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The periodicity and non-stationary nature of photovoltaic (PV) output power make the
point prediction result contain very little information, increase the difficulty of describing
the prediction uncertainty, and it is difficult to ensure the most efficient operation of the
power system. Effectively predicting the PV power range will greatly improve the
economics and stability of the grid. Therefore, this paper proposes an improved
generalized based on the combination of wavelet packet (WP) and least squares
support vector machine (LSSVM) to obtain higher accuracy point prediction results.
The error mixed distribution function is used to fit the probability distribution of the
prediction error, and the probability prediction is performed to obtain the prediction
interval. The coverage rate and average width of the prediction interval are used as
indicators to evaluate the prediction results of the interval. By comparing with the results
of conventional methods based on normal distribution, at 95 and 90% confidence levels,
the method proposed in this paper achieves higher coverage while reducing the average
bandwidth by 5.238 and 3.756%, which verifies the effectiveness of the proposed
probability interval prediction method.

Keywords: meteorological factors, wavelet packet decomposition, least squares support vector machine, the
improved generalized error mixture distribution, short-term probability interval prediction

1 INTRODUCTION

In recent years, the depletion of fossil fuels and the widespread environmental pollution have become
global issues that must be urgently solved. Increasingly more countries and regions are searching for
new energy sources to replace fossil fuels. Therefore, renewable energy sources, such as solar energy
and wind energy, have attracted more attention worldwide owing to their advantages of being
abundant, safe, and clean. In the first half of 2020, China’s newly installed photovoltaic power
generation capacity reached 11.52 million kilowatts, including 7.082 million kilowatts of centralized
photovoltaic and 4.435 million kilowatts of distributed photovoltaic. By the end of June, the
cumulative installed capacity of photovoltaic power generation had reached 216 million kW,
including 149 million kilowatts of centralized photovoltaic power and 67.07 million kilowatts of
distributed photovoltaic power. The randomness, fluctuation, and intermittent nature of PV power
impose enormous obstacles to the integration of solar energy into the power grid (Ueda et al., 2008;
Armstrong, 2014; Europe, 2014).
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Current research on forecasting short-term PV power
generation requires numerical weather prediction (NWP) with
consideration to various meteorological factors, combined with
different power forecasting models (continuous, physical,
statistical, artificial intelligence methods, multiple combined
methods, and so on). However, all of these methods use
traditional prediction models. The so-called point prediction
method consists of inferring the output value of PV power
generation at a certain time in the future according to certain
laws (Mao et al., 2018; Huang et al., 2019a; Yang et al., 2019; Mao
et al., 2020). Owing to the uncertainty of PV output power, the
point prediction results do not often achieve the expected
accuracy rate. Moreover, the point forecast information is
minimal, and the grid dispatcher cannot learn the reliability of
the predicted value and make effective decisions with regard to
power system dispatching. Interval prediction can obtain the
point prediction value of PV power generation, confidence level
of the prediction value, and fluctuation range of the output power
(Mao and Xin, 2018; Huang et al., 2019b). Obviously, interval
prediction is more practical for formulating annual power and
maintenance plans, arranging conventional unit combinations,
formulating daily power generation plans, optimizing the power
system rotation reserve, scheduling in real-time, new energy
consumption, enhancing the flexibility of heating system and
improving the stability of power system (Li L.-L. et al., 2021;
Zhang et al., 2021).

A previous study (Han et al., 2019) proposed a multi-mode PV
power generation interval prediction method that considers the
seasonal distribution of power fluctuation characteristics. First,
the PV output power, absolute power deviation, and relative
change rate were analyzed to understand the seasonal distribution
characteristics of PV output, which fluctuates over time. Then,
multiple seasonal models based on the extreme learning machine
(ELM) were established for the deterministic prediction of PV
power. The deterministic prediction error was fitted by kernel
density estimation to complete the PV power interval prediction.
Another study (Xiao-ping and Yang, 2019) proposed an interval
state estimation method for active power distribution networks
with consideration to the randomness of wind turbines and PV
output. This method uses an ELM to model the randomness of
wind turbine and PV output in the form of interval numbers,
performs ultra-short-term predictions for the wind turbine and
PV output intervals, and uses the output interval as a pseudo
measurement based on the Application Delivery Network (ADN)
particle swarm optimization state estimation. In (Mashud and
Irena, 2016), a 2-dimensional (2D) interval prediction method is
proposed to predict aggregate statistical data and allocate PV
power values in future time intervals. This method is more
suitable for predictors compared with point prediction and has
high application variability. The proposed method called Neural
Network Ensemble for 2D-interval forecasting (NNE2D)
combines the selection of variables through mutual
information and neural network integration to calculate the
2D interval predictions. The two interval boundaries are
expressed in percentiles. In (Luo et al., 2015), a set pair
analysis method is proposed to construct prediction intervals
based on the scientific division of the meteorological data range.

First, the historical data were normalized and similar days were
selected for the days to be predicted. Subsequently, pairs were
constructed and the Identical Discrepancy Contrary (IDC)
distance was calculated. In (Rana et al., 2015), a particular
method for 2D interval prediction is proposed to predict a
series of expected solar output values for future time intervals.
Using the model called Support Vector Regression for 2D-
interval forecasting (SVR2D), this method adopts support
vector regression as the prediction algorithm, and can directly
calculate the 2D interval forecasts from previous historical solar
and meteorological data. In (Golestaneh and Gooi, 2017), a non-
parametric method is proposed to reliably predict the intervals
based on radial basis function (RBF) neural network prediction.
The lower upper bound estimation method is suitable for
constructing the prediction interval. Based on similar daytime
principles, a historical power data record was selected by
analyzing the PV power generation factors. Then, strong
correlations that favor historical data as a sample model
facilitated the convergence. In (Plessis et al., 2021), aiming at
the macro-level model to capture the uncertainty of the low-
power output dynamic capability of a large multi-megawatt
photovoltaic system, a neural network-based aggregate
inverter-level prediction method is proposed. In (Liu and Xu,
2020), it is proposed to integrate three different random learning
algorithms (extreme learning machine, random vector function
chain and random configuration network) into a hybrid
prediction model to predict photovoltaic power generation
probability. In (Ska et al., 2021), a new type of small model is
proposed, which considers the operating status of each part of
the photovoltaic system, and is used to predict the photovoltaic
temperature, the correlation coefficient of the solar irradiance in
the plane, and the power output. In (Li J. et al., 2021), an
improved beam group optimization algorithm is proposed to
reduce the fuel cost of the power system. The algorithm uses the
tent mapping to generate the initial population, and uses the
gray wolf optimizer to generate the global search vector to
improve the global search ability. The improvement of the
algorithm has certain reference significance for the prediction
link. In (Ma et al., 2021), the short-term forecast errors of
photovoltaic power generation mainly come from numerical
weather forecasting and forecasting process, and a short-term
photovoltaic power forecasting method based on irradiance
correction and error forecasting is proposed to improve the
forecasting accuracy from the perspective of correcting NWP
information. In the above-mentioned studies, non-parametric
estimation methods were used to predict the interval
probability. Because non-parametric estimation methods do
not assume the function and do not set any parameters, they
can avoid the effect of selecting an incorrect prediction error
function. However, the specific distribution function of the
prediction error cannot be obtained. The parameter
estimation method uses an optimized normal distribution to
fit the probability distribution of the prediction error and then
predicts the probability.

This study introduces an improved generalized error mixture
distribution function to fit the probability distribution of the
prediction error and perform probability prediction to obtain the
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prediction interval. Factor analysis (FA) is used to reduce the
dimensionality of meteorological factors and reduce the number
of input variables. A similar day algorithm is used to select data
similar to the weather factors predicted as the training set.
Prediction results were obtained for two different weather
types. Using the LSSVM to solve small sample data and the
ability to approximate nonlinear functions, the obtained
fundamental frequency signal and multi-layer high-frequency
signal are used as the input of the LSSVM to perform
frequency-by-frequency prediction, and finally different scales
The output results above are superimposed and synthesized to
obtain the predicted value of the output power of the original PV
power station. Finally, FCM clustering is used to build the
improved generalized error mixture distribution function.
According to the previously obtained prediction error of the
WP-LSSVM model, the probability density distribution function
is used for fitting. The upper and lower bounds are determined
according to the error distribution, and interval prediction is
carried out. The simulation results reveal that the proposed
method performed better compared with the prediction
interval. The scale parameters of the improved generalized
error mixed distribution function can evaluate the prediction
results at different time and space scales, and provide uncertain
information and reliability evaluation basis for the safe operation
of the power system and the dispatching operation of the
power grid.

2 SELECTION OF SIMILAR DAYS

This study used FA to screen the input variables of the predictive
model, find hidden representative factors, and group variables
of the same nature into one factor to reduce the number of
variables. Then, meteorological factors with a larger
contribution rate were selected as the input variables of the
prediction model. NWP information contains various
meteorological factors in each region, and the amount of
data is very large. Adding too much data to the model will
reduce the generalization ability of the model. Generally, there is
a certain correlation between the factors that affect the power of
photovoltaic power generation. The information provided by
multiple types of NWP overlaps to a certain extent, which will
increase the complexity of calculation. The factor analysis
method is used to selectively extract the NWP information,
and the main components that have a greater impact on the
photovoltaic power are obtained as the input of the prediction
model. This method simplifies the network structure and
improves the computational efficiency, but does not affect
the accuracy of the final result prediction.

This paper presents an example regarding the NWP data of a
PV power station. For details on the data used in this study, please
refer to subsection B of Section VI. This study considered the
radiation, atmospheric density, temperature, and humidity as
common factors in the samples. For n-dimensional data,
x � (x1, x2,/, xn)’, Let its mean value be u � (u1, u2,/, un)’.
The general model of factor analysis is:

x � u + Af + l

In the formula, A � (aij)n×m is the factor correlation
coefficient matrix; f � (f1, f2,/, fm)’ is the common factor;
aij is the correlation coefficient on the common factor fj of the
variable xi; l � (l1, l2,/, ln) is the recessive factor,
i � 1, 2,/, n; j � 1, 2,/, m. This article defines the common
factors of the sample as: radiation factor, atmospheric density
factor, temperature factor, humidity factor. The results obtained
by performing FA on seven meteorological factors that affect the
PV output are presented in Table 1.

As can be seen in Table 1, meteorological factors, such as
direct radiation, temperature, and humidity, have a high
contribution rate to certain common factors, and the absolute
values of their correlation coefficients exceed 0.7. Therefore, the
direct normal radiation (corresponding to short-wave radiation),
temperature (corresponding to temperature), and humidity
(corresponding to humidity) were considered as the input of
subsequent models.

Similar days refer to the historical days in a quarter that have
the same weather type as the forecast day. Data obtained on
similar days can often effectively reflect the output trend under
the weather type conditions. The model’s prediction accuracy rate
can be greatly improved by selecting a historical day that is
strongly correlated with the day to be predicted as the model’s
training set. To select the date closest to the predicted weather
type and season type from the historical records of PV power
generation systems, this study considered three meteorological
factors (direct radiation, temperature, and humidity) obtained
from FA as the environmental factors to be considered in the
similar day selection. The assessment was made by considering
the sunny day type as an example. Similar days were selected from
the historical data of sunny days, and 14 similar days were
selected as the training set of subsequent models. Similarly,
data can be obtained for the similar days of other weather
types. The similar day selection algorithm steps are as follows:

Step 1. Select a historical record consistent with the forecast
weather type and season type to form an “n” sample set D.
Step 2. Calculate the Euclidean distance d of the historical
record in the day to be predicted, and the sample set D; d is
calculated as follows:

d � sqrt((∑3

j�1Yj − Xij)2) (1)

In Eq. 1, i � 1, 2,/, n and Y1, Y2, Y3 are the daily average
direct radiation, average daily temperature, and average daily
humidity of the day to be predicted; Xi1, Xi2 and Xi3 denote the
average daily direct radiation, average daily humidity, and
average daily temperature recorded in the article of sample setD.

Step 3. The Euclidean distance set d � {d1, d2,/, dn} is
arranged in descending order, and the date corresponding
to the relatively small value of the 14th day of the month is a
similar day corresponding to the predicted day.
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3 PHOTOVOLTAIC OUTPUT POWER POINT
PREDICTION

3.1 WP Theory
Wavelet Analysis is a signal time-scale (time-frequency)
analysis method, and has the characteristics of multi-
resolution analysis. Additionally, it is capable of
characterizing the local characteristics of the signal in the
time and frequency domains, that is, the time window and
frequency window. The time-frequency localization analysis
method can be changed to detect the instantaneous
anomalies entrained in the normal signal, and display the
signal components. This method is known to function as a
‘microscope’ for signal analysis (Puthenpurakel and Subadhra,
2016). Moreover, WP analysis can provide a more refined
method for signal analysis because it divides the frequency
band into multiple levels. Further, it decomposes the high-
frequency part, which is not subdivided, using multi-
resolution analysis and can consider the characteristics of the
analyzed signal. This method selects the corresponding
frequency band to match the signal spectrum, and thereby
improves the time-frequency resolution and increases the
potential for wider application (Liu et al., 2013). Among
them, the Haar function is a simple and commonly used
orthogonal wavelet function with tight support in wavelet
analysis. The Haar WP is a WP that has the Haar function
as the wavelet basis function. The three-layer decomposition of
the WP decomposition tree is shown in Figure 1.

In Figure 1, S represents the decomposed signal, A represents
the low-frequency part of the signal, D represents the high-

frequency part of the signal, and the attached number
represents the number of decomposition layers, that is, the
number of scales.

The decomposition algorithm and reconstruction algorithm of
the WP are described below.

Let us assume that gn
j(t) ∈ Un

j ; then, g
n
j(t) can be expressed as

follows:

gnj (t) �∑t
d j,n

l un(2jt − l) (2)

The WP decomposition algorithm operates as follows: find
{dj+1,nl } and {dj,2n} from {dj,2n+1l }, where⎧⎪⎪⎨⎪⎪⎩ d j,2n

l �∑
k
ak−2ld

j+1,n
k

dj,2n+1
l �∑

k
bk−2ld

j+1,n
k

(3)

The WP reconstruction algorithm operates as follows: from
{dj,2nl } and {dj,2n+1l } find {dj+1,nl }, where

dj+1,n
l �∑

k
[hl−2kd j,2n

k + gl−2kd
j,2n+1
k ] (4)

In Eq. (3), a and b are the decomposition filter banks,
j � 1, 2,/, J, and n � 1, 2,/, 2j − 1, J are the WP
decomposition layers.

3.2 LSSVM
The LSSVM regression applies the LSSVM to the regression
estimation proposed by Suykens in 1999 (Zhu and Wei, 2013).
Unlike the two previously mentioned algorithms, the LSSVM
uses a quadratic loss function and transforms the optimization
problem into a linear equation problem instead of a quadratic
programming problem. Additionally, the constraints also become
equality constraints instead of inequality constraints. Although
the LSSVM does not have the standard high accuracy rate, it can
ensure that the obtained solution is the global optimal solution
because it solves the linear equation problem using large datasets.
Additionally, it has the advantages of requiring less
computational resources and achieving faster solution and
convergence speed.

The algorithm for LSSVM regression (Miranian and
Abdollahzade, 2013) is as follows:

Set a known training set as follows:

T � {(x1, y1), ..., (xl, yl)} ∈ (X*Y)l

where xi ∈ X � Rn, yi ∈ Y � R, i � 1, 2,/, l.

TABLE 1 | Correlation coefficients of factor analysis.

Direct
normal
radiation

Diffuse
horizontal
radiation

Temperature Humidity Pressure Wind
direction

Wind
speed

Contribution
rate

Cumulative
contribution

rate

0.0844 0.1568 0.8153 −0.7863 0.1183 0.0755 0.6689 37.0405 37.0405
0.2608 0.5427 0.4517 −0.1718 0.0015 0.0707 0.1461 11.5469 48.5874
0.9493 0.3990 0.2765 −0.0236 0.0023 0.0972 0.0460 11.2473 59.8347
0.0236 0.0258 0.0546 −0.0725 0.5579 0.1151 0.2658 10.3750 70.2097

FIGURE 1 | WP decomposition algorithm.

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7573854

Yang et al. Short-Term PV Power Interval Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Select appropriate parameters and appropriate kernel
functions. This paper chooses the radial basis function as the
kernel function of the SVM.

Construct and solve the following problems:

max
w,b,e

J(w, e) � 1
2
⎛⎝WTW + γ∑l

i�1 e
2
i
⎞⎠ (5)

s t. yi � WTϕ(xi) + b + ei, i � 1, 2,/, lwhere ϕ(•) is the
kernel space mapping function, w is the weight vector, ei is
the error variable, b is the deviation, J is the loss function, and c is
an adjustable constant.

Constructable Lagrangian function:

L(w, b, e, α) � J(w, e) −∑ i�1αi{WTϕ(xi) + b + ei − yi} (6)

where αi ∈ R is the Lagrangian multiplier. Find the partial
derivatives of Eq. 6 with respect to ei, αi, w, and b,
respectively, and then eliminate w and ei to obtain the
following equation:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0 1u*1

11*u ϕ(xi)Tϕ(xj) + 1
γ
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ ba] � [ 0
y
] (7)

where 11*u � [1, 1, ..., 1] � 1Tu*1, α � [α1, α2, ..., αl], and
i, j � 1,/, l. From Eq. 7, αi and b can be solved.

The following decision function is constructed:

f (x) �∑l

i�1 αiϕ(x)Tϕ(xi) + b (8)

Eq. 8 is the regression estimation of the problem, where
ϕ(x)Tϕ(xi) is the part of the kernel function.

Considering the PV power station output power and trend
signal a of the NWPmeteorological data as examples, the training
process of the LSSVM is as shown in Figure 2. LSSVM maps the
input data from low-dimensional to high-dimensional space
through nonlinear mapping, thereby constructing the optimal
linear regression function. The key of the LSSVM model lies in
the choice of the internal kernel function. In this paper, the radial
basis function is selected as the kernel function. LSSVM
establishes a network model through formulas Eq. 5–8 to
capture the nonlinear relationship between input and output.

In Figure 2, the construction of each other frequency band
model also accords with the construction method of the above-
mentioned trend signal model. Finally, the results obtained for
different scales were superimposed and combined to obtain the
final prediction result.

4 THE IMPROVED GENERALIZED ERROR
MIXTURE DISTRIBUTION PARAMETER
ESTIMATION
4.1 The Improved Generalized Error
Distribution Model
The probability density curve can reflect its prediction error
range, can also estimate the output of a given confidence
interval, so it is very important to choose an appropriate
probability density fitting model. Previous research on
statistical characteristics of the prediction error is more, such
as Beta distribution, Laplace distribution and Cauchy
distribution, but the fitting effect is not ideal. Combined with
the characteristics of the forecast error spikes and light tails and
the more flexible shape, an improved generalized error
distribution model is adopted. This study introduced the
improved generalized error distribution function to fit the
probability distribution of the prediction error and perform
probability prediction to obtain the prediction interval. The
prediction effect is better compared with that based on the
optimized normal distribution and probability prediction.
Additionally, the scale parameter of the improved generalized
error distribution function can be used to evaluate the size of the
prediction error at different time and space scales. The function
expression is:

f (x, v, λ, α, μ) � v

λΓ(1v) exp( − ∣∣∣∣∣∣x − μ

λ

∣∣∣∣∣∣α) (9)

λ � ⎧⎨⎩2(2−2
v)Γ(1v)

Γ(3v) ⎫⎬⎭1/2

(10)

where Γ(·) is the gamma function, x is the Wind power forecast
error per-unit value, v and λ are shape parameters, α and μ are the
slope parameters and position parameters that are added in
combination with the error distribution characteristics.

4.2 FCM Clustering and Entropy Weight
Method
FCM is a partition-based clustering algorithm. Its idea is to
maximize the similarity between objects divided into the same
cluster and minimize the similarity between different clusters.
FCM is an improvement of hard C-means algorithm, which is
hard for data partitioning, while FCM is a kind of flexible fuzzy
partitioning. Hard clustering classifies each object to be
recognized strictly into a class with specific characteristics,
while FCM establishes an uncertain description of the sample
category. Therefore, FCM can reflect the objective world more
accurately and becomes the mainstream method of cluster
analysis. The FCM algorithm is described as follows:

Data set: X � {X1, X2/Xn}to find a partition matrix U �
[uji] and cluster center V � {v1, v2/vc} from X to make the
objective function, while m is a weighted index, m ∈ [1,+∞].

J(U ,V) � min⎛⎝∑n

j�1 ∑c

i�1 u
m
ji d

2
ji
⎞⎠ (11)

FIGURE 2 | Trend signal of LSSVM algorithm prediction model.
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The elements of matrix U meet
uji ∈ [0, 1]j � 1,/, n,i � 1,/, c and the matrix variable uji to
meet ∑c

i�1 uji � 1.

0< ∑n

j�1 uji < n (12)

The Euclidean distance (d) between data xi and the cluster
center vj is as follows:

dji �‖xj − vi‖ (13)

The Lagrange multiplier was then introduced into 9) to
generate an objective function, as follows:

J(U ,V ,Y) �∑n

j�1 ∑c

i�1 u
m
ji d

2
ji −∑n

j�1 yi
⎛⎝∑c

i�1 u
m
ji − 1⎞⎠ (14)

Once an objective function is derived, the membership degree
and cluster center formulae are obtained as follows:

uji �
( 1
d2ji
) 1

(m−1)

∑c
k�1 ( 1

d2jk
) 1

(m−1)
(15)

and

vi �
∑n

j�1 (uji)mxj∑n
j�1 (uji)m (16)

Next, execute the steps of FCM clustering algorithm.

1) Calculate the minimum distance between two samples α>0.
Generates a distance matrix D, the two closest samples are
placed in a class, and the midpoint of the two samples is used
as the center of the first type.

2) Use matrix D to select the distance threshold α to calculate all
samples whose distance is greater than α from the two samples
in the first category. The two closest points in these samples
are then used as a category, while the midpoint of the two
points located in the center of the cluster constitutes the
second category.

3) Samples with a distance greater than α are extracted from the
remaining samples. The two points with the shortest distance
are used to define a class, and the midpoints of the two
samples define a clustering center.

4) Repeat Step 3 until Class C is determined
5) Use the results of step 4 to set the initial parameters and

cluster centers.
6) The degree of membership is calculated by formulas Eqs

13, 15
7) Use formulas Eqs 14, 16 to determine a new cluster center,
8) Use formula Eq. 12 to calculate the objective function. If this

judgment is less than the threshold, the cluster ends;
otherwise, return to step 6.

The different weighting methods significantly affect the
modeling effect of the combined model. The entropy weight
method is a method to determine the weight of each indicator in

the system through the information entropy theory, which can
reduce the influence of subjective factors and improve the
credibility and accuracy of the analysis. It relies on the
magnitude of entropy to evaluate the degree of dispersion of
indicators. The smaller the entropy value, the greater the
dispersion, the smaller the uncertainty, and the greater the
amount of information, the greater the role of this indicator in
the comprehensive evaluation, and the greater the weight. This
study uses the entropy method to determine the weight of each
sub-model.

Suppose there are n objects andm evaluation indicators.Xij is
the data of object i under index j, calculate the proportion of
object i under index j in the index.

Pij � Xij∑n
i�1 Xij

j � 1, 2, . . . ,m (17)

Calculate the information entropy of index j:

ej � − 1
ln n

∑n

i�1 Pij lnPij (18)

If Pij � 0 , then lim
Pij → 0

Pij lnPij � 0.
Determine the weight of index j:

ωj � dj∑m
j�1 dj

� 1 − ej
m − ∑m

j�1 ej
(19)

Where the coefficient of difference of index j is dj � 1 − ej. The
larger the dj, the more important the indicator.

The composite score of object i:

si �∑m

j�1 ωjXij (20)

4.3 Establishment of the Improved
Generalized Error Distribution Model
The improved generalized error mixture distribution model is
obtained by linearly combining multiple improved generalized
error distribution models. The sum of the weights of every single
model is 1. The distribution mixture has the advantages of simple
structure, flexible shape, and good fitting performance; its
parameter weights are obtained by FCM clustering. Figure 3
shows the flowchart for the construction of the
distribution model.

5 SHORT-TERM PV POWER GENERATION
PROBABILITY INTERVAL PREDICTION
PROCESS BASED ONWP-LSSVMAND THE
IMPROVED GENERALIZED ERROR
DISTRIBUTION

TheWP analysis can decompose the randomness and uncertainty
of the signal to separate the prediction and analysis, which
enables the prediction and analysis of the trend part that does
not include interference. Simultaneously, support vector
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machines can solve small sample size, nonlinear, and high
dimensional pattern recognition problems. The LSSVM has
faster convergence speed and is more suitable for short-term
prediction. Therefore, the authors used a forecasting method that
combines the WP and LSSVM to forecast the PV output interval.
The general process is shown in Figure 4.

The basic principles of the PV output interval prediction based
on the WP and LSSVM are divided into the following steps with
Haar as the wavelet basis function:

Step 1. Normalize the NWP data and power data, obtain the
main factors that affect the power by carrying out FA, and
obtain the training sets using the Euclidean distance for
different weather types;
Step 2. Input the training set data into the WP-LSSVM, and
analyze the point prediction error results;
Step 3. The improved generalized error distribution model
based on the FCM algorithm is used to fit the prediction error.
The corresponding interval prediction results are obtained
according to different confidence levels.

6 ANALYSIS OF PREDICTION RESULTS
BASEDONWP-LSSVMPOINT PREDICTION
MODEL
6.1 Evaluation Indicators
6.1.1 Evaluation Indicators for Point Prediction
By considering the advantages and disadvantages of point
prediction results, this study used relevant indicators, in the
following order: root mean square error (RMSE), qualified rate
(QR), mean relative error (MRE), correlation coefficient, and
accuracy rate. The indices are expressed by Eqs 21–26.

RMSE �

"""""""""""""""""
1
n
∑n

i�1 (PMi − PPi

Capi
)2

√√
(21)

QR � 1
n
∑n

i�1 Bi × 100% (22)

Bi �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 (1 − |PMi − PPi|
Cap

)≥ 0.75

0 (1 − |PMi − PPi|
Cap

)< 0.75
(23)

MRE � ∑n
i�1|PMi − PPi|
Cap•n

(24)

The correlation coefficient is expressed as follows:

r �
∑n

i�1[(PMi − PM)•(PPi − �PP)]"""""""""""""""""""""""""""""∑n
i�1 (PMi − PM)2•∑n

i�1 (PPi − �PP)2√ (25)

The accuracy rate is expressed as follows:

r1 � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 −
"""""""""""""""""
1
n
∑n

i�1 (PMi − PPi

Cap
)2

√√ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (26)

where PMi is the actual power at time i; PPi is the predicted power
at time i; PM is the average value of the actual power of all
samples; �PP is the average of all predicted power samples; CAPi is
the daily average boot capacity; n is the number of daily samples.

6.1.2 Evaluation Indicators for Interval Prediction
The prediction interval’s coverage probability represents the
probability of the target value falling within the prediction

FIGURE 3 | Establishment of the improved generalized error mixture distribution model.
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interval and is a key indicator for evaluating the interval’s
prediction reliability. A high coverage probability indicates
that more target values will fall within the constructed
prediction interval and vice versa. The definition formula is
expressed as follows:

Pc � 1
N
∑N
i�1

εi (27)

where PC is the coverage probability of the prediction interval;N
is the total number of samples; εi is a variable. If the target value yi

is between the upper boundary Ui and the lower boundary Li of
the prediction interval, then, εi is 1; otherwise εi is 0.

εi � { 1 yi ∈ [Li,Ui]
0 yi ∈ [Li,Ui] (28)

Generally, the indicator for evaluating the performance of
interval prediction is the interval prediction coverage probability.
If the target value limit is used as the upper and lower boundary of
the prediction interval, then, the 100% interval prediction
coverage probability can be easily realized. If an interval is too
wide, this will increase the uncertainty of the prediction results,
which will in turn reduce the prediction result for system
scheduling and lead to the loss of decision-making value.
Therefore, it is necessary to quantitatively evaluate the
prediction interval width. The commonly used interval

FIGURE 4 | Flow chart of short-term PV power generation probability interval prediction based on mixture of WP-LSSVM and the improved generalized error
distribution.
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prediction average width measurement index is abbreviated as
PINAW and expressed as follows:

WA � 1
NR

∑N

i�1 (Ui − Li) (29)

where WA is the average interval prediction width, and R is the
variation range of the target value. By using R, we can ensure that
WA is normalized between [0, 1].

6.2 Data Sources
The data set for the calculation example presented in this paper
comprises the measured PV power data, historical weather data,
and related NWP data of a PV power station in Jilin, China. The
time span of the training set is from January 1, 2017, to December
31, 2017. The time span of the test set is from June 1st to June 5th,
2018. The installed capacity of the PV power station is 30 MW,
and the data sampling interval is 15 min.

To summarize the unified sample statistical distribution, the
problem of the network training time increasing as a result of the
singular sample data and dimensional inconsistency of the original
data was eliminated. In this regard, the original PV power plant
data must be normalized as expressed by the normalized Eq. 30:

x’i �
xi − xmin

xmax − xmin
(30)

where x’
i denotes the normalized data; xi denotes the original PV

data; xmin and xmax are the minimum andmaximum values of the
original PV data, respectively.

Based on the above discussion, FA reveals that the direct
radiation, temperature, and humidity are the main factors
affecting the PV power.

6.3 WP Decomposition and Reconstruction
In this study, raw data for the solar irradiance, ambient
temperature, ambient humidity, and output power of PV
power plants were obtained by FA, selected as WP
decomposition objects, and reconstructed for model training
and prediction. Considering the raw data of the PV power
plant output power from April 1st to April 5th as an example,
the time interval for collecting three-layer WP decomposition
data is 15 min, as shown in Figure 5. Each sub-picture in Figure 5
is the original signal; reconstructed 0-8HZ; 8-16HZ; 16-24HZ;
24-32HZ; 32-40HZ; 40-48HZ; 48-56HZ; 56-64HZ frequency
band signal.

As can be seen, after the multi-scale WP decomposition and
reconstruction, each frequency signal part is stable and the image
trend in some periods is approximately the same.

6.4 WP-LSSVM Point Prediction Results
According to the NWP weather data and original PV power
generation system’s output power data as the training sample
set, the two weather types for the forecast day are April 9th
(cloudy) and April 30th (clear). The NWPmeteorological data
(solar irradiance, temperature, and humidity) of the weather
forecast day were selected as the prediction model input to
predict the future PV power generation. Compared with the

FIGURE 5 | Frequency components of PV power plant output power processed by WP.
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traditional LSSVM forecasting method, BP neural network
forecasting method, and combined EMD-LSSVM forecasting
method, the use of five evaluation methods, namely, the
RMSE, MRE, accuracy rate, QR, and correlation coefficient,
can intuitively reflect the model’s value effectiveness.

Figure 6 shows the power prediction curves and actual PV
power generation of the four prediction models under two
different weather types: April 9th (cloudy) and April 30th
(sunny). It compares the PV power prediction values of the
two weather types under different methods, including the
prediction values using wavelet decomposition, combined
empirical mode decomposition, and no wavelet decomposition.
It can be seen that the predicted value of PV power after
decomposition and reconstruction using wavelet packet is
closer to the true value curve, and the accuracy rate is higher.
By intuitively analyzing the prediction effect of four different
prediction methods, namely, the MRE, RMSE, QR, and
correlation coefficient for April 9th (cloudy) and April 30th
(cloudy), it can be seen that the accuracy rate of the five

evaluation methods’ power curve generation trend is
essentially the same. The indicators for evaluating the model’s
effectiveness are listed in Table 2.

As can be seen in Table 2, regardless of the day being sunny
or cloudy, the combined WP-LSSVM prediction method
performed better than the single LSSVM and BP neural
network according to the five prediction model evaluation
indices (RMSE, MRE, QR, correlation coefficient, and accuracy
rate). Considering the prediction results of the network and
EMD-LSSVM, this study selected a point prediction method
combining theWP and LSSVM to analyze the actual PV output
and prediction results in preparation for the subsequent
interval probability prediction.

6.5 PV Power Prediction Error Probability
Density Fitting
In this study, the point prediction error of the sunny set and
cloudy sky set for Jilin in 2017 was used as the analysis object to

FIGURE 6 | PV power forecast values for different weather types. (A) April 30th (Sunny) (B) April 9th (Cloudy).
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obtain the forecast error distribution of PV power generation.
Considering the single-step prediction as an example, the WP-
LSSVM prediction method was applied. In this study, seven
distribution models, including the normal distribution,

generalized error distribution, and generalized error mixture
distribution, were used to calculate the single-step forecast
error of PV power generation and obtain statistical samples
for the forecast error as shown in Figure 7.

TABLE 2 | Comparison of prediction results obtained by five models.

RMSE MRE QR Accuracy rate r

Sunny day BP 0.0782 2.4569 1 0.9218 0.9739
LSSVM 0.0309 1.4137 1 0.9676 0.9946
EMD_LSSVM 0.0535 2.2955 1 0.9465 0.8353
WP_LSSVM 0.0414 0.1968 1 0.9586 0.9930

Cloudy day BP 0.1818 5.0169 0.9059 0.8082 0.8469
LSSVM 0.1694 6.6638 0.9271 0.8306 0.6460
EMD_LSSVM 0.2939 6.6258 0.7263 0.7161 0.8011
WP_LSSVM 0.0992 4.9170 0.9479 0.9008 0.9335

FIGURE 7 | Comparison of fitting effects of five error distribution models. (A) Sunny day (B) Cloudy day
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As can be seen from Figure 7, the fitting effect of the mixed
distribution model is better than that of the single distribution
model, overcoming the defects of strong dependence on sample
data, single distribution form and poor fitting effect of a single
distribution. The fitting effect of generalized error mixed
distribution model is better than Gaussian distribution model
in peak, waist and tail. The generalized error mixed distribution
model has good fitting effect, which intuitively reflects its
advantage in sensitivity.

6.6 PV Power Probability Interval Prediction
To ensure the safe and reliable operation of the power system, a
high confidence level is required. To obtain more reliable and
effective information based on the generalized error mixture
distribution model, three sizes were considered (95, 90, and
80%) to determine the predicted value’s confidence interval
and realize the PV power interval prediction as presented in
Table 3.

The proposed method combining the WP and LSSVM was
applied with consideration from June 1st to June 5th, 2018.
Single-point forecasting was performed on the PV data of a
single step to obtain the single-step prediction absolute error,
and the improved generalized error mixture distribution fitting
was performed on the prediction error to obtain the prediction
interval. Figure 8 shows the PV power prediction interval with
95% confidence.

As can be seen in Figure 8, the PV power probability
prediction based on the improved generalized error mixture
distribution can effectively obtain the fluctuation range for a
future time period and the prediction interval. The interval covers
most of the true values and the prediction bandwidth is within a
reasonable range. The double standard of a small average interval
width based on the high coverage of the prediction interval is
achieved. After the calculation, the results of each evaluation
index were obtained with 95% confidence. The probability
prediction evaluation index based on the normal distribution
in parameter estimation is provided for comparison, as presented
in Tables 4, 5, 6. With a 95% confidence level, the prediction
bandwidth of a single generalized error distribution is reduced by
2.524% compared with the normal distribution, and the
prediction bandwidth of the mixed model is reduced by
2.714% compared with the single model.

In terms of interval coverage, if the prediction interval of the two-
interval prediction methods is sufficiently wide, all point predictions
can be easily covered. However, the corresponding information
cannot be obtained accordingly. Although the proposed method
cannot perfectly cover every true value, its interval coverage is still
high. Additionally, the interval coverage greatly improves as the
confidence decreases. Compared with the interval prediction results
under the traditional normal distribution, the proposed method
obtainedmore satisfactory results, regardless of the interval coverage
or average interval prediction width.

TABLE 3 | Upper and lower deviation values of prediction interval corresponding to Different Confidence Levels.

Confidence level (%) Sunny day Cloudy day

Upper deviation Lower deviation Upper deviation Lower deviation
95 1.8762 −2.6415 4.2570 −4.2826
90 1.6661 −2.4313 3.8656 −3.8912
80 1.2196 −1.9848 3.4386 −3.4643

FIGURE 8 | Comparison of fitting effects of five error distribution models.
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7 CONCLUSION

Since various NWP meteorological data have different degrees of
influence on the output power of PV power plants, this study used
a FA method to screen various meteorological factors affecting
the power generation of PV power plants. Temperature, ambient
temperature, and ambient humidity can reduce the number of
input variables and the complexity of point prediction models
and algorithms.

Because the output power sequence of PV power plants has
periodic and non-stationary characteristics, and WPs can
effectively extract non-linear and non-stationary signals, deep
analysis can be performed on PV data to reduce the
autocorrelation of each frequency signal, and thereby improve
the sample data. In the analysis carried out by five point
prediction methods, the quality of the results was evaluated by
comparing four indices, namely, the RMSE, MRE, QR,
correlation coefficient, and accuracy rate. The WP-LSSVM PV
power station output power point predictionmethod was selected
because it has a higher prediction accuracy rate, and accurate
point prediction provides a good basis for probability prediction.

This study compared multiple probability density fittings
(logistic, generalized error mixture distribution, normal,

generalized error distribution, and so on) on the point
prediction error obtained by the WP-LSSVM method. A
method based on the generalized error mixture distribution is
proposed. The distributed PV power probability prediction
method uses the generalized error mixture distribution
function to describe the PV power prediction error probability
distribution, and uses the generalized error mixture distribution
to establish the error distribution. Based on the improved
generalized error regression, the hybrid model of FCM and
entropy weight method can achieve better results. At 95%
confidence level, the coverage rate increased by 0.01% on
average while the average bandwidth decreased by 5.238%. At
90% confidence level, the coverage rate has increased by 0.23% on
average while the average bandwidth has dropped by 3.756%. At
80% confidence level, the coverage rate increased by 1.39% on
average while the average bandwidth decreased by 3.308%. The
proposed method provides a practical and effective method for
predicting the probability interval of the output power of PV
power plants. At present, most of the research on interval
prediction uses the method of probability function fitting,
which weakens the timing of point prediction sequence to a
certain extent. In the next stage of research, we can try to innovate
an interval prediction method that retains the timeliness.

TABLE 4 | Indicator results based on the improved generalized error mixture distribution.

Prediction interval normalized average Prediction interval coverage probability

95% 90% 80% 95% 90% 80%
Day 1 35.82 32.54 28.95 91.71 89.16 88.04
Day 2 38.41 34.89 31.05 92.50 91.44 89.58
Day 3 34.98 31.77 28.27 100.0 100.0 100.0
Day 4 18.28 16.57 12.96 97.78 93.33 91.44
Day 5 15.50 14.06 10.99 95.55 94.91 93.27

TABLE 5 | Indicator results based on generalized error distribution.

Prediction interval normalized average Prediction interval coverage probability

95% 90% 80% 95% 90% 80%
Day 1 36.46 33.59 29.06 90.95 88.79 86.25
Day 2 39.02 35.16 33.74 94.71 93.41 90.26
Day 3 35.69 34.29 30.19 100 100 100
Day 4 23.21 18.25 14.84 95.5 91.65 88.26
Day 5 22.18 17.79 14.21 96.35 94.21 91.68

TABLE 6 | Indicator results based on normal distribution.

Prediction interval normalized average Prediction interval coverage probability

95% 90% 80% 95% 90% 80%
Day 1 37.45 35.56 30.71 90.75 88.63 84.38
Day 2 39.11 36.95 34.79 96.86 94.52 93.75
Day 3 36.57 34.81 31.12 100 100 100
Day 4 28.71 21.15 16.46 93.75 90.63 86.46
Day 5 27.34 20.14 15.68 96.13 93.91 90.79
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