
Intelligent Frequency Control Strategy
Based on Reinforcement Learning of
Multi-Objective Collaborative Reward
Function
Lei Zhang, Yumiao Xie, Jing Ye*, Tianliang Xue, Jiangzhou Cheng, Zhenhua Li and Tao Zhang

College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China

Large scale wind power integration into the power grid will pose a serious threat to the
frequency control of power system. If only Control Performance Standard (CPS) index is
used as the evaluation standard of frequency quality, it will easily lead to short-term
centralized frequency crossing, which will affect the effect of intelligent Automatic
Generation Control (AGC) on frequency quality. In order to solve this problem, a multi-
objective collaborative reward function is constructed by introducing a collaborative
evaluation mechanism with multiple evaluation indexes. In addition, Negotiated
W-Learning strategy is proposed to globally optimize the solution of the objective
function from multi dimensions, it avoids the poor learning efficiency of the traditional
Greedy strategy. The AGC control model simulation of standard two area interconnected
power grid shows that the proposed intelligent strategy can effectively improve the
frequency control performance and improve the frequency quality of the system in the
whole-time scale.

Keywords: wind power grid-connected, intelligent frequency control strategy, multi-dimensional frequency control
performance standard, Negotiated W-Learning algorithm, global optimization

1 INTRODUCTION

Automatic Generation Control (AGC) is an important means to realize the balance of active power-
load supply and demand in the power system. Among them, the quality of frequency control strategy
is an important factor that affects the performance of AGC control (Alhelou et al., 2018; Shen et al.,
2021a; Shen and Raksincharoensak, 2021a). However, the control strategies applied in engineering,
such as the threshold zone AGC control strategy that takes into account the combined effects of the
proportional component, integral component and Control Performance Standard (CPS) control
component of the regional control deviation (Arya and Kumar, 2017; Shen et al., 2020a; Xi et al.,
2020; Shen and Raksincharoensak, 2021b), have been unable to adapt to the increasingly complex
frequency control of interconnected power grids (Shen et al., 2017; Zhang and Luo, 2018).

In recent years, the intelligent frequency control strategy of reinforcement learning has received
lots of attention (Yu et al., 2011; Abouheaf et al., 2019; Xi et al., 2019; Shen et al., 2020b; Liu et al.,
2020), because it does not rely on models and does not require precise training samples or system
prior knowledge (Watkins and Dayan, 1992; Yang et al., 2018; Li et al., 2020; Yang et al., 2021a; Shen
et al., 2021b).

However, most intelligent control strategies are built on the CPS frequency control performance
evaluation standard. The CPS index has low sensitivity for short-term inter-area power support
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evaluation, and cannot take into account the short-term benefits
of frequency control performance (Kumar and Singh, 2019; Yang
et al., 2019; Zhu et al., 2019). In a system with large-scale wind
power grid connection, the ability of each region to comply with
CPS indicators is limited. The intelligent AGC control strategy
that only considers the CPS control criteria can easily cause short-
term concentrated frequency crossings, which seriously affects
the control effect of the intelligent AGC control strategy (Wang
and James, 2013; Xie et al., 2017; Yang et al., 2021b).

In fact, with the development of grid-connected new energy
sources and smart grids, the grid frequency control evaluation
standard is transitioning from single-scale evaluation to multi-
time-scale and multi-dimensional evaluation. The North
American Electric Reliability Council (NERC) proposed a new
frequency evaluation performance index named Balancing
Authority ACE Limits (BAAL), which is used to ensure the
short-term frequency quality of the system by constraining the
mean value of the frequency difference fluctuates in any 30 min
not to exceed the limit. However, the intelligent AGC control
strategy under both BAAL and CPS indicators is a kind of multi-
objective control problem, and there is no relevant literature to
study it.

In response to the above problems, this paper proposes an
intelligent frequency control strategy for collaborative evaluation
of multi-dimensional control standards. This strategy constructs
and introduces a collaborative reward function that considers the
CPS index and the BAAL index in the multi-objective
reinforcement learning algorithm. Then, the Negotiated
W-Learning strategy is used to learn the action space of the
agent, which effectively solves the problem that the agent cannot
fully explore the action (Nathan and Ballard, 2003; Liu et al., 2018;
Wang et al., 2019). Simulation examples show that the proposed
intelligent control strategy can effectively improve the overall
frequency performance quality of the power system.

2 FREQUENCY CONTROL PERFORMANCE
EVALUATION STANDARD OF
INTERCONNECTED POWER GRID

2.1 CPS1 Frequency Control Performance
Evaluation Standard
NERC uses the BAL (BAL-001) disturbance control series of
indicators to evaluate the frequency control quality of the
interconnected power grid. Among them, the CPS1 (BAL-001-
2: R1) indicator is the most widely used in China, as shown in
Eq. 1:

AVG1,T
ACEm

1min

−10Bm
· ΔF1min( )[ ]≤ ε2 (1)

where ΔF1 min and ACEm
1 min are separately the average value of

the frequency deviation and power deviation in the control area
within 1 min, Bm is the frequency deviation coefficient of the area
m, and represents the frequency adjustment responsibility
assigned to area m. AVG1,T (·) means calculate the average

value for 12 months, ε is the upper limit of the area m in
controlling the frequency deviation.

Taking the situation that the actual frequency is higher than
the planned frequency as an example, expand Eq. 1 as follows:

1
T
∫T

0

ΔF
ε

p
ΔPtie

−10Bmε
+ ΔF

ε
[ ]dt≤ 1 (2)

where: T is the entire time period, ΔF/ε is the frequency deviation
contribution of the region itself, ΔPtie/− 10Bmε is the frequency
contribution of other regions to this region, and ΔPtie/− 10 Bmε +
ΔF/ε is the comprehensive frequency deviation contribution. For
the convenience of analysis, define ΔF/ε p[ΔPtie / − 10 Bmε +
ΔF/ε] as the comprehensive frequency deviation factor, and
denoted by ψ.

The CPS1 indicator statistically evaluates the rolling root
mean square of the frequency difference time series during
the T period in the evaluation area. When T is large enough,
the system frequency deviation qualification rate is greater
than 99.99%. Therefore, CPS1 is a long-term evaluation index
reflecting the frequency quality of interconnected
power grids.

2.2 BAAL Frequency Control Performance
Evaluation Standard
NERC proposed the BAAL (BAL-001-2: R2) evaluation index in
2013 and began to implement it in 2016, as shown in Eq. 3 ∼4:

T ACEm
1min ≥ − 10Bm

FFIL−high − Fs( )2
FA − FS( )1min

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≤Tv (3)

T ACEm
1min ≤ 10Bm

FFIL−low − Fs( )2
FA − FS( )1min

[ ]≤Tv (4)

where FA is the actual frequency value; FS is the planned
frequency value; FFTL-high/FFTL-low is the high/low frequency
trigger limit; Tv is the specified allowable continuous time
limit. T [·] is the continuous over-limit time.

FIGURE 1 | The distribution curve of the integrated frequency deviation
factor over time.
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Taking the situation that the actual frequency is higher than
the planned frequency as an example, Eq. 3 can be transformed
into the following form in the same way:

T
1
Tn

∫T′+T′′

T′

ΔF
ε

p
ΔPtie

−10 Bmε
+ ΔF

ε
[ ]dt≥ 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≤Tv (5)

2.3 Performance Analysis Under the Joint
Control of BAAL Standard and CPS1
Standard
In order to further study the feature of the two index, Figure 1
shows the change curve of the comprehensive frequency
deviation factor ψ, which considers different performance
indicators under the influence of the time dimension.

As shown in Figure 1, taking point A as the critical point of
frequency line crossing, when only CPS1 is considered, the system
frequency can still meet the requirements of control performance
index, but it will affect the safe operation of various equipment in
the system and cause the power quality reduced. If only the BAAL
indicator is considered, the system frequency may appear
“vertical dro” and “tip oscillatio,” as shown in point B in
Figure 1. At this time, the synchronous generator frequently
receives the opposite frequency deviation signal that occurs in a
short period of time. This situation will increase the wear of the
unit. When considering the effects of CPS1 and BAAL indicators
at the same time, the frequency will change into the reverse
process under the influence of BAAL performance after short-
term limit violation.

In summary, if CPS1 and BAAL indicators can be coordinated
to constrain the system frequency closely, it can guarantee not
only the long-term frequency quality but also the short-term
frequency safety.

3 INTELLIGENT AGC CONTROL STRATEGY
CONSIDERING COOPERATIVE
EVALUATION OF MULTI-DIMENSIONAL
CONTROL STANDARDS

Based on the analysis in Section 2.3, this paper constructs an
AGC control model based on a multi-objective collaborative
reward function reinforcement learning frequency control
strategy. As shown in Figure 2A, it mainly consists of the
following parts: system governor, equivalent module of the
generator, dynamic model of system’s frequency deviation, and
intelligent brain controller. Where R, Tg, Tt, M, D are separately
the equivalent unit adjustment coefficient, time constant of the
governor, equivalent generator time constant, equivalent inertia
coefficient and equivalent damping coefficient of the power
system in area m; ΔPtie is the exchange power deviation of the
tie line in area m, ΔXg, ΔPg, ΔPd are separately the change in the
position of the regulating valve, in generator output power and in
load disturbance, ΔPΣ is the total adjustment command of
the unit.

Frequency controller intelligent learning stage: This article
uses a multi-objective collaborative reward function
reinforcement learning strategy to learn and train the
intelligent frequency controller. This strategy mainly includes
two parts, namely CPS1 index and BAAL index cooperative
reward function and Negotiated W-Learning based intelligent
frequency control learning algorithm. First, use theMORL idea to
construct the instant reward function of CPS1 index and BAAL

FIGURE 2 | Intelligent AGC control strategy: (A) Intelligent AGC control
strategy for collaborative evaluation of multi-scale standards, (B) The
framework of Negotiated W-Learning.
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index, and use dynamic coordination factors to characterize the
impact of different indicators on environmental changes. Then,
the implementation rewards given under the MORL learning are
used to update the respective state action sets of the CPS1 index
and the BAAL index. Finally, Negotiated W-Learning conducts a
global search to get the final action, which will meet the CPS1 and
BAAL indicators and environmental feedback characteristic
information.

Frequency controller online deployment stage: The learned
and mature frequency controller receives the SCADA database
in the Energy Management System (EMS) in each AGC control
cycle to collect frequency deviation, ACE, CPS, BAAL, and
other data in real time, and make real-time frequency control
action.

3.1 Collaborative Reward Function of CPS1
Indicator and BAAL Indicator
This paper constructs a cooperative reward function based on the
CPS1 indicator and the BAAL indicator, which is expressed as
follows:

R1 s, s′, a( ) � −λ1(ACE − BAAL)2
R2 s, s′, a( ) � −λ2 CPS1* − CPS1( )2. (6)

Among them: Ri(s, s′, a) is the instant reward value obtained
when the ith goal is transferred from state s to state s′ through
action a; ACE (t) is the real-time value of the regional control
deviation at the current moment; s is the system state [ACE(t)] at
time t, s′ is the state [ACE (t + 1)] at time t + 1, a is the system
action (ΔPΣ(t)) when the system goes from s to state s′. BAAL(t)
is the instantaneous value of BAAL at time t, CPS1 (t) is the
instantaneous value of CPS1 at time t, CPS1* is the target value,
generally 200%.

λi is the dynamic coordination factor of the cooperative reward
function, that is, λi changes dynamically with each state transition
process. This paper adopts the method of comprehensive
weighting and multiplicative weighting, comprehensively
considers the preferences of decision makers and the inherent
statistical law between the index data to determine the value of the
dynamic coordination factor.

Firstly, Define parameter K as a parameter for evaluating the
importance of frequency performance evaluation indicators. Ki,j
represents the importance degree of the evaluation index relative
to another one in the frequency performance evaluation. When
there is an out-of-bounds situation such as ACE < BAAL or CPS1
> 200, the importance of the corresponding indicators will
increase accordingly. When the two indicators play equal or
unimportant roles in the frequency evaluation process, the
corresponding Ki,j/Kj,i values are all 4 or 0. The relative
importance of any index increases by one point, the
corresponding Ki,j/Kj,i value increases by 1, and the Kj,i/Ki,j
value decreases by 1. Then obtain the weighting factors of
each target in each action cycle:

wi � Kj,i

Kj,i +Ki,j
(i≠ j) (7)

In order to eliminate subjectivity, the entropy method is used
to calculate the coefficient of difference between the two
indicators βi:

βi �
1 + ln−1(N)∑K

y�1Py,i ln Py,i( )
∑N

i�1 1 + ln−1(N)∑K
y�1Py,i ln Py,i( )( ) (8)

Py,i � xy,i/∑K
y�1

xy,i (9)

Where: xy,i is the standardized index value of the ith frequency
control performance evaluation index at the yth time, K
represents the number of the ith frequency control
performance evaluation index from 0 to the current time t,
and N represents the target number. Py,i is the proportion of
xy,i to the total number of indicators from 0 to t.

At last, the final coordination factor is determined by
multiplication weighted method. Therefore, the coordination
factor can be obtained by combining 8 and 9:

λi �
����
wiβi

√
∑N

i�1
����
wiβi

√ (10)

3.2 Negotiated W-Learning Intelligent
Frequency Control Learning Algorithm
The update formula ofMORL is the same as the state-action value
function update of traditional Q learning, as shown in Eq. 11. In
order to facilitate the selection of the optimal action that satisfies
each of the following goals, this paper uses theMQ (s, a) vector to
represent the state-action value function Q value of the action a in
the state s for the N goals, as shown in Eq. 12, and the optimal
action strategy π*MQ for each target in the current state expressed
in Eq. 13:

Qi(s, a)←Qi(s, a) + α Ri s, s′, a( ) + cmax
a∈A

Qi s′, a( ) − Qi(s, a)( )
(11)

MQ(s, a) � Q1(s, a), Q2(s, a), . . . , QN(s, a)[ ] (12)

π*
MQ � argmax

a
max

i
MQ(s, a){ } (13)

In Eq. 11:α (0 < α < 1) is the learning rate, which is set to 0.01
in this article; c is the discount coefficient, which is set to 0.9 in
this article; Qi (s, a) represents the Q value of the ith target’s
choice of action a in state s.

However, the above-mentioned optimal action selection
strategy cannot guarantee that the agent fully explores the
entire state-action space. In this paper, Negotiated W-learning
strategy is used to optimize the MQ (s, a) vector space. This
strategy defines variable Wi as a leader parameter. The operation
steps are as follows, and Figure 2B is a reference flow chart:

Step 1: Choose an objective function in the MQ(s, a) vector
space as the guide objective function. Its investigation parameter
is expressed asWi. The first guide objective function is uniformly
set to Wcir � 0, and the guide action is obtained as follows:
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acir � argmaxQcir(s, a) (14)

Step 2: The remaining objective functions are calculated
according to the following methods, as shown in 15:

Wi � maxQi(s, a) − Qi s, acir( ) (15)

Step 3: Choose the maximum value of for other objective
functions except the guide objective function, and compare

it with Wcir. If Wi,max > Wcir, the objective function which
is corresponding to this maximum value of Wi should
be selected as the new guidance objective function,
the guidance value Wcir should be updated as the value of
Wi,max, the corresponding action a should be made to
be the new guidance action acir, and then go back to step
2 for repeated iterations until this condition is no
longer met.

FIGURE 3 | Simulation results: (A) Differential convergence result of Q function under CPS1 objective, (B) CPS1avg-10−min curve, (C) Self-contribution curve, (D)
Curve reflecting the change of CPS1 value, (E) The curve of CPS1.
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IfWi ≤Wcir is obtained, record the guidance action acir and the
guidance objective function at this time as the final value.

4 SIMULATION RESULTS

This paper builds a typical two-region interconnected power grid
AGC model for controlling load frequency. The parameter
settings of the two regions in the model system are the same,
and the system base capacity is 1000 MW.

Figure 3A,B shows the pre-learning process of single CPS1
target and NegotiatedW-Learning Algorithm. In the pre-learning
stage, a continuous sinusoidal load disturbance with a period of
1,200 s, an amplitude of 100 MW and a duration of 20,000 s is
applied to the A area, and a 2-norm Q function matrix
‖Qt(s, a) − Qt−1(s, a)‖2 ≤ ζ (ζ is a constant) is used as the
standard for pre-learning to achieve the optimal strategy
(Imthias Ahamed et al., 2002).

It can be seen from Figure 3A that after many iterations, the Q
function tends to stabilize, reaching the optimal strategy for the
CPS1 target. Figure 3B shows the average value of CPS1
(CPS1avg-10−min) in area A every 10 min during the pre-
learning process. It is found that the curve almost remains at
a stable and acceptable value in the later stage, which shows that
the Negotiated W-Learning algorithm has approached the
optimal CPS1 control strategy. At the same time, the Q matrix
corresponding to the target BAAL has also converged.

In addition, from the perspective of algorithm learning time, the
four algorithms have been simulated formany times, and the average
calculation time has been counted. SeeTable 1 for details. Due to the
difference in the number of optimization targets and the difficulty of
calculating the coordination factor, the calculation time of the single
target CPS1-MORL is the shortest. Since the CoordinateQ-MORL
algorithm cannot fully explore the action set, its calculation time is
the second. Compared with the global search algorithm Greedy-
MORL, Negotiated W-Learning has gone through more search
steps, so its time is the longest.

In order to further verify the adaptability of Negotiated
W-Learning in the constantly changing power grid
environment, this paper applies a random disturbance with a
period of 1,200 s and an amplitude of 100 MW in area A. Four
types of algorithms are set for comparison as follows.

Algorithm 1. Traditional single-objective reinforcement learning
algorithm for intelligent frequency control based on CPS1
frequency control performance evaluation index (CPS1-MORL).

Algorithm 2. Multi-objective reinforcement learning algorithm
for intelligent frequency control based on the traditional greedy
strategy of multi-dimensional frequency control performance
evaluation index and multi-objective Q function (Coordinate
Q-MORL).

Algorithm 3. Under the traditional greedy strategy, this
algorithm uses a cooperative reward function based on multi-
dimensional frequency control performance evaluation
indicators to achieve multi-objective reinforcement learning
and intelligent frequency control algorithm (Greedy-MORL).

Algorithm 4. The NegotiatedW-Learning algorithm proposed in
this paper is based on the collaborative reward letter under the
multi-dimensional frequency control performance evaluation
index for multi-objective reinforcement learning and
intelligent frequency control (Negotiated W-MORL).

4.1 Control Strategy Performance Analysis
Figure 3C shows the frequency deviation self-contribution degree
(Δf/ε) and CPS1 index change curve of Algorithm 1 and
Algorithm 4. In this paper, the threshold is used for
calculation, where E is 0.01. The frequency contribution
degree has the ability to reflect the frequency quality of
different algorithms. If the frequency contribution degree
exceeds ± 1, it means that the frequency at this time has
exceeded the prescribed limit 3ε. It can be seen that the
frequency contribution curve of Algorithm 1 exceeds the
short-term index frequency continuous limit time specified in
this article and has a steep drop in this interval, which will cause
greater influence on system operation safety. However, the
frequency contribution curve of Algorithm 4 stays within the
defined range. There are two main reasons for this phenomenon:
One is that Algorithm 4 controls the frequency by relaxing the
weights of the two indicators in real time. If frequency
fluctuations or “frequency drops” occur, the BAAL indicator
will be given greater weight. If the frequency continuously
exceeds the limit during the simulation period, CPS1 will be
given a larger weight for regulation. The second is thatAlgorithm
4 considers two indicators to participate in the evaluation of AGC
control at the same time, while Algorithm 1 only considers the
impact of CPS1. At the same time, the CPS1 curve ofAlgorithm 4
in Figure 3D fluctuates less throughout the simulation cycle,
while the fluctuation of Algorithm 1 is larger, which further
proves that Algorithm 4 is superior to Algorithm 1 in terms of
frequency control effect.

TABLE 1 | Simulation results under different algorithms.

Algorithms Calculating
time/s (pre-learning)

|Δf|/Hz CPS1% BAAL%

CPS1-MORL 12,031 0.0143 196 86.4

Coordinate Q-MORL 18,546 0.0132 197 96.2

Greedy-MORL 20,015 0.0129 199 97.2

Negotiated W-Learning 21,457 0.0064 200 98.5
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In summary, combining the BAAL and CPS1 indicators to
constrain the system frequency can effectively improve the
frequency quality of the system at the full time scale.

4.2 The Influence of Cooperative Reward
Function on Frequency Control
Performance
In order to verify the effectiveness of the collaborative reward
function proposed in this paper, the control performance
indicators of Algorithm 2 and Algorithm 3 can be compared.
It can be seen that the control performance indicators of
Algorithm 3 are better than those of Algorithm 2. This is
because the introduction of coordination factors between the
multi-objective state-action value function may cause the agent to
not fully explore the action set, leading to the omission of key
actions, and the use of collaborative reward functions can
effectively solve the above problems.

In summary, the introduction of a collaborative reward
function can effectively improve the system frequency quality
and various frequency performance indicators.

4.3 The Influence of Different Learning
Strategies on Control Performance
In order to verify the effectiveness of Algorithm 4 proposed in
this paper, Figure 3D shows the CPS1 curve of Algorithm 3 and
Algorithm 4. It can be seen from Figure 3E thatAlgorithm 4 has
a faster convergence rate and a more stable fluctuation situation
thanAlgorithm 3 after the occurrence of load disturbance. This is
because the Negotiated W-Learning strategy selects actions from
global considerations, which effectively improves the traditional
greedy strategy that is, easy to fall into the local optimal solution
problem.

In summary, the global search strategy Negotiated
W-Learning is more time-consuming than the local search
strategies Greedy and CoordinateQ, but the search quality is
higher.

5 CONCLUSION

This paper proposes a multi-intelligence frequency control
strategy based on multi-dimensional evaluation criteria and
cooperative reward function.

The simulation results show that: 1) Compared with the
general algorithm, the Negotiated W-Learning algorithm can
effectively improve the quality of the system frequency on the
full time scale, and better explore the global action. 2) The
collaborative reward function proposed in this paper can
improve the linear weight of the traditional multi-objective Q
function. In general, the intelligent AGC control strategy based
on the collaboration of CPS1 and BAAL learning criteria
proposed in this paper can effectively deal with the short-term
power disturbance problem caused by the grid connection of new
energy sources such as wind power, and improve the stability of
the system.
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