), a robust predictive controller is designed for underwater
robotic vehicles which forms a high robust closed-loop system against parameter uncertainties.
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Besides, (Gao et al., 2021), proposed a robust lateral trajectory
following control for autonomous vehicles. Robust model
predictive control is a potential solution to the issue caused by
uncertain road friction in this research. In the problem
formulation of robust model predictive control, the road
friction is regarded as a uncertain variable. For all possible
realizations of uncertain variable, a fixed control law has a
cost. We focused on finding a control law that minimize the
upper bound of the cost for all possible realizations of uncertain
variable. In this way, the robustness of the control strategy is able
to be attained. To achieve robust model predictive controller, it is
essentially to solve a robust optimization problem or a chance
constrained optimization problem in every time step (Nemirovski
and Shapiro, 2006; Shen et al., 2019). Although it is NP-hard to
solve a robust optimization problem or a chance constrained
optimization problem (Hong et al., 2011; Geletu et al., 2017;
Pena-Ordieres et al., 2020), the approximate solution can be
obtained by formulating a solvable approximate problem of the
original one (Luedtke and Ahmed, 2008; Shen et al., 2021; Campi
and Garatti, 2019, 2011). Robust model predictive control was
widely applied in water qulity management (Takyi and Lence,
1999) and other process control applications (Henrion and
Moller, 2003). Recently, robust model predictive control has
been applied to the automotive powertrain control to optimize
the fuel efficiency with stochastic constraint on the knock (Shen
et al., 2017; Shen and Shen, 2017) and the energy management
system in hybrid electric vehicle (Shen et al., 2016). Robust model
predictive control can also be applied to ensure the robustness for
an autonomous vehicle when it passes a sharp curve with
uncertain road condition.

This paper presents a novel robust model predictive control
strategy for automated vehicles to preserve a precise tracking
performance and maintain the stability of lateral dynamics. The
optimal feedback control input is obtained in every step by
solving a robust optimization problem. The robust
optimization problem is solved by scenario approach
introduced in (Calariore and Campi, 2006). Simulation

validations are carried out to evaluate the proposed control
strategy.

2 PROPOSED METHOD

2.1 Background and Problem Description
In Figure 1, the vehicle passed a sharp curve with water-covered
surface. The water-covered surface is the area with orange color.
The single track model of vehicle dynamics can be described by
the following equations:

_yc � _yc, (1)

€yc � −2 Cf + Cr( )
mV

_yc +
2 Cf + Cr( )

m
ϕ + 2 lrCr − lfCf( )

mV
_ϕ

+ 2Cf

m
δf, (2)

_ϕ � _ϕ, (3)

€ϕ � 2 lrCr − lfCf( )
IzV
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IzV
ϕ − 2 l2fCf + l2rCr( )

IzV
_ϕ.

(4)

Here, yc is the lateral distance. _ϕ is the yaw rate. m is the mass
of the vehicle. δf is the steer angle. V is the vehicle speed.

In order to apply MPC, the vehicle lateral dynamics model is
transformed to the lateral deviation from the reference model.
The used linear model is as
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Where

A �

0 1 0 0

0 −2 Cf + Cr( )
mV

2 Cf + Cr( )
m

2 lrCr − lfCf( )
mV

0 0 0 1

0
2 lrCr − lfCf( )

IzV

2 lfCf − lrCr( )
IzV

−2 l2fCf + l2rCr( )
IzV

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

B �

0

2Cf

m
0

2lfCf

m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

C �

0

−V2 + 2lrCr − 2lfCf

m
0

−2l
2
fCf + 2l2rCr

Iz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

FIGURE 1 | Passing a sharp curve with water-covered surface.
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Here, ycr is the lateral deviation from the reference
trajectory. _ϕcr is the yaw rate. R is the radius of the curve.
m is the mass of the vehicle. δf is the steer angle. V is the
vehicle speed.

Notice that Cf and Cr are both decided by the road friction
coefficient. Since the road friction coefficient is uncertain, Cf and
Cr are both uncertain variable as well.

Equation 5 is a continuous differential equation and can be
transformed to a discrete state-space model by Euler method.
Since at every time step, the state variable is decided by the
input δf and the state variable in the previous step. The state
variable at k + 1 can be expressed by the previous input
sequence δf (0), . . ., δf(k) and the state variable at the initial
step. Since the objective is to minimize the difference between

the actual trajectory and the reference one, the cost function
is a function of the input sequence and known state variable
at initial step. To obtain the optimal input, a robust
optimization problem should be solved. The problem can
be formulated generally by

min
u∈U⊂Rnu

J(u)
s.t. h(u, δ)≤ 0, δ ∈ Δ ⊂ Rnδ .

(9)

Here, u � [δf(0), . . . , δf(K − 1), E]T if we consider
K steps forward. δ is the uncertain variable. In our
problem, it includes Cf and Cr. J(u) � E and h (u, δ) is
defined as

∑K
k�1

ycr(k) − E. (10)

2.2 Scenario Approach
In scenario approach, independent samples δ(i), i � 1, . . . , N is
identically extracted from Δ randomly, a deterministic convex
optimization problem can be formed as (Calariore, 2017; Campi
et al., 2018; Campi and Garatti, 2018)

min
u∈U⊂Rnu

J(u)
s.t. h u, δ(i)( )≤ 0, i � 1, . . . , N

(11)

which is a standard finitely constrained optimization
problem. The optimal solution ûN of the program Eq. 11
is called as the scenario solution for program Eq. 9 generally.
Moreover, since the extractions δ(i), i � 1, . . . , N is randomly
chosen, the optimal solution ûN is random variable. If ûN is
expected to satisfy

PrN δ(1), . . . δ(N) ∈ ΔN: V ûN( )≤ α({ }≥ 1 − β, β ∈ (0, 1), (12)

FIGURE 2 | Implementation of robust MPC.

FIGURE 3 | Validation result.
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then, N should have a lower limitation Nl

N≥
2
α
ln
1
β
+ 2nu + 2nu

α
ln
2
α
. (13)

Note that β is an important factor and choosing β � 0
makes Nl �∞. Namely, if the number of chosen samples gets
larger, the probability of satisfying the original probabilistic
constraints approaches 1. Actually, when number of chosen
samples becomes infinity, the samples cover the whole sample
space. The feasible area determined by probabilistic
constraints is only a subset of whole sample space. Then,
it becomes a problem which requires total robustness.
Therefore, the scenario approach conducts to a solution
with total robustness which is more conservative than the
probabilistic constraints require.

2.3 Implementation of Robust Model
Predictive Control
The implementation of robust MPC is shown in Figure 2. At
time step k + 1, it uses the first element of u calculated in time
step k as the input. Namely, δf(k) � u (1). x(k) denotes the
state variable vector at time step k. Moreover, since the LMPC
controller takes relative variable calculation as feedback,
there will be a relative variable calculation. In the relative
variable calculation, the relative variable is calculated based
on the feedback state variable from plant model or real
vehicle and the information of curve, for example, radius
value R.

3 VALIDATION RESULTS AND
CONCLUSTION

The validation is implemented by simulation. Since the real
vehicle is not available, a plant model is established and used

instead of the real vehicle. The plant model adopts the single track
nonlinear model described by

_vx − vy _ϕ � 1
m

FxT
f cos δf + FxT

r − FyT
f sin δf( ), (14)

_vy + vx _ϕ � 1
m

FyT
f cos δf + FyT

r + FxT
f sin δf( ), (15)

Izz€ϕ � lfF
yT
f cos δf − lrF

yT
r + lfF

xT
f sin δf, (16)

_px
_py

[ ] � R(ϕ) vx
vy

[ ]. (17)

The magic formula is used to model the friction forces which
refers to (Yuan et al., 2019).

For the simulation conditions, the radius has six options:
100, 110, 120, 130, 140, and 150 m. For each R, three
coefficients of friction for the wet road is randomly
generated from (0.4,0.6). For each pair of a value of R and
a value of coefficients of friction, the following longitudinal
velocity values have be tested:

[0.4, 0.42, . . . , 0.92] ×
������
Rμwetg

√
. (18)

Figure 3 shows one example of the validation results. The
friction coefficient of dry road is μdry � 0.8 which the one of wet
road is μwet � 0.5. The radius of the curve is 100 m. The middle
part of the road is wet. The longitudinal velocity for passing the
curve is V � 65 km/h. If MPC is used by setting Cr and Cf

according to μdry � 0.8, the tracking error increases during the wet
road. However, by considering μ ∈ [0.4, 0.9], the robust MPC
keeps the tracking performance stable during the wet road.

Figure 4 shows a comprehensive statistical validation results
of all cases. Obviously, the robust MPC succeeded to decrease the
maximal deviation into the error bound. However, the normal
MPC failed in most cases since the model has a very large bias
compared to the real dynamics due to the uncertain friction
coefficient.

FIGURE 4 | Validation result.
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