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Wind power ramp events are typical harmful anomaly events in wind engineering, which
bring new threat to the safety operation of power systems. To in-depth understand ramps
and mitigate their harms, suitable ramp characteristics are crucial in many studies, e.g.,
ramp definition, classification, prediction and so on. However, due to ramps’ specificity on
event feature, more profound characteristics are needed besides basic ramp
morphological characteristics. In this paper, an approach for extracting and selecting
ramp characteristics is proposed for ramp study. First, according to ramps’ causation on
energy change, wavelet transformation is introduced to analyze ramp categories, and used
to extract ramp energy characteristics. Then, heuristic feature selection methods are
proposed to select ramp characteristics based on specific ramp application contexts. The
objective of feature selection is to remove redundant characteristics, and to improve ramp
studies’ performance. Finally, combining basic ramp characteristics and wavelet
characteristics, ramp studies on category classification and prediction of appointed
characteristics are implemented on industrial data. The computational results validate
the usefulness of wavelet characteristics, the feasibility of the proposed approach, and that
performance of ramp study could be improved by using ramp characteristics in this paper.
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INTRODUCTION

The generation of energy from wind is growing across the world, especially in China where large-
scale and highly-concentrated wind projects prevail (Ouyang et al., 2017a). Due to the renewability
feature, wind energy offered lots of opportunities, e.g., proving clean energy and reducing
environment pollution. On the other hand, due to wind’s fluctuation and intermittent, serious
anomaly challenges threaten the safety and stability of power grid. For example, wind power ramp
events are typical anomaly events bringing one of the greatest threat, which is namely the large and
unexpected changes of wind power over a short time period (Wang et al., 2017). In 2008, a down-
ramp event was reported in the State of Texas causing serious economic loss to the grid operated by
Electric Reliability Council of Texas (ERCOT) (Francis, 2008). Therefore, it is significantly important
to study ramp events for mitigating their negative impacts.

Ramp study mainly involves definitions, detection, prediction and classification. Generally, ramp
definition and ramp detection are the basis of ramp study. While ramp events are usually detected by
combining ramp definitions and specific detection methods. For example, dynamic programming
recursion and the swinging door algorithm were proposed to detect ramp events from wind power
data in (Florita et al., 2013; Sevlian and Rajagopal, 2013; Ouyang et al., 2017b). In (Xiong et al., 2017),
a data mining method using affinity of weather data was also proposed for ramp detection. However,
the mainstream definitions up to now mainly focus on three characteristics (Zha et al., 2016) (e.g.,
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ramp amplitude, ramp duration, and ramp rate) which are
superficial characteristics from ramp events’ basic forms.
Copying with complex power system operations in the future,
more targeted and effective control strategies need to be made,
which are essentially based on study of more profound ramp
characteristics. On the other hand, ramp prediction and
classification are two major objectives of ramp study.
Generally, ramp prediction can be divided into event
prediction and ramp’s categories prediction which is actually
ramp classification. Nowadays, ramp classification has been
studied via many data mining algorithms, e.g., k-means,
support vector machine (SVM), extrema learning machine
(ELM), neural networks (NN) and so on (Couto et al., 2013;
Florita et al., 2013; Tang et al., 2020; Shen et al., 2021). Ramp
classification combined with weather regimes was also studied in
(Chen et al., 2018). No matter ramp prediction or classification,
proper input features are the premise of constructing high-
performance models. However, most of these studies are based
on superficial characteristics, no profound physical
characteristics are considered to improve ramp studies’
performance. Therefore, it is significant useful for studying
extraction and selection of ramp characteristics in wind power
ramp researches.

In modeling process, determination of input features is
primarily based on original data points. Sometimes feature
extraction, selection and transformation are involved according
to specific criterions. For example, principal component analysis
(PCA) is a commonly-used method to reduce dimension of
feature space, which was also used in feature analysis for wind
forecasting (He et al., 2013a). Other methods based on
mathematical transforms were also useful to extract
characteristics, e.g. wavelet-transform was utilized in wind
power forecasting (Singh and Tewari, 2015). Moreover,
Pearson correlation coefficient, Gini index, wavelet
transformation and other intelligent tools were also
applied to feature processing in engineering (Huang et al.,
2018). Nowadays, with more industrial signals are collected
from complicated systems and more un-researchable objects
are analyzed, these situations lead to the urgent requirement
of profound characteristics reflecting structural or physical
features in modeling. Study on wind power ramp events is a
representative problem among these issues. According to
ramps’ concept, ramp events involve a period of wind
power values and variance, and they don’t always have a
unified time duration (Tang et al., 2021). Based on the
traditional tools, basic characteristics (e.g., ramp
amplitude, duration and ramp rate) could be obtained
from wind power data. However, ramps’ harmful effect on
power grid is not just identified by ramp duration and
amplitude. The difference of ramp amplitude, ramp rate,
energy storage and other factors may also affect the
stability of power system at different degree. Therefore,
besides the basic ramp characteristics, how to acquire
more profound characteristics is an urgent topic in ramp
study, such as in ramp classification and prediction.

According to the outlined problems above, the objective of this
paper is to propose an approach to extract and select ramp

characteristics for wind power ramp study. Considering ramp
events involves the variance of time series and energy change
process of wind power, three basic ramp characteristics are
extracted based on definitions firstly. These characteristics are
able to distinguish ramps and non-ramp events. Then, a method
transforming time series into energy forms is proposed to
extract extra characteristics. Wavelet transformation has been
applied for feature expression in literatures due to its superior
description ability at both time and frequency domains. For
example, the wavelet transform was utilized to analyze the
features of ramp events in (Gallego et al., 2013). On the
other hand, wavelet decomposition has the property of
multiresolution which is helpful to study the allocation of
ramp event’s energy. Summarizing these two properties,
wavelet transformation is proposed to extract profound
characteristics for distinguishing refined ramp categories in
depth. Moreover, for reducing dimension, mitigating noise’s
influence, improving computation efficiency, a heuristic
intelligent algorithm is proposed in the feature selection.
Finally, based on the refined characteristic vector, ramp
studies (classification, prediction) on industrial datasets are
discussed, and validate the approach in extracting and
selecting ramp characteristics. The framework of the major
work in this paper is sketched in the following figure.

In Figure 1, the identification of historical ramp events is
implemented through ramp definitions and detection. Class
labels of ramp events are determined by a given classification
environment which could be based on weather sceneries, control
requirement and so on. The other characteristics are energy
characteristics extracted by wavelet transformation in this
paper, and fn represents the nth characteristic in the formed
characteristic vector in Figure 1. According to the above
description, we can conclude the novelties of this paper as
following three points:

FIGURE 1 | Framework of the study in this paper.
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i) This paper proposes to consider characteristics of ramp
events from multiple aspects, including the basic
morphological characteristics from time domain and
characteristics in frequency domain. Moreover, due to
ramp events’ specificity, characteristics are also extracted
in terms of energy. This is the first time to consider ramp
events’ energy characteristics.

ii) Wavelet transformation is proposed to extract ramp
characteristics. By utilizing the frequency and
multiresolution properties in wavelet decomposition, ramp
energy characteristics are expressed by energy at different
frequency spaces. Meanwhile, these energy characteristics are
selected and refined. Its purpose is to delete the energy of
noise which may affect ramp classification.

iii) Heuristic intelligent algorithms are tried in the selection
process, e.g., the sequential forward floating search (SFFS)
and sequential backward floating search (SBFS) methods.
The heuristic feature selection could refine the characteristic
vector in related studies more effectively than unsupervised
methods reducing dimension.

Besides the above introduction, rest of this paper is organized
as follows. Feature Extraction addresses the processes of
extracting ramp characteristics, including the basic ramp
characteristics based on ramp definitions, and ramp energy
characteristics based on wavelet transformation, for ramp
studies are also extracted. Feature Selection proposes the
feature selection approach which is based on dispersion matrix
and heuristic method. The detailed processes are also presented in
this section. Ramp Anomaly Analysis and Evaluation aims at
designing ramp studies, e.g., ramp classification and ramp
prediction. It also gives out some indicators for evaluating
ramp study. In Experiments and Discussion, industrial wind
power data is utilized in case study. Performance on ramp
classification and prediction are compared with models using
different feature sets and that using PCA for feature selection.
Computational results validate the feasibility of wavelet
characteristics and the proposed feature selection method.
Finally, Conclusion concludes this paper.

FEATURE EXTRACTION

Basic Characteristics of Ramp Events
Wind power ramp events bring great harm to system operation as
more and more wind power integrated into power grid. Copying
with these new events, a series of studies has been carried out,
such as ramp definition, ramp prediction and classification.
Currently, there are four mainstream definitions widely used
in ramp analysis (Zha et al., 2016). These definitions are defined
as follows.

Definition 1. When the change of wind power in time duration
Δt exceeds a given threshold Wpval, there is a ramp event
occurring, as expressed as below.

∣∣∣∣Wp(t + Δt) −Wp(t)∣∣∣∣≥Wpval (1)

where: Wp(t+Δt) and Wp(t) are wind power values at time t+Δt
and t, respectively; Wpval represents the threshold of ramp
amplitude. When the criterion in Eq. 1 meets under a given
time period, a ramp event is identified.

Definition 2. When the largest difference of wind power in time
duration Δt exceeds the given thresholdWpval, then a ramp event
is regarded as occurring.∣∣∣∣∣∣∣ max

i∈[t,t+Δt]
Wpi − min

i∈[t,t+Δt]
Wpi

∣∣∣∣∣∣∣≥Wpval (2)

where, max
i∈[t,t+Δt]Wpi

and min
i∈[t,t+Δt]Wpi

represent the maximum and

minimum value of wind power in a time duration Δt.

Definition 3.When the average change of wind power in a given
time duration Δt exceeds the given thresholdWpval, a ramp event
is identified.

⎛⎝∑h
i�1

∣∣∣∣Wp(t + Δt + i) −Wp(t + i)∣∣∣∣⎞⎠/h≥Wpval (3)

where, h is the time horizon in ramp identification.

Definition 4. When the ratio between the wind power change |
Wp(t+Δt)-Wp(t)| and time duration Δt exceeds a given threshold
Rval, then a ramp event is regarded as occurring.∣∣∣∣Wp(t + Δt) −Wp(t)∣∣∣∣/Δt>Rval (4)

where, this definition in Eq. 4 pays more attention on ramp
rate while that in Eq. 1 emphasizes only ramp amplitude.
Summarizing the above four definitions, we can see they
mainly focus on three major characteristics (Zha et al.,
2016), such as ramp amplitude Var, ramp duration T, and
ramp rate R. Based on these three characteristics, the
variance of wind power in a given period could be
determined as ramps or non-ramps. Therefore, they
consist of the initial characteristic vector in ramp study,
as Cv0 � [Var, T, R]. As we know, sometimes ramp direction
is also used in characteristic analysis. However, through
above numerical definitions, ramp direction is not
necessary, and could be expressed by sign of R when
needed. Considering that ramp analysis in some cases
needs the detailed information about power range rather
than only fluctuation amplitude, so we replace ramp
amplitude Var with maximum and minimum values.
Assuming there are N studied ramp events in dataset, the
initial characteristic matrix X0 is expressed as below.

X0 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣Wp1,max Wp1,min T1 R1

Wp2,max Wp2,min T2 R1

« « « «
WpN,max WpN,min TN RN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

where, Wpi,min and Wpi,max represent the minimum and
maximum value of wind power in the ith studied ramp event.
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Wavelet Transformation and
Characteristics Extraction
As the research on ramp events get more in depth, profound
characteristics are needed to describe ramps’ formation and
categories. For example, the initial characteristics in Eq. 4 is
used to identify the basic formation of ramps and non-ramps. The
detailed fluctuation inside ramps needs structural characteristics,
and the essence of ramps’ occurrence involves energy
characteristics. In order to extract more profound information
in ramp study, wavelet transformation is applied in this paper.
Wavelet transformation is an advanced mathematical technique
in signal analysis (Mohanty et al., 2015). It has advantages at
decomposing a signal into various time and frequency domains,
so it is useful to study the structural characteristics of ramps in
different domains. Wavelet transformation also has advantages at
detecting abrupt changed values (e.g., in edge detection) and
analyzing signal in a specific time window. While ramp events
certainly have large power charge in finite time durations, so it is
relatively suitable to utilize wavelet transformation in ramp
analysis (Escalante Soberanis and Mérida, 2015). On the other
hand, due to the multiresolution feature of wavelet
decomposition, energy of a given signal could be allocated into
different frequency spaces. In this way, we are inspired to extract
characteristics for expressing ramps’ energy characteristics. This
is also a key reason for considering wavelet transformation in
extracting ramp characteristics.

The theory of discretewavelet transformation is described as below.
Assuming a discrete signal (e.g., wind power time series of a ramp
event) is expressed as {x(t); t � 1,2,/, T}, it could be reconstructed by
elements of wavelet transformation, as expressed below.

x(t) �∑
j∈Z
∑
k∈Z

δj,k · ψj,k(t) (6)

where: x(t) is actually the signal of wind power; δj,k is the wavelet
coefficient; ψj,k is the child wavelet transformed from mother
wavelet, denoted as follows.⎧⎪⎪⎪⎨⎪⎪⎪⎩

ψj,k(t) � a−j/2ψ(a−j · t − kb)
δj,k �∑∞

−∞
ψj,k(t) · x(t)

a> 1, b> 0

(7)

where: j and k represent the scale and shift parameters of child
wavelet ψj,k; ψ(t) is the mother wavelet function; a and b are real
parameters. From Eqs 6, 7 it implies that the reproduction of
original signal could be realized by the weighted sum of wavelet
components at different scales.

To in-depth explain the meaning of each wavelet component in
Eq. 6, we could operate wavelet decompose step by step. Assuming
the original signal with finite energy is projected on a space L, x(t)
with one-level-decomposition could be expressed as below.

x(t) � x1(t) +∑
k

dk · ψk(x) (8)

where, x1(t) is the estimation of the original signal reflecting
variation in time domain; ∑

k
d(k) · ψk(x) are detailed signals

expressed by wavelet functions which contain frequency-
domain information. By estimating the approximate signal
iteratively, xj(t) at the jth decomposition level is expressed as
below.

xj(t) � xj+1(t) +∑
k

dj,k · ψj,k(t) (9)

Similarly, we could utilize a series of wavelet functions to describe
signal xj(t), as ∑

k
cj,kϕj,k(t). Combining these formulas,

transformation of the original signal in Eq. 6 could be
rewritten in details as below

x(t) �∑
k

cjn,kϕjn,k
(t) + ∑jn

j�j1
∑
k

dj,kψj,k(t) (10)

where, the auxiliary function ϕ is called father wavelet; cjn,k is the
coefficients of wavelets ϕjn,k(t); dj,k are the coefficients of wavelets
ψj,k(t). The formula in Eq. 10 is generally called as the multi-
resolution analysis of wavelet transformation (Doucoure et al.,
2016).

On the other hand, by corresponding each wavelet component
to a frequency space, we could also divide the space L to series of
energy subspaces. As shown in Figure 2, Vj0 represents the
original signal space L with a frequency band (0∼f). According
to Eq. 10, the frequency band is also divided step by step. For
example, Vj0 could be divided as orthogonal sum of a low-
frequency space Vj1 (0∼f/2) and a high-frequency space Wj1

(f/2∼f). The relationship reflecting the division of frequency
spaces in wavelet transformation is presented as below.

{Vj ⊕Wj � Vj−1
L � Wj1 ⊕Wj2 ⊕/⊕Wjn ⊕Vjn

(11)

where: ⊕ is a denoted operator calculating the orthogonal sum; n
is the number of wavelet decomposition.

Considering signal’s energy is generally expressed at frequency
subspaces, therefore we could utilize the multi-resolution of
wavelet decomposition to analyze the energy distribution of a
signal (Ashrafian et al., 2017), as described in the following
formula.

|P{x}|2 �∑
k

∣∣∣∣cjn,k∣∣∣∣2 +∑
j

∑
k

∣∣∣∣dj,k

∣∣∣∣2 (12)

where: |P{x}|
2 represent the energy of the given signal {x(t)};∑

k

∣∣∣∣cjn,k∣∣∣∣2 and ∑
k

∣∣∣∣dj,k∣∣∣∣2 represent the energy of different
subspaces. Since wind process generally involved atmosphere

FIGURE 2 | The orthogonal decomposition of the space L.
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movements (Mohanty et al., 2015), the occurrence of ramp events
could be comprehensibly regarded as the speedy energy release or
accumulation in atmosphere systems. Therefore, the energy
expressions based on wavelet transform could be utilized to
extract ramp energy characteristics which is meaningful in
studying ramp’s harms on power systems.

Moreover, when the number of decomposition levels is high
(e.g., jn→∞), the value of cjn,k is small, which implies the energy
of Vjn becoming small to be ignored. In that case, the energy
characteristics of Wj are mainly selected into the characteristic
vector for ramp study in this paper.⎧⎪⎪⎨⎪⎪⎩ Pj �∑

k

∣∣∣∣dj,k

∣∣∣∣2;
Cv � [Wpmax,Wpmin, T, R, Pj];
j � 1, 2,/, jn;

(13)

where: Pj represents the jth energy characteristic and j is the
decomposition level. Cv is the characteristic vector
combining initial vector Cv0 and Pj. By utilizing this vector
including basic ramp characteristics and wavelet energy
characteristics as inputs, some advanced ramp study could
be implemented besides the identification of ramps and non-
ramps.

FEATURE SELECTION

According to the above wavelet decomposition, jn energy
characteristics are extracted. Generally, the more the number
of decomposition levels, the better the description ability of
wavelet characteristics. In Eq. 13, the energy in frequency
space Vjn is excluded since Vjn is the lowest frequency and its
cjn,k is very small. However, when more fine-sorted energy
characteristics Pj are generated, it is unavoidable to lead to
many superfluous characteristics in a specific study case.
Therefore, excluding basic ramp characteristics, feature
selection is also necessary in ramp study.

Feature selection could not only select optimal energy
characteristics for specific study, but also improve computing
performance by reducing data dimension. Generally, feature
selection methods are based on specific indicators or criterions
to rank all characteristics, then realize selection through ranking
scores. Most of these methods do not care about the application
context in ranking. The other commonly used methods on
dimension reducing is through feature transformation, such
as PCA, LDA. This type of methods weakens the physical
meaning of selected characteristics, and also ignore actual
context. Therefore, in this paper we propose to utilize
heuristic selection criterion which combining selection
indicators and the application context (e.g., specific ramp
study).

Dispersion Matrix
First, we propose to utilize dispersion matrix (Gu et al., 2017) to
create selection indicator. Dispersion matrix is a mathematic tool
based on feature distances of different classes, its elements are
denoted as below.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
B � ∑G

g�1
ng(μg − μ0)T(μg − μ0)

W � ∑G
g�1
∑ng
k�1
(xg,k − μg)T(xg,k − μg)(k � 1, 2,/, ng;g � 1, 2,/, G;

n1 + n2 +/ + ng � N)
(14)

where:W and B are the dispersion matrix representing intra-class
and inter-classes, respectively; xg,k is characteristic vector of the
kth ramp in the gth class; μg and μo represent the average vector of
the gth class and all classes, respectively; ng and N are the number
of ramps the gth class and all classes, respectively;G is the number
of classes. A Wilks criterion function λp could be selected as the
reference indicator in feature selection, it is defined as below.

λp � |W|/|T| (15)

where: T is total dispersion matrix, calculated as T = B + W; p is
the dimension of feature space. When the value of λp is small,
implying a small value of |W| and a large value of |T|, it illustrates
that the characteristic is effective to distinguish different classes of
samples. Generally, the statistical indicator λp is assumed to obey
the Wilks distribution. By deciding a testing level α and its
corresponding threshold λ(α), the hypothesis testing of λp
could be implemented. For the convenience of calculation, the
value of Wilks distribution function could be estimated by the
following two common distribution functions.

1) Bartlett approximation.

−(N − 1
2
(p − g) − 1) · ln λp ∼ χ2(p(g − 1)) (16)

2) Rao approximation.

N − (p − 1) − g

g − 1
· (λp−1

λp
− 1) ∼ F(g − 1, N − (p − 1) − g)

(17)

Through the above two approximation methods, the hypothesis
testing of Wilks distribution could be realized by formulas in Eqs
16, 17.

Heuristic Selection
Combining the selected Wilks indicator λp and ramps’ categories
information, a supervised heuristic method could realize high-
performance feature selection. In this paper, we propose to utilize
SFFS (sequential floating forward search) and SFBS (sequential
floating backward search) algorithms (Gan et al., 2014) which
retain the strengths and improve the weakness of SFS (sequential
forward selection) and SBS (sequential backward selection).

Considering the specificity of ramp studies, the basic
characteristic vector Cv0 contains basic ramp characteristics
identifying ramps and non-ramps, so it is necessary included
in the characteristic subset. Actually, the task of feature selection
is to select optimal newly-extracted characteristics in ramp study.

Therefore, in this paper the initial subset is X0, the
characteristics that need to be processed are wavelet energy
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characteristics Pi (i � 1,2,/, jn). Assuming after themth selection
step, the feature subset is denoted as Xm. If we consider to add a
new characteristic xr at the (m+1)th step by SFFS algorithm, the
updated dispersion matrix could be calculated as below.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

W’ � (W11 W12

W21 W22
)

T’ � (T11 T12

T21 T22
) (18)

where, W11 and T11 are the intra-class and the total dispersion
matrix of Xm, respectively; The rest of sub-matrix are newly
introduced matrix related with xr, calculated as the following
formulas.⎧⎪⎨⎪⎩W12 � (w1r, w2r,/, wpr)T;W21 � WT

12;W22 � wrr;

T12 � (t1r, t2r,/, tpr)T;T21 � TT
12;T22 � trr;

(19)

Based on calculation of these sub-matrixes, the updated indicator
λm+1 could be calculated as below.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λm+1 � |W’|
|T’| �

|W11|
∣∣∣∣W22 −W21W

−1
11W12

∣∣∣∣
|T11|

∣∣∣∣T22 − T21T
−1
11T12

∣∣∣∣ � λm · Ar

Ar �
∣∣∣∣W22 −W21W

−1
11W12

∣∣∣∣∣∣∣∣T22 − T21T
−1
11T12

∣∣∣∣ (20)

By substituting Eqs 15–18, the expression λm/λm+1 − 1 could be
replaced by (1 − Ar)/Ar. Then, the estimated value of testing xr is
denoted as F1r, expressed as below

F1r � 1 − Ar

Ar
· N − pm − g

g − 1
∼ F(g − 1, N − pm − g) (21)

where: pm is the number of characteristics in set Xm. If F1r>Fα(g-1,
N-pm-g) at given testing level α, then the hypothesis is correct and
xr is added into characteristic vector.

Similarly, if we utilize the SFBS algorithm to delete a
characteristic xr form the set Xm, the final testing value is
defined as F2r, expressed as below

F2r � 1 − Ar

Ar
· N − (pm − 1) − g

g − 1
∼ F(g − 1, N − (pm − 1) − g)

(22)

If the formula F2r ≤ Fα(g-1, N-(pm-1)-g) is satisfied at a given level
α, then the variable xr is regarded as invalid and removed
from Xm.

RAMP ANOMALY ANALYSIS AND
EVALUATION

By taking the selected ramp characteristics as inputs and
different types of data as output, we could construct models
for different ramp study, e.g., ramp classification and ramp
prediction. In this paper, we only do some simple experiments
on these two studies for evaluating the selected ramp
characteristics.

Ramp Classification
In ramp classification study, class labels of historical ramp events are
taken as the output. The classificationmodel can be constructed by data
mining algorithms. To accurately classify ramp events, four datamining
algorithms are applied to train ramp classification model, including
support vectormachine (SVM), neural networks (NN), random forests
algorithm (RF) and boosted trees (BT) (Chen et al., 2017; Ouyang et al.,
2017c; He et al., 2017; Ouyang, 2021). The optimal classificationmodel
could be determined by the comparison of their performance.

To evaluate the classification performance, the confusion
matrix introduced from information retrieval (IR) field is
widely applied (He et al., 2013b). The detailed expression is
presented in the following table.

In Table 1, four types of events are defined, such as true
positive event (TP), false negative event (FN), false positive event
(FP) and true negative event (TN). Based on these events, several
indicators could be defined to evaluate classification performance.
Four representative indicators are defined as below.⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rec � numTP/(numTP + numFN)
Pre � numTP/(numTP + numFP)
Acc � (numTP + numTN)/numAll

Err � 1 − Acc

(23)

where, numX represents the number of the specific event X; Pre
represents precision indicator implying the percentage of TP in
classified true events; Rec represents recall indicator implying the
percentage of TP in observed true events; Acc is the classification
accuracy, and Err is the classification error. By utilizing these four
indicators, we could complete selection of the optimal classification
model and the evaluation of classification performance.

Ramp Prediction
Ramp prediction is usually divided into two types: event prediction
and regression prediction. Event prediction includes ramp
detection and ramp classification study. Regression prediction
mainly focus on utilizing traditional regression models to
predict ramp characteristics, e.g., the ramp rate prediction in
(Zheng and Kusiak, 2009). In this paper, we consider predicting
two characteristics: ramp amplitude and ramp rate, which implies
values of these two characteristics are taken as the output in
modeling. Since the above study on ramp characteristics’
extraction and selection are based on historical ramp events
which randomly occur in wind power time series. Therefore, we
propose to utilize these characteristics extracted from wind power
in a given time window as inputs, then predict one appointed
characteristic in the predicted time window, e.g., to predict ramp
amplitude or ramp rate in the future 1-h horizon. Since this type of
prediction is still based on regression models, the performance
indicator could be decided by the commonly used root-mean-
square error (RMSE), which is defined as below.

RMSE �

�������������∑K
k�1
(ŷk − yk)2/K√√

(24)

where, yk and ŷkare the kth values predicted and observed of an
appointed ramp characteristic; K is the number of tested samples.
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EXPERIMENTS AND DISCUSSION

In this paper, the industrial wind power data from Bonneville
Power Administration (BPA) website (bpa.gov/transmission,
2013) is taken as the studied case. The data set spanning from
01/01/13 00:00 to 12/31/13 23:55 totally has 105,120 data points
with a sampling interval of 5 min. First, we need to detect
historical ramp events from wind power time series for the
following ramp characteristics study. According to the
definitions in Eqs 1–4, the forth definition can reflect three
basic ramp characteristics more conveniently, so that it is
selected to identify historical ramps in this paper. In (Tang
et al., 2021), the value of Rval was chosen as 50% of the
installed capacity within 4 h, so the value of Rval is computed
by considering the capacity of 4,500 MW in the studied case, as
below.

Rval � 50% · Ptotal

4hours
� 50%p4500MW

4h
� 562.5MW/h (25)

Considering ramps always have a duration larger than 0.5 h, so
we assume the minimum threshold as Δt � 0.5 h there are totally
526 ramp events are detected from data of former 6 months. One

part of ramp identification results is shown in Figure 3. The
subpicture 1) and 2) depict historical wind power and ramp
events, respectively. In Figure 3B, up-ramps and down-ramps are
expressed by lines above and below the X-axis, respectively, their
durations are reflected by values in Y-axis. It is seen than most of
ramps have duration around hours, some even reach 6 h.

Historical wind power and ramp events are depicted in
Figure 3A and Figure 3B, respectively. In Figure 3B, up-
ramps and down-ramps are expressed by lines above and
below the X-axis, respectively, their durations are reflected by
values in Y-axis.

Selection of Ramp Characteristics
Through analysis on ramp definitions, basic ramp characteristics
(amplitude, duration, and ramp rate) could be extracted, as (5).
These basic characteristics could be used to identify ramps and
non-ramps, as two typical signals in Figure 4. To identify more
detailed division of ramp categories, wavelet transformation is
proposed to extract profound characteristics.

In order to illustrate the feasibility of wavelet characteristics,
we firstly utilize wavelet coefficients as an index to qualitatively
analyze ramps and non-ramps.

TABLE 1 | Confusion matrix.

Observation Total

True False

Classification True TP FP True classification
False FN TN False classification

Total True observation False observation All

FIGURE 3 | Identification of (A) historical wind power (B) ramp events in May.
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In Figure 4, the two typical ramp and non-ramp events are
identified by characteristics in Eq. 5. The function applied here is
Haar wavelet which was validated useful in ramp analysis
(Gallego et al., 2013). It is seen from Figure 4 that wavelet
coefficients which reflect signal’s energy could obviously
distinguish ramps and non-ramps. For example, ramps have
larger coefficients than non-ramps. It verifies the validity of
wavelet transformation in ramp characteristics analysis,
therefore we could further extract more profound wavelet
characteristics for ramp recognition.

According to the heuristic methods in selecting characteristics,
the class labels are required. Therefore, we propose to construct
ramp classification according to a specific context. Considering
wind process are formed by different meteorological phenomena,
so the categories of ramp events are related to division wind
processes to some extent. In (Wang et al., 2013), five types of wind
process are discussed, namely small wind, small fluctuation wind,
large fluctuation wind, double peak wind and multi-peaks wind.
However, there are a few ramp events attributed to the small
wind. Double peaks wind can be regarded as a special type of
multi-peaks wind. Based on these assumptions, we can group
historical ramp events into the following category library L,
denoted as below.

L� {A, B, C}⎧⎪⎨⎪⎩ A � small wind, small fluctuation wind;
B � large fluctuation wind;
C � double peaks wind, multi − peaks wind;

(26)

Combing with the description of wind process in (Wang et al.,
2013) and the constructed library L, historical ramp events of
training set are classified into three classes, as presented below.

Table 2 shows the statistical results of ramp events belonging
to three categories in L, where number 1, 2 and 3 are defined as
the class labels of A, B, C. It is seen that most ramp events are
associated with the large fluctuation wind, a few of ramp events
associated with the small wind and multi-peak wind. These
results agree with the concept of ramp events involving a large
change of wind power. Therefore, the constructed application
context is reasonable for studying ramp characteristics. Based on
the constructed library of ramp categories, then the extraction
and selection of ramp characteristics could be implemented.

Assuming each signal is decomposed into five wavelet layers,
the energy of each wavelet layer is extracted as ramp
characteristics by Eq. 13, expressed as P � [P1,P2,P3,P4,P5].
Here, the number of decomposition layers is set as 5 since
ramp events have only three categories in this paper. In other
application context which requires more refined ramp
classification, the level of decomposition could be higher. As
the description in Feature Selection, the purpose of feature
selection is to delete redundant characteristics, reduce
dimension and computation cost. Combining ramp basic
characteristics and extracted wavelet energy characteristics, the
characteristic vector is expressed as Cv � [Wpmax,Wpmin, T, R, P1,
P2, P3, P4, P5]. For all historical ramp events, the feature set
constructed by Cv is denoted as Xp0. Then, according to the
selection algorithm in Feature Selection, the process is shown in
the following table.

At each step of Table 3, the value of λp is calculated for the rest
characteristics Pi first. Then the minimum one is applied for Fr
testing based on Eqs 15, 16. If the result is satisfied, adding the
corresponding characteristic into characteristic vector Cv. It is
seen from Table 3 that P3 and P4 is selected, so the final
characteristic is re-written as Cvp � [Wpmax, Wpmin, T, R, P3,
P4], and the final feature set for all ramp events as Xp.

Ramp Study and Discussion
By taking the feature set Xp as inputs and the class labels from
Table 2 as output, five data mining algorithms (SVM, NN, RF,

FIGURE 4 | Wavelet analysis of ramps and non-ramps; (A) non-ramp signal; (B) ramp signal.

TABLE 2 | Number of ramps in three categories.

Class label 1 2 3

Number 101 378 47

TABLE 3 | Process of featue selection.

P1 P2 P3 P4 P5 Selection

Step 1 0.3064 0.3032 0.2969 0.2996 0.3146 P3

Step 2 0.2963 0.2944 \ 0.2917 0.2960 P4

Step 3 0.2911 0.2901 \ \ 0.2900 None

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7567338

Yu and Lin WInd Power Anomaly Study

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


BT, ELM) are applied in ramp classification modeling. The
classification results of three categories of ramps are shown in
following figure.

For the convenience of presentation, Figure 5 utilizes two
characteristics (Wpmax×P3) to show ramp classification results, as
X-axis representing values of Wpmax and Y-axis representing
values of P3. Red, blue and green points represent ramps of
Class1, Class2 and Class3, respectively. Black points represent

ramp events classified into incorrect class. Based on these
classification results, the performance indicators defined in Eq.
23 could be calculated, as presented below.

Table 4 presents values of four performance indicators in
classification of three ramp categories. According to the
definitions of four matrixes, a classification system performs
well with large value of Pre, Rec, Acc, and small value of Err.
In Table 4, it is seen that NN, RF and ELM algorithms
outperform on three classes, respectively. However, it is
difficult to choose the best to classify all three ramp categories.
To determine the final optimal model in ramp classification, the
receiver operating characteristic curve (ROC) is introduced to
compare performance further. ROC space is constructed by
Recall (Rec) in the X-axis and false alarm (F) in the Y-axis.
The definition of F is also based on Table 1, as expressed below.

F � numFP/(numFP + numTN) (27)

where, F calculates the percentage of FP in observed false events.
According to these two indicators’ definitions, it is easily
comprehended that a classifier having a large Rec and a small
F performs better, which implies the upper-left corner of the ROC
space means the better performance. For a discrete classification
system, a classifier is usually represented by a point in ROC space.
Therefore, points representing all classifiers in Table 4 are shown
in the following figure.

FIGURE 5 | Ramp classification based on four data mining algorithms; (A) SVM; (B) NN; (C) RF; (D) BT; (E) ELM.

TABLE 4 | Performance of ramp classification.

Pre Rec Acc Err

Class 1 SVM 0.9000 0.9802 0.9753 0.0247
NN 1.0000 0.9714 0.9946 0.0054
RF 1.0000 0.9683 0.9944 0.0056
BT 1.0000 0.6126 0.9183 0.0817
ELM 0.9381 0.9010 0.9696 0.0304

Class 2 SVM 0.9688 0.9868 0.9677 0.0323
NN 0.9886 0.9886 0.9838 0.0162
RF 0.9961 0.9846 0.9859 0.0141
BT 0.8651 0.9729 0.8745 0.1255
ELM 0.9739 0.9868 0.9715 0.0285

Class 3 SVM 0.8065 0.5319 0.9468 0.0532
NN 0.8684 0.9167 0.9784 0.0216
RF 0.8333 0.9677 0.9802 0.0198
BT 0.7442 0.6957 0.9525 0.0475
ELM 0.9565 0.9362 0.9905 0.0095

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7567339

Yu and Lin WInd Power Anomaly Study

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


In Figure 6, three points having the same type present
classifiers of three classes by a same algorithm. The points
representing SVM and BT perform worse than the other three
algorithms again. By comparing the points of NN, RF and ELM, it
is seen that points of RF obviously are concentrated and closer to
the upper-left corner, implying their classifiers have a better
performance. Therefore, RF algorithm is finally chosen for
modeling ramp classification in this paper.

Then, taking these trained RF models as ramp classifiers, 100
ramp events are selected from July to December as testing
samples. To discuss the performance with and without wavelet
characteristics in ramp classification, three different input sets are
considered in the case study, such as initial feature set X0

consisting of vector Cv0, feature set Xp0 consisting of vector Cv

� [Cv0, P] which contains basic ramp characteristics and all
wavelet characteristics, refined feature set Xp consisting of Cvp

� [Cv0, P3, P4] which reduces dimension by feature selection.
Classification performance of testing data is presented in the
following table.

Table 5 shows values of four indicators at classification of
three ramp categories. Since three ramp categories have

imbalance distribution as Table 2II, so the classification
performance of Class 2 is the best. By comparing classification
performance of using three feature sets, it is seen that using Xp0

has better performance than using X0, having an average
improvement of 10.17% (8.14% on Pre, 14.77% on Rec, 1.80%
on Acc, 15.98% on Err). These results imply wavelet
characteristics are useful in ramp classification. Also, using Xp

improves a little again (with an average improvement of 6.05%)
than using Xp0, which implies that the proposed feature selection
approach is feasible and effectual in ramp classification. While,
for comparing with other feature selection methods, the
commonly used PCA is applied. After the analysis of PCA on
P � [P1, P2, P3, P4, P5], two principal components are selected to
keep a same dimension withXp, these two components contribute
84.00% explanation in classification, and consist of the feature set
Xpca. Table V also presents the performance of Xpca. By
comparing Xp and Xpca, it is seen that using Xp has an average
outperformance of 3.69% than using Xpca. Summarizing all these
results, the proposed approach on selecting wavelet
characteristics is validated to be feasible.

On the other hand, by utilizing these selected ramp
characteristics, we could do some try on the study of ramp
prediction. Since ramp classification has validated the
effectiveness on distinguishing different categories, so two
basic ramp characteristics are taken as target output in
prediction, such as ramp amplitude (Var) and ramp rate (R).
As the design of ramp prediction in Ramp Anomaly Analysis and
Evaluation, the historical feature extraction window and the
predicted time window are set as the same for convenience. In
this paper, ramp prediction is designed to predict two variables
(Var and R) within future horizon of 1, 2, /, 5 h, the prediction
performance is presented in the following table.

Table 6 shows the performance of ramp prediction by RMSE
of two ramp characteristics. In these two variables’ prediction, a
typical NN with three layers is used in modeling. For comparison
study, four feature sets discussed in Table 5 are also utilized as
inputs of prediction models. It is seen from results of Table 6 that
models using feature sets containing wavelet characteristics (e.g.,
Xp0, Xp, Xpca) outperforms than that only containing basic ramp
characteristics (e.g., X0). Through the proposed feature selection
in this paper, the model using Xp has an improvement of 5.97%
than using X0, 1.29% than using Xp0, and 2.70% than using Xpca

on prediction of Var. Similarly, using Xp has an improvement of
16.30% than using X0, 8.24% than using Xp0, and 13.07% than
using Xpca on prediction of R. Through the discussion on results

FIGURE 6 | Four data mining models in ROC space.

TABLE 5 | Classification performance of different feature sets.

Pre Rec Acc Err

Class1 X0 0.6111 1.0000 0.9157 0.0843
Xp0 0.6804 1.0000 0.9357 0.0643
Xp 0.6875 1.0000 0.9378 0.0622
Xpca 0.6735 1.0000 0.9398 0.0602

Class2 X0 0.9621 0.8945 0.9016 0.0984
Xp0 0.9914 0.8934 0.9157 0.0843
Xp 1.0000 0.8958 0.9137 0.0863
Xpca 0.9940 0.9089 0.8916 0.1084

Class3 X0 0.2813 0.1875 0.8574 0.1426
Xp0 0.3095 0.2708 0.8715 0.1285
Xp 0.3231 0.4375 0.8755 0.1245
Xpca 0.3088 0.4375 0.8514 0.1486

TABLE 6 | Performance of ramp prediction.

1 h 2 h 3 h 4 h 5 h

Var X0 21.94 40.80 79.49 120.42 156.71
Xp0 19.02 38.05 81.63 115.94 151.46
Xp 18.68 35.31 86.21 113.93 149.46
Xpca 20.27 35.63 79.12 122.02 160.87

R X0 1.8635 1.9418 2.4102 2.5717 2.6601
Xp0 1.7527 1.6638 2.0607 2.5032 2.4825
Xp 1.4786 1.4928 1.9097 2.3972 2.3897
Xpca 1.8355 1.8644 2.2158 2.5242 2.5728
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of Table VI, it is concluded that the proposed approach on
extracting and selecting ramp characteristics is also useful for
constructing inputs of ramp prediction, and acquires good
prediction performance.

CONCLUSION

The study in this paper focus on extracting and selecting
profound ramp characteristics for in-depth ramp researches.
First, based on wavelet transformation’s properties on time-
frequency domains and multiresolution, wavelet
decomposition is validated useful in analyzing ramps and non-
ramps, also different categories of ramps. Then, ramp
characteristics are extracted based on the energy
decomposition at different wavelet layers. Combining with
given ramp categories from wind process, heuristic feature
selection methods (e.g., SFFS, SFBS) are applied to select valid
characteristics, to remove redundant characteristics and reduce
feature dimension. Based on basic ramp characteristics and
selected wavelet characteristics, ramp studies on classification
and prediction acquire better performance than that without
wavelet characteristics and that using PCA in feature selection.
Therefore, the conclusion could be summarized in this paper that
wavelet transformation is useful to extract profound ramp
characteristics, and that selecting ramp characteristics by the
proposed approach is feasible to improve performance of
ramp studies.

However, besides the above conclusions, there is also a
number of conceptual alternatives worth discussing and
pursuing: 1) ramp categories in this paper are determined by
wind process. Therefore, the selected wavelet characteristics are

not completely applicable to other ramp contexts. The approach
involving feature extraction and selection in this paper could be
still referential. 2) Ramp events generally involve complicated
weather movement, it is reasonable that considering
meteorological variables in ramp studies could improve the
performance. While, for the limitation of data sources in this
paper, we only consider ramp characteristics from wind power
data. More work on exogenous variables will be studied in
future. 3) Based on the selected ramp characteristics and
results of some ramp studies, power system’s operation
associated with ramp events could be studied further. Besides
these points, more studies are needed to in-depth understand
ramp events.
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