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Integrated systems required for renewable energy use are under development. These
systems impose more stringent control requirements. It is quite challenging to control a
pumped storage system (PSS), which is a key component of such power systems.
Because of the S-characteristic area of the PSS pump turbine, traditional proportional-
integral-derivative (PID) control induces considerable speed oscillation under medium and
low water heads. PSSs are difficult to model because of their nonlinear characteristics.
Therefore, we propose a machine learning (ML)-based model predictive control (MPC)
method. The ML algorithm is based on Koopman theory and experimental data that
includes PSS state variables, and is used to establish linear relationships between the
variables in high-dimensional space. Subsequently, a simple, accurate mathematical PSS
model is obtained. This mathematical model is used via the MPC method to obtain the
predicted control quantity value quickly and accurately. The feasibility and effectiveness of
this method are simulated and tested under various operating conditions. The results
demonstrate that the proposed MPCmethod is feasible. The MPCmethod can reduce the
speed oscillation amplitude and improve the system response speed more effectively than
PID control.

Keywords: model predictive control, machine Learning, pumped storage system, sustainable hydropower,
intelligent control

INTRODUCTION

Sustainable energy has become increasingly important due to the present-day shortage of and
pollution from fossil fuels (Albuyeh, 2013; Menon, 2013; Bozchalui, 2015; Brahman and Jadid, 2015;
Zhang et al., 2015; Güney, 2019; Hasan Mehrjerdi, 2021; Rajvikram Madurai Elavarasan et al., 2021;
Thomas Sattich et al., 2021). Consequently, renewable power generation technologies such as wind,
solar, hydro, and biomass are used widely (Rajkumar, 2011; Francesco Calise and Piacentino, 2014;
Pazouki, 2014; Zhaoyang Dong and Wen, 2014; Pazouki, 2016; Elena Smirnova et al., 2021; Eric O
Shaughnessy et al., 2021; Olusola Bamisile et al., 2021; Pradhan et al., 2021). Simultaneously, energy
storage technologies such as fuel cells, hydrogen storage, supercapacitors, and pumped storage
systems (PSSs) have attracted increasing attention (Yves Pannatier et al., 2010; Pazouki, 2014;
Brahman and Jadid, 2015; Zhang et al., 2015; Pazouki, 2016; Li et al., 2017a; Schmidt et al., 2017).
PSSs are an early form of modern energy storage and are important to the development of sustainable
power systems. A PSS operates economically by generating electricity during peak demand periods
and pumping water to storage tanks during off-peak periods; it thus plays an important role in the
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economical operation of conventional power systems and
facilitates the efficient use of renewable energy (Gurung et al.,
2016; van Meerwijk et al., 2016; Kocaman and Modi, 2017; Min
and Kim, 2017; Ruppert et al., 2017; Sam and Gounden, 2017;
Julian David Hunt et al., 2020).

As the scale of PSSs and the extent to which they are utilized in
the development of sustainable power systems increase, their
precise control has gradually emerged as an important area of
research. Existing PSS control methods can be divided into two
main categories. The methods within the first category use
proportional-integral-derivative (PID) control. These methods
are basedmainly on parametric design of each link within the PID
controller. Some representative studies follow.

Shi et al. used the d-q axis vector of a generator to design PI
parameters with the aim of achieving highly efficient peak
regulation and frequency suppression within a power grid
(Yifeng Shi et al., 2020). Zhao et al. used the power priority
control and speed priority control strategies to design PID
parameters, in addition to simulating and verifying the
superior control effect of the power control strategy (Yves
Pannatier et al., 2010; Guopeng Zhao and Ren, 2021). Several
other advanced algorithms and theories have been applied as well.
Xu et al. designed a fuzzy PID controller based on the F
fractional-order integrator and differentiator (FOPID)
(Podlubny, 1999) by using a search algorithm. This controller
optimizes the FOPID method parameters, increases the
convergence speed, and yields superior results (Xu et al., 2016;
Xu et al., 2018). Gao et al. used Hopf bifurcation theory to
determine the algebraic stability criterion of a PSS in order to
obtain ideal PID controller parameters that correspond to a stable
system state (Chunyang Gao et al., 2021a).

The control methods under the second category use
optimization algorithms to determine the best approach to
coping with the nonlinear behaviors of hydraulic systems.
Schmidt et al. used a nonlinear optimization algorithm to
determine the best stationary operating point of a PSS in
order to minimize loss across the entire system and consider
operating constraints systematically (Schmidt et al., 2017). Hou

et al. used a multiobjective optimization algorithm to design a
control strategy for starting a PSS in addition to establishing a
simulation model based on a real system to verify the feasibility of
the optimized control strategy (Hou et al., 2018; Hou et al., 2019).
Pan et al. modeled a new stability criterion by using the particle
swarm algorithm to optimize the parameters of a PSS controller;
this criterion enhanced the independent response of the PSS
significantly (Pan et al., 2021).

Among the various optimization control methods, the model
predictive control (MPC) method has a robust theoretical
foundation and substantial promise for practical applications.
The most famous explanation is called “Open Loop Optimal
Feedback” (Alamir and Allgöwer, 2008; Diego and Carrasco,
2011; Forbes MG et al., 2015). It richly illustrates the four
layers of modeling, control, optimization, and logistics in the
MPC control method and their relationship (Mayne, 2016;
Shiliang Zhang et al., 2017; Sopasakis and Sarimveis, 2017; Ye
et al., 2017). In recent years, the application of MPC to PSSs has
gradually attracted the attention of scholars. Li et al. used the
generalized nonlinear predictive control method to design a PSS
controller and simulated start-up and speed disturbance
processes under no-load conditions to verify controller
robustness and efficiency (Li et al., 2017b). Liang et al.
proposed an MPC strategy based on enumeration to
determine the optimal switching time of a PSS with the
objectives of increasing operational flexibility and promoting
frequency regulation (Liang et al., 2019). Feng et al. proposed
a new adaptive MPC strategy and conducted a simulation
experiment to verify the superiority of this strategy in terms of
adjusting the voltage and load and suppressing frequency
oscillation (Chen Feng et al., 2021). Although MPC has the
above advantages, it still has certain disadvantages when
compared to traditional control methods. For instance, MPC
modeling requires more expert knowledge and is time-
consuming to perform using traditional methods (De Souza
et al., 2010; Max Schwenzer et al., 2021. Fortunately, the
continuous development of hardware equipment and control
algorithms has decreased the MPC control time. If the control

FIGURE 1 | The overall power storage system model predictive control structure.
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effect is particularly important, MPC is much better than
traditional control methods.

Modeling is a key component of MPC but almost all systems
used in relevant contexts are nonlinear; for example, the water
pump turbine of a PSS has an S-characteristic area (Yin et al.,
2014; Li et al., 2017a; Anilkumar et al., 2017; Zeng et al., 2017;
Zhang et al., 2017). This increases the difficulty of modeling. A
variety of modeling methods have been developed in response.

Huang et al. proposed a method of predicting the complete
characteristics of a Francis pump turbine. Based on Euler’s
equation and the velocity triangle at the runner, their method
derives a mathematical model that completely describes the
characteristics of the Francis pump turbine. The results of a
simulation experiment indicated that their method was suitable
for performing a priori simulations before measuring device
characteristics (Huang et al., 2018). Gao et al. established a
high-precision, variable-speed control model for a pump
turbine based on the complete characteristic curve of the
turbine in order to describe the characteristics of the variable
speed units more effectively (Chunyang Gao et al., 2021b). Zhou
et al. proposed a real-time accurate equivalent circuit model of a
PSS via error compensation. This model reconciles the conflict
between real-time online simulation and simulation accuracy
under various operating conditions (Jianzhong Zhou et al., 2018).

In recent years, with the continual development of artificial
intelligence technology, a few machine learning (ML) algorithms
have yielded outstanding nonlinear system modeling results (R.
Martin et al., 2015; J. Sánchez Oro et al., 2016; Li et al., 2016;
Idowu et al., 2016; Robinson et al., 2017; Yong Ping Zhao et al.,
2018; Kiely et al., 2019; Ayush Thada et al., 2021). The application
of ML algorithms to PSS has emerged as an innovative idea. In this
regard, Feng et al. established a PSS model by optimizing the initial
learning parameters via prior knowledge learning and subsequently
adopting a stepped control strategy and an artificial-sheep-algorithm-
based rolling optimization mechanism. This model can replace the
existing differential geometry model (Chen Feng et al., 2021). Zhao
et al. introduced an improved Suter transformation-backpropagation
(BP) neural network interpolationmodel and used it to establish a PSS
model. Thismodel can be divided into three parts: characteristic curve
processing, data prediction, and interpolation. It can correct the
characteristic curve of a pump turbine effectively (Zhigao Zhao
et al., 2019). These modeling methods are innovative and represent
meaningful research directions. However, themodelmachines and BP
neural networks used in the aforementioned modeling methods have
extremely complex structures and use large numbers of parameters.
This increases the complexity of PSS control.

For these reasons, we propose using a MPC method based on
an ML algorithm to model PSS control. This method can convert
a nonlinear model into a linear model in high-dimensional space.
The form of the obtained model is simple and few parameters are
required. Thus, it is suitable for fast, accurate control processes.
Our paper makes the following contributions to PSS
development: 1) The pump-turbine partition model that we
establish effectively solves the common problem of difficult
modeling in the S-region and provides a feasible direction for
research on pump turbines in the s-region. 2) The machine-
learning algorithm that we propose makes full use of the data
generated in the PSS; it is an effective way of combining
experimental data with the actual system and improves the
accuracy of the actual system model. 3) We use the proposed
model within the MPC method; this solves the problem of large
control errors in the PSS at low water heads. 4) Compared to
traditional control methods, our proposed method can reduce the
shock of the pumped storage system and reduce the control
process adjustment time.

PSS MODELING

The overall MPC structure is illustrated in Figure 1. It comprises
three parts: a controlled system (a PSS), a data collection
component, and a control component. The PSS is composed
of a pump turbine, servo mechanism, penstock, and generator.
The function of the data acquisition component is to collect the
data in the PSS and provide it to the control system. It includes a
flow sensor, a torque sensor, a speed sensor, an opening sensor,
and a pressure gauge, and is responsible for collecting five
variables: the flow, torque, speed, guide vane opening, and
water head. The control system includes model generators for
pumps, turbines, servo systems, pipelines, and generators. Their
task is to generate PSS component models that the controller can

FIGURE 2 | The ML algorithm flow.
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use. The control system also includes a predictor that generates a
predictive model. In addition, the controller generates control
instructions according to the optimized algorithm in order to
manipulate the PSS control variables.

Five important state variables are used in the PSS: a is the vane
opening, n11 is the unit rotational speed, Q11 is the unit flow,M11 is
the unit torque, and h is the water head magnitude. The modeling
process aims to establish the relationships between these state

FIGURE 3 | The partition modeling flowchart.
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variables. The real values of these state variables at each moment are
collected via digital equipment and used in the control process. The
controller determines the optimal amount of control via the model
prediction process and uses the optimizer to control the PSS.

ML Algorithm
To establish a simple, accurate PSS model, we propose an ML
algorithm that can determine the linear relationships among state
variables in high-dimensional space using the given data.

Related Principles
1) Assume that the set of all state variables s(i) is given in Eq. 1. To
study the relationship between the state variables s(u) and s(v), we
assume that they satisfy the relationship given in Eq. 2, the
discrete form of which is given in Eq. 3. All of these relationships
are nonlinear.

S � {s(i)∣∣∣∣i � 1, 2,/, Ns}, (1)

FIGURE 4 | ML error. (1-A): Q11—a, (1-B1): Q11—n11, (1-B2): Q11—IVQ, (2-A): M11—a, (2-B1): M11—n11, and (2-B2): M11—IVM.
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where s(i) is the state variable in system;Ns is the number of state
variables.

zs(u)

zs(v)
� g(s(u)), (2)

where zs(u), zs(v) is the amount of change in s(u)and
s(v)respectively; g(s(u)) is a certain relational expression of s(u).

FIGURE 5 | Partition maps of (A) Q11 and (B) M11.

TABLE 1 | The Q11 fit coefficient values.

f00 f10 f01 f20 f11

QP1 −0.01872 0.01415 −0.0003348 −0.0002011 1.689e-05
QP2 −0.0002959 0.01493 −0.000485 −0.0001485 −2.84e-05
QP3 0.7111 0.0003862 −0.009679 −0.0002682 0.0002257
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s(u)j+1 � G(s(u)j ), (3)

where s(u)j , s(u)j+1 is the value of s(u) at time jand j + 1 respectively;
G(s(u)j ) is a certain discrete function of s(u) at time j.

For nonlinear relationships, Koopman proposed the
Koopman operator (KO), expressed in Eq. 4, in 1931. The KO
can be used to represent the complete nonlinear relationship
using a linear function. Notably, no universal method is available
for selecting the observation function; it is usually selected based
on the characteristics of the system and the analyst’s experience.

KO � O+G, (4)

where O(s) � [o1(s), o2(s), . . . , op(s)] is the measure function
acting on the state variables; + represent a compound operation
of functions.

2) For each value of s(v), there exists a corresponding dataset
s(u), which can be expressed as a matrix, as in Eq. 5.

DM �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
| | / |
s(u)1 s(u)2 / s(u)N

| | / |
s(v)1 s(v)2 / s(v)N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where DM is data matrix composed of N sets of values of state
variables.

We apply the KO to matrix DM to obtain the high-
dimensional data matrix K, as shown in Eq. 6. Then, we take
columns 1 through N-1 of K as Ka and columns 2 through N as
Kb, as indicated in Eqs 7, 8, respectively.

K � O(D) � [o1(D), o2(D), . . . , op(D)] � ⎡⎢⎢⎢⎢⎢⎣ | | / |
k1 k2 / kN
| | / |

⎤⎥⎥⎥⎥⎥⎦,
(6)

where K is data matrix in measurement space that apply the
measure function O(s) to DM.

Ka � ⎡⎢⎢⎢⎢⎢⎣ | | / |
k1 k2 / kN−1
| | / |

⎤⎥⎥⎥⎥⎥⎦, (7)

Kb � ⎡⎢⎢⎢⎢⎢⎣ | | / |
k2 k3 / kN
| | / |

⎤⎥⎥⎥⎥⎥⎦, (8)

where Ka,Kb is data matrix consisting of N − 1 columns of K.
According to the Koopman principle, under a suitable

observation function set, Kb and Ka share a linear relationship
that can be expressed as Eq. 9. Therefore, the estimated value of
KN can be calculated using Eq. 10.

Kb � A ·Ka, (9)

where A is a steady matrix.

k̂N � A · k0, (10)

where k̂N is the estimated value of kN; k0is the initial value of
matrix K.

The error is the deviation between the real value kN and the
estimated value k̂N, as shown in Eq. 11. If the selected

TABLE 2 | The M11 fit coefficient values.

f00 f10 f01 f20 f11 f20 f21 f12 f03

MP1 −59.36 30.46 0.661 −0.6308 −0.1178 −0.01315 0.004468 −0.00024 8.261e-06
MP2 −33.15 29.48 0.09694 −0.5434 −0.3745 0.01104 0.006425 0.000524 −0.0001
MP3 −1,597 −21.57 63.35 2.083 0.2723 −0.7389 −0.02414 0.002299 0.002267

FIGURE 6 | Comprehensive area map.
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measurement function can ensure that this error is smaller than a
threshold that we set, Ka and Kb can be considered to have a
linear relationship.

error �
∣∣∣∣∣kN − k̂N

∣∣∣∣∣, (11)

where error is the error between the true value kN and the
estimated valuek̂N.

3) WhenKa andKb share a linear relationship under a certain
observation function set, the relationship between s(u) and s(v)can
expressed using Eq. 12.

s(u) � ∑p
i�0

fi · oi(s(v)), (12)

where fi is an undetermined coefficient.

ML Algorithm Flow
The ML algorithm flow is depicted in Figure 2. It consists of the
following parts: data preprocessing, KO, establishment of the
objective equation, estimation of the state variable value, error
calculation, parameter determination, and determination of the
fit model. The details follow:

Data Preprocessing
Experimental data are generated using the experimental
platform. All s(u) versus s(v) experimental data are
collected and sorted into a data matrix D, as expressed
in Eq. 5.

KO
The observation function set is selected according to
theoretical principles and practical experience and applied
to matrix D to obtain the high-dimensional spatial data
matrix K. Then, we select the matrixes Ka and Kb, each of
which has N-1 columns, where N is a parameter that must be
determined.

Establishing the Objective Equation
We establish the objective equation given in Eq. 9 and transform
it into the form presented in Eq. 13.

A � Kb ·K+
a , (13)

where K+
a is the pseudo-inverse of Ka.

Calculation of the Estimated Value
We perform singular value decomposition on Ka to obtain the
decomposed form, as shown in Eq. 14.

Ka � U · Σ · Vp, (14)

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices, and
Σ ∈ Cn×m is a diagonal matrix.

Next, matrix A can be expressed using Eq. 15. Its eigenvalue
decomposition form is given in Eq. 16.

A � Kb · V(Σ)−1(U)p, (15)

where (U)p is the conjugate matrix of U.

FIGURE 7 | Block diagram of the servo mechanism.

FIGURE 8 | Model prediction flowchart.
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AW � WΛ � W⎡⎢⎢⎢⎢⎢⎣ λ1 1
λk

⎤⎥⎥⎥⎥⎥⎦, (16)

whereW is the eigenvectormatrix ofA andΛ is the eigenvaluematrix.
By substituting Eq. 15 into Eq. 16, we can obtain the linear

model given in Eq. 17. The value of KN can estimated in this
manner, as expressed in Eq. 18.

Φ � AW � Kb · V(Σ)−1UpW � ⎡⎢⎢⎢⎢⎢⎣ | | / |
ϕ1 ϕ2 / ϕN−1
| | / |

⎤⎥⎥⎥⎥⎥⎦, (17)

k̂N � Φ · Λk−1 · k0, (18)

where k0 � Φ+ · k1 is the initial value of kN.

Error Calculation and Parameter Determination
The error between the real and estimated values is
expressed in the form given in Eq. 19. This expression is
related to the parameter N. We gradually increase N until
the error exceeds the threshold. The minimum value of N
for which the error exceeds the threshold is set as the
parameter value.

FIGURE 9 | Speed variation during no-load start-up under 413 and 418 m of water head.
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error � ∑N
x�1

∣∣∣∣kx − Φ · Λk−1 · k0
∣∣∣∣. (19)

Fit Model Determination
As previously mentioned, the form of the fitted model is given in
Eq. 12. We use the least squares method to determine the
coefficient fi in this equation.

PSS Models
Pump Turbine Modeling Using an ML Algorithm
The pump-turbine model contains s-shaped regions and is a
complex, nonlinear model. We use machine learning algorithms
to model the pump-turbine by partition. The process is shown in
the Figure 3. A detailed description of the modeling process is
provided below.

The pump turbine model is based on two relational
expressions. That is, aand n11 are used to express Q11 and

FIGURE 10 | PSS MPC state variables during no-load start-up under 413 and 418 m of water head.
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M11 in the forms given in Eqs 20, 21, respectively. Notably, these
are two nonlinear relationships and “S” regions are present. That
is, multiple values of Q11andM11 correspond to the samen11. For
this reason, it is quite difficult to establish an accurate analytical
model.

Q11 � fQ11(a, n11), (20)

M11 � fM11(a, n11), (21)

where fQ11, fM11represent some kind of function that the
independent variables are a and n11, and the dependent
variables are Q11 and M11 respectively.

We use the preceding ML algorithm to establish the
relationship between Q11 − a, Q11 − n11, M11 − a, and M11 −
n11 and use the established relationship as a basis for model
construction, as shown in Eqs 20, 21. The details are as follows.

The Relationship Between Q11, a, and n11

Q11—a.

To analyze the relationship between Q11 and a, we use the
observation function set given in Eq. 22.

FIGURE 11 | Speed variation in the presence of a frequency disturbance under 413 and 418 m of water head.
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O(Q11) � [Q11, Q
2
11]. (22)

The error obtained using the proposed ML algorithm is
depicted in Figure 4 (1-A). In all ranges, the vane opening
satisfies the requirements outlined in this observation
function set.

Q11—n11.

We use the observation function set given in Eq. 23 to analyze
the relationship between Q11 and n11 based on the relationship
between the flow rate and the pump turbine speed.

O(Q11) � [Q11]. (23)

The ML parameter N is determined using the algorithmic flow
shown in Figure 2. In actual operation, we continue to increase
the value of N and calculate the error as shown in Eq. 19. When
this error increases significantly, the prediction model does not
match reality. The error at this point is the threshold. We use this
N as the boundary of the segmented model. The technical details
are as follows:

As n11 changes, the linear relationship obtained using the
proposed ML algorithm in high-dimensional space is as follows.

FIGURE 12 | PSS MPC state variables in the presence of a frequency disturbance under 413 and 418 m of water head.
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• The error corresponding to n11 ≥ 0 is depicted in Figure 4
(1-B1). The ML parameter N (which is n11) is set to 73. We
define the first region ofQ11 − n11 (P1 ofQ11) as 0≤ n11 ≤ 73.

• When n11 ≥ 73, we introduce an intermediate variable IVQ
and use it to find the linear relationship between Q11 and n11.
The expression for IVQ is given in Eq. 24. The error obtained
using ML is depicted in Figure 4 (1-B2). The ML parameter N
(i.e., IVQ) is set to 79.We define the second region ofQ11—n11
(P2 of Q11) as the region where n11 > 73 and IVQ≤ 79.

IVQ � n11
eQ11

. (24)

• When IVQ> 79, we use M11 � 0 as the dividing line
because M11 < 0 causes the control to run away. We
define the third region of Q11—n11 (P3 of Q11) as
IVQ> 79 and M11 > 0.

Q11—(a, n11).

Based on the aforementioned three scenarios, the ML
algorithm divides the relationship between Q11, a, and n11 into
three areas within the available range. The partition map is
illustrated in Figure 4A.

FIGURE 13 | Speed variation due to a speed disturbance under 413 and 418 m of water head.
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The Relationship Between M11, a, and n11

M11—a.

Much likeQ11—a, the observation function set given in Eq. 25
can reduce the error of the proposed ML algorithm. The resulting
error is depicted in Figure 4 (2-A). The vane openings
corresponding to all ranges fulfill the requirements under this
observation function set.

O(M11) � [M11,M
2
11], (25)

M11—n11.

Based on the relationship between the torque and speed of a
pump turbine, the observation function set given in Eq. 26 is
used.

O(M11) � [M11,M
2
11,M

3
11]. (26)

FIGURE 14 | PSS MPC state variables in the presence of speed disturbances under 413 and 418 m of water head.
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Much like the process used in step 1, we use the ML process in
Figure 2 to determine the segment boundary. The technical
details are as follows:

• The error corresponding to n11 ≥ 0 is depicted in Figure 4
(2-B1). The parameter N (which is n11) is set to 73 in the ML
algorithm. We define the first region of M11—n11 (P1 of
M11) as 0≤ n11 ≤ 73.

• When n11 ≥ 73, the intermediate variable IVM is
introduced; its expression is given in Eq. 27. The error
obtained using the ML algorithm is illustrated in Figure 4
(2-B2). The parameter N (which is IVM) in the ML
algorithm is set to 67. We define the second region of
M11—n11 (P2 of M11) as n11 > 73and IVM≤ 67.

IVM � n11
eM11/M11r

. (27)

where M11ris the rated value of M11 and has a magnitude of
220.7347.

•For IVM> 67, we define the third region ofM11—n11 (P3 of
M11) as IVM> 67 and M11 > 0.

M11—(a, n11).
The ML algorithm divides the relationship between M11, a,

and n11 into three areas within the available range. The partition
map is depicted in Figure 5B.

Fit Model
After obtaining the partitions, the principles described in Related
Principles are used to establish polynomial models ofQ11 andM11

for each partition as fit models. The polynomial term is the
function included in the observation function set. The three-part
fit model of Q11 is given in Eqs 28–30, and the fitting coefficient
values are listed in Table 1. Similarly, the three-part fit model of
M11 is given in Eqs 31–33, and the fitting coefficients are listed in
Table 2.

·P1 of Q11

QP1 � ∑i�2,j�1
i�0,j�0

QP1fij · ai · nj11

� QP1f00 + QP1f10 · a + QP1f01 · n11 + QP1f20 · a2
+ QP1f11 · a · n11.

(28)

·P2 of Q11

QP2 � ∑i�2,j�1
i�0,j�0

QP2fij · ai · IVQj

� QP2f00 + QP2f10 · a + QP2f01 · IVQ + QP2f20 · a2
+ QP2f11 · a · IVQ.

(29)

·P3 of Q11

QP3 � ∑i�2,j�1
i�0,j�0

QP3fij · ai · nj11

� QP3f00 + QP3f10 · a + QP3f01 · n11 + QP3f20 · a2
+ QP3f11 · a · n11.

(30)

·P1 of M11

MP1 � ∑i�2,j�3
i�0,j�0

MP1fij · ai · nj11

� MP1f00 +MP1f10 · a +MP1f01 · n11 +MP1f20 · a2
+MP1f11 · a · n11 +MP1f02 · n211 +MP1f21 · a2 · n11
+MP1f12 · a · n211 +MP1f03 · n311.

(31)

·P2 of M11

MP2 � ∑i�2,j�3
i�0,j�0

MP2fij · ai · nj11

� MP2f00 +MP2f10 · a +MP2f01 · IVM +MP2f20 · a2
+MP2f11 · a · IVM +MP2f02 · IVM2 +MP2f21 · a2
· IVM +MP2f12 · a · IVM2 +MP2f03 · IVM3.

(32)

·P3 of M11

MP3 � ∑i�2,j�3
i�0,j�0

MP3fij · ai · nj11

� MP3f00 +MP3f10 · a +MP3f01 · n11 +MP3f20 · a2
+MP3f11 · a · n11 +MP3f02 · n211 +MP3f21 · a2 · n11
+MP3f12 · a · n211 +MP3f03 · n311.

(33)

Comprehensive Area Model
Notably, the partition model is chosen because the device model
includes multiple expressions, each of which is divided into
multiple segments. Since these segments are related directly to
differences and coverage, we divide them into multiple regions so
that they can accurately represent the device model in a detailed
manner. Herein, the partitions M11 and Q11 are staggered
overlapping partitions. Furthermore, we combine the
partitions M11 and Q11 to obtain the comprehensive area, as
illustrated in Figure 6. The boundaries in the figure are the
parameters in the relationship between the variables determined
by the ML algorithm.

· Area 1
Condition: M11 > 0, n11 ≤ 73, IVM≤ 67.
Model: Q11 � QP1, M11 � MP1.
· Area 2
Condition: M11 > 0, n11 > 73, IVM≤ 67, a≤ ap.
Model: Q11 � QP2, M11 � MP2.
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· Area 3
Condition: M11 > 0, n11 > 73, IVM> 67, a≤ ap.
Model: Q11 � QP2, M11 � MP3.
· Area 4
Condition: M11 > 0, n11 > 73, IVQ≤ 79, a> ap.
Model: Q11 � QP2, M11 � MP2.
· Area 5
Condition: M11 > 0, n11 > 73, IVQ≤ 79, IVM≤ 67.
Model: Q11 � QP3, M11 � MP2.
· Area 6
Condition: M11 > 0, n11 > 73, IVQ> 79, IVM> 67.
Model: Q11 � QP3, M11 � MP3.

Other Models
In the description of the pump turbine model, it is necessary to
point out the relationship between unit and non-unit quantities,
which is expressed using Eqs 34–36.

n11 � n ·D/
��
h

√
, (34)

Q11 � Q/D2/
��
h

√
, (35)

M11 � M/D3/
��
h

√
, (36)

where D is the nominal diameter of the pump turbine.

Servo Mechanism Model
The servo mechanism model is nonlinear; it considers the speed
limit, position limit, position saturation limit, and suppression
governor, as depicted in Figure 7. In this model, δ is the valve
stroke, TaB is the auxiliary servomotor response time constant, Ta

is the servomotor response time constant, δmax is the valve stroke
upper limit, δmin is the valve stroke lower limit, amax is the
servomotor stroke upper limit, and amin is the servomotor
stroke lower limit.

Penstock System Model
The approximate elastic water hammer model is used to model
the penstock system. Its expression is given in Eq. 37.

h(s) � Q(s) · −Tws

0.125T2
rs

2 + hfTrs + 1
, (37)

where h(s) � L h}{ and Q(s) � L Q}{ represent the Laplace
transforms of h and Q, respectively. Tw is the water inertia
time constant, Tr is the water hammer pressure reflection
time, and hf is the head loss coefficient.

Motion Equation Model
When the generator is connected to the pump turbine, the torque
of the turbine and the load torque generated by the generator
must satisfy the motion equation (Eq. 38).

M(S) −ML(S) � S · (n(s) · 2B), (38)

where M(s) � L M}{ and ML(s) � L ML}{ represent the Laplace
transforms of M and ML, respectively. B is the inertia time
constant of the generator.

MPC PROCESS

Model Prediction
After obtaining the model by using the method introduced in the
preceding section, we can predict the value of the state variable.
The process is depicted in Figure 8. The details of each module
are introduced as follows.

1. Calculate the model calculation value s(k) at time k using the
equipment model.

2. Subtract the model-calculated value s(k) from the real value
sreal(k) at time k to obtain the deviation value Δs(k). The true
value comes from the data acquisition component.

3. Calculate the model calculation value s(k + 1) at time k+1
using the equipment model.

4. Add the deviation value Δs(k) at time k and the calculated
value s(k + 1) of the model to obtain the predicted value
ŝ(k + 1) at time k+1.

5. Calculate the error error(k + 1) between the predicted value
ŝ(k + 1) and the real value sreal(k + 1) at k+1.

6. Judge whether the error is lower than the limit. If the error is
lower than the limit, the prediction level meets the
requirements and the prediction model is obtained directly.
If the error exceeds the limit, return to step 2 and continue the
model prediction process.

The predicted values of each of the PSS variables are as follows.
Prediction using the pump turbine model:

{ Q̂11(k + 1) � fQ11(â(k + 1), n̂11(k + 1)) � Q11(k + 1) + ΔQ11(k)
ΔQ11(k) � Qreal

11 (k) − Q11(k) ,

(39)

{ M̂11(k + 1) � fM11(â(k + 1), n̂11(k + 1)) � M11(k + 1) + ΔM11(k)
ΔM11(k)� Mreal

11 (k) −M11(k) .

(40)

Prediction using the conversion relationship between unit and
non-unit quantities:

n̂11(k + 1) � n̂(k + 1) ·D/
�������
ĥ(k + 1)

√
, (41)

Q̂11(k + 1) � Q̂(k + 1)/D2/
�������
ĥ(k + 1)

√
, (42)

M̂11(k + 1) � M̂(k + 1)/D3/
�������
ĥ(k + 1)

√
. (43)

Prediction obtained using the penstock system model:

{ ĥ(k + 1) � fh(Q̂11(k + 1)) � h(k + 1) + Δh(k)
Δh(k) � hreal(k) − h(k) . (44)

Prediction using the motion equation model:

{ n̂11(k + 1) � fn11(M̂11(k + 1), M̂L(K + 1)) � n11(k + 1) + Δn11(k)
Δn11(k) � nreal11 (k) − n11(k)

.

(45)
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Optimizer
In this study, we use optimization algorithms as the MPC
strategy. The corresponding set of state variables is given in
Eq. 46.

X � {x1, x2, x3, x4, x5}
� {â(k + 1), n̂11(k + 1), Q̂11(k + 1), M̂11(k + 1), ĥ(k + 1)} .

(46)

The goal of PSS control is to regulate the vane opening
such that the turbine operates at the required speed and the
system achieves the highest efficiency. Therefore, the
objective function is the reciprocal of the turbine
efficiency, as shown in Eq. 47.

J � min
X

{f(X) � Q̂11(k + 1)pĥ(k + 1)/M̂11(k + 1)}. (47)

The optimization constraints include equality and inequality
constraints. The equality constraints are represented by themodel
predictions established in Eqs 39–45. The inequality constraints
include the upper and lower limits of each state variable, as
described in Eqs 48–52.

âmin(k + 1)≤ â(k + 1)≤ âmax(k + 1), (48)

n̂11min(k + 1)≤ n̂11(k + 1)≤ n̂11max(k + 1), (49)

Q̂11min(k + 1)≤ Q̂11(k + 1)≤ Q̂11max(k + 1), (50)

M̂11min(k + 1)≤ M̂11(k + 1)≤ M̂11max(k + 1), (51)

hmin(k + 1)≤ h(k + 1)≤ hmax(k + 1). (52)

The optimization process uses the interior point algorithm,
which works well in practice. It has been proven that in some
cases, this method can solve a problem to a specified accuracy by
performing operations on various polynomials that do not exceed
the dimension of the problem.

NUMERICAL EXPERIMENTS AND
ANALYSIS

To verify the effectiveness of MPC, we measured and
collected data from a PSS in China and conducted
simulation experiments using the MATLAB software
environment (Mathworks, 2017). The experiment
proceeded in three parts, each of which corresponded to
no-load start up, frequency disturbance, or speed
disturbance. The experiment was performed under
medium and low water heads because the PSS easily enters
the S-characteristic area under these head levels. We set the
water head h to 413 and 418 m and the no-load opening to 0.5.
In addition, we used a PSS PID control scheme that was
proposed in a previous study for comparison.

No-Load Start-Up Condition
In this part of the experiment, the PSS was in the no-load
condition and the pump turbine was started from a standstill.
MPC and PID control were implemented when the startup speed
reached 90% of the rated speed. The experiment was performed

for 120 cycles, each of which ran for approximately 0.2 s. The
speed results are depicted in Figure 9. The pump turbine state
variable results are depicted in Figure 10. The results indicate that
MPC performs better than PID control of PSSs because MPC
provides a smaller overshoot and faster response speed.

Frequency Disturbance Condition
In this part of the experiment, the PSS was operated under no
load. For the system frequency to be disturbed at the 10th
cycle, the PSS speed needed to be increased to 1.02 times the
rated speed. The experimental results obtained under MPC
and PID control are depicted in Figure 11 and Figure 12.
Both control methods can fulfill the frequency disturbance
requirements. Under PID control, the speed overshoots the
threshold and the response time is longer. In contrast, the
speed overshoot is smaller and the new speed requirements
are reached quickly under MPC control.

Speed Disturbance Condition
In this part of the experiment, the load generator was
activated at the 10th cycle and the load torque was
increased in steps. At this point, the speed of the pump
turbine was disturbed such that it decreased abruptly. The
experimental results obtained under MPC and PID control
are depicted in Figure 13 and Figure 14. Under PID control,
the speed is disturbed in the S-characteristic region. This
produces strong oscillation and the speed takes substantial
time to stabilize. In contrast, the speed oscillation amplitude
is smaller and the speed stabilizes within a short time under
MPC control.

Advantages of MPC
The results described in the preceding section indicate that the
MPC and PID control methods can fulfill PSS S-characteristic
area control requirements that are otherwise difficult to meet.
However, the MPC method offers the following advantages:

• The MPC method can achieve effective control under the
conditions of no-load start-up, frequency disturbance, and
speed disturbance.

• The model built using ML can accurately represent the PSS.
The control program calculation time can be reduced
because the established model is simple.

• Since the MPC method uses a global optimization
algorithm, the optimal solution within the partition can
be calculated directly. Therefore, PSS oscillation in the S
feature area can be reduced effectively.

• Under the MPC method, the change of state variable is
gentle. Thus, it is substantially conducive to reducing PSS
equipment loss.

CONCLUSION

We proposed an MPC method for PSSs. A ML algorithm based
on the Koopman theory was proposed for PSS modeling. A
partition model of the pump turbine used in PSSs was
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established. This allowed us to express the complex nonlinearity
of the S-characteristic region using a simple polynomial model.
The experimental results indicated that the MPC method
quickly reached the control target under conditions of no-
load start-up, frequency disturbance, and speed disturbance.
This method can more effectively suppress oscillation of the
turbine rotation speed in the S-characteristic region than
existing control methods and has a faster response speed. The
proposed method has practical promise because it learns
device characteristics from experimental data and is not
limited by device type. In the future, we will improve the
accuracy of ML to improve the effect of MPC and study the
performance of the proposed method under other working
conditions.
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