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In this paper, a nonparametric kernel prediction algorithm in machine learning is applied
to predict CO2 emissions. A literature review has been conducted so that proper
independent variables can be identified. Traditional parametric modeling approaches
and the Gaussian Process Regression (GPR) algorithms were introduced, and their
prediction performance was summarized. The reliability and efficiency of the proposed
algorithms were then demonstrated through the comparison of the actual and the
predicted results. The results showed that the GPR method can give the most accurate
predictions on CO2 emissions.
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INTRODUCTION

As the population of the earth is being exponentially increasing, the exhaustion of carbon dioxide is
increasing day by day resulting in the extreme overheating of the environment, which has become a
significant reason for climate change. Global efforts to mitigate climate change were focused on the
reduction of future days with extreme overheating of the environment. There are many research and
surveys that have been conducted by various scientists, students, and other officials which were about
the reasons for the high emission of CO2 in different countries. Most of the empirical studies took the
parametric modeling approach to analyze the factors that initiate and support the emission of CO2.
However, the traditional parametric approach optimizes a function to a known form with a set of
finite and pre-determined parameters. This rigidity limits the predictive power of the parametric
models. In recent years, nonparametric machine learning techniques have played dominantly with
the enhancement of the forecast.

In this paper, a Bayesian nonparametric kernel prediction algorithm in machine learning is
applied to predict CO2 emissions. A literature review has been conducted so that the proper
independent variables have been identified. Classical least squares, robust least squares, and
algorithms of the GPR were introduced and their prediction performance, including the
evaluation criteria that are effective in the measurements for model performance, were
summarized. The reliability and efficiency of the proposed algorithms were then demonstrated
through the comparison between the actual data and the predicted results. It is found that GPR can
give the most accurate predictions on CO2 emissions.
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LITERATURE REVIEW

The growth of the economy, energy utilization, and CO2

emissions are deeply related to each other. Kolstad and
Krautkraemer (1993) point out that while the use of resources
like the energy has a bright side on growth, it has negative
environmental impacts. Traditional growth theories like the
Solow growth model failed to consider the environmental
impacts of growth (Solow, 1956). More modern growth
theories study the interrelationship among energy, the
environment, and economic growth (see, for example, Kolstad
and Krautkraemer (1993), Jorgenson and Wilcoxen (1993) or
Xepapadeas (2005) for a brief review).

Empirical studies depict that the growth of the economy and
the ingestion of energy incorporates with the process of CO2

emission. Recently, Hu et al. (2020) study the dominant reasons
for carbon emission among the Belt and Road countries and find
that CO2 emissions have increased significantly due to economic
growth. Similarly, Shabaz et al. (2013) found that in Indonesia,
the emission of CO2 increased for the extreme boost of the
economic zone, while Shahbaz et al. (2016) found that
economic growth led to CO2 emissions in Bangladesh and
Egypt. Meanwhile, other studies discovered a bilateral causal
relationship among the three variables. Munir et al. (2020)
prove the fact that there is a relation of aftermaths and
economy between GDP and energy ingestion in the major
countries of the ASEAN (Association of Southeast Asian
Nations), while Liu and Hao (2018) find that in energy-
exporting countries, there is a bilateral relationship which may
be a full-duplex connection between CO2 emissions, energy
utilization, and GDP per capita. Similarly, a repeating loop
effect is observed between energy ingestion, CO2 emission, and
the advancement of the economy by Kahouli (2018). Accordingly,
Mohmannd et al. (2020) observed the working principle of the
causal relationship among transportation infrastructure,
economic growth, and transportation emissions from 1971 to
2017 in Pakistan. The results show short-term causality from
transportation infrastructure, economic growth, fuel
consumption to CO2 emissions, and the long-run relationship
between economic advancement and infrastructure.

Apart from the growth and energy consumption,
industrialization, population growth, and income level also
contributed a great share in global carbon emissions. Minx
et al. (2011) found that “industrialization” can be taken into
consideration for the rapid increase of carbon dioxide emission in
China from 2002 to 2007 while Zhang et al. (2014) found that the
growth of the tertiary industry can decrease the CO2 exhalation
intensity. Nasir et al. (2021) examined the connection between
the factors which are the exhalation of CO2, industrialization,
growth of the economy, energy ingestion, and several connecting
factors from 1980 to 2014 in Australia. The observations of those
involved say that all variables affect CO2 emissions. Li et al. (2021)
discussed the effect of the growth and structure of the economy
on per capita CO2 emissions in 147 countries from 1990 to 2015.
The results show that at the global level, economic growth and
economic structure are the most significant positive and positive
effects, respectively.

Studies on population have thus far concentrated on the
relationship between population growth and emission increase.
The effect of population growth on CO2 emissions can be
summarized as follows (Birdsall, 1992): On one side, the
energy demand was increased for power generation, industry,
and transport. On the contrary, it increased deforestation
emissions due to population growth. Empirically, Knapp and
Mookerjee (1996) conducted a Granger causality test on annual
data from 1880 to 1989 to determine the connecting clauses
between global population expansion and carbon dioxide
exhaustion. The results show there is a short-term dynamic
relationship between the exhaustion of carbon dioxide and
population growth. Very recently, Zhang et al. (2020) analyzed
the knot between CO2 emissions, GDP, and fuel ingestion in
China and ASEAN countries. It was found that carbon density,
energy intensity, GDP, and population are positively correlated
with CO2 emissions. Empirical findings also show that the
developing countries are facing the effect of overpopulation
and that’s why, they are facing more of a carbon emissions
record per year other than the developed countries (Shi, 2003).

In the past decade, the theory and methodology of the
Environmental Kuznets Curve (EKC) have been used to
analyze the relationship between the net income and
exhaustion of carbon of an area (Dinda, 2004; Williams and
Rasmussen, 1996). According to the EKC, at relatively low-
income levels, emissions increase as income increases. After a
certain point, emissions will decline with income. Thus, the
emission of CO2 varies concerning the level of income. Luo
et al. (2021) investigated the influencing factors of Shanghai’s
CO2 emissions from 1995 to 2017. They found that personal
disposable income is one of the top drivers of CO2 emissions.
Yuan et al. (2014) examined the long-term relationship between
China’s per capita income, ingestion of energy, and the emission
of CO2 from 1953 to 2008. They found out, there is a unilateral
Granger inter-relation between the gross national income and the
emission of CO2.

Based on the literature above, it concludes that economic up-
gradation, energy utilization, manpower density,
industrialization, and income can be classified as the
predominant factors affecting CO2 emissions. Other factors
might also affect CO2 emissions in China. For example, R&D
(Nguyen et al., 2020; Jones, 1995), financial development
(Bhattacharya et al., 2017; Zaidi et al., 2019; Wang et al.,
2020), the degree of foreign direct investment (Essandoh et al.,
2020; Le et al., 2020; Khan and Rana, 2021. etc). This paper limits
the focus on how well the different prediction models perform
based on the information set which includes only the most
predominant driver of CO2 emissions and excludes those
unimportant ones to be captured by the stochastic terms in
the models.

METHODOLOGY

Gaussian Process Regression (GPR) method can be introduced as
a non-parametric Bayesian regression method (Gershman and
Blei, 2012). It captures a wide variety of relations between inputs
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and outputs and lets the data determine the complexity of the
underlying functions through the means of Bayesian inference
(Williams, 1998). Considering the output y of a function w at
input x with independent and identically distributed random
noise ε ∼ N (0, σ2n). The function accompanied with the
distributed random noise can be presented as:

y � w(x) + ε (1)

In classical linear regression, w(x) is deterministic whereas the
noise term is random. In Gaussian process regression, however,
w(x) is assumed to be random and follows a Gaussian process. A
Gaussian process is an extension of multivariant Gaussian
distribution to infinite dimensions; any finite subset sampled
from the Gaussian process follows multiple Gaussian
distributions (MacKay, 1998). The distribution over functions
can be described with the help of the Gaussian process,

w(x) � GP(m(x), k(x, x’)) (2)

where x is applied as the input variable, m(x) is denoted as the
mean function, finally, k(x, x’) is known as covariance function.
These two functions are defined respectively as:

m(x) � E[w(x)]

k(x, x’) � cov[w(x), w(x’)]. (3)

A finite collection of function values sampled from the
Gaussian process follows multiple Gaussian distributions:

[w(x(1)), w(x(2)), . . . , w(x(n))]T ∼ N (μ, K) (4)

whereK is a n × n (n by n)matrix with the entriesKij � k(x(i), x(j))
and μ has entries μi � m(x(i)). Given a training set that contains
observation points y � [y(x(1)), y(x(2)), . . . , y(x(n))]T and function
values w � [w(x(1)),w(x(2)), . . . ,w(x(n))]T, it follows that the
conditional distribution p(y

∣∣∣∣w) and the Gaussian prior p(w) are
N (w, σ2εI) and N (μ,K), respectively. By definition, the set of
observations y and the set of function values w follow a joint
multivariate Gaussian distribution. The join distribution
p(w(xp), y) is defined as

[w(xp)
y

] ∼ N([ μp
μ

],[ k(xp, xp) kpT

kp K + σ2εI
]) (5)

Here, I will be considered as the identity matrix, σ2ε is the
unknown variance of the random noise and (kp)i � k(xp, x(i)) for
i � 1, 2, . . . , N. Using the Bayesian rule, the predictive posterior,
p(w(xp)|y) ∼ N (wp,Σp), can be obtained, and the mean wpand
variance Σp are defined by

wp � μp + (kp)T[K + σ2εI]−1(y − μ)Σp � k(xp, xp) − (kp)T[K + σ2εI]−1(kp)
(6)

The covariance function determines the characteristics of the
Gaussian method that can be expressed as k(x(i), x(j)). The
covariance function models the dependence between the
function values at different input points x(i) and x(j). The
covariance function is often called the kernel of the Gaussian

process. There are many possible options for the prior covariance
function. A popular kernel is the exponential covariance function
which allows the model to general a non-negative definite
covariance matrix for any set of input points (Williams and
Rasmussen, 1996). The exponential covariance function is
defined as

k(x(i), x(j)) � σ2
fexp( − ‖ x(i) − x(j)‖2

2I2
) + σ2ε δij (7)

where I is the characteristic length scale, σ2f is the signal variance, and
δij is a Kronecker delta. TheGaussian process regression employs a set
of hyperparameters θ including I, σ2f and σ2n to increase or reduce the
priority correlation between points and consequentially the variability
of the resulting function. The hyperparameters θ can be optimized
based on the log-likelihood framework:

L � logp(y∣∣∣∣w, θ) � −1
2
yTC−1y − 1

2
log|C| − n

2
log 2 π, C

� K + σ2εI (8)

More details about the regression process of Gaussian can be
researched and acknowledged in the book of Williams and
Rasmussen (2006), available free online and is accessible via
the link: www.GaussianProcess.org/gpml.

EMPIRICAL RESULTS

A literature review has been conducted so that five independent
variables; namely: economic growth, energy consumption, population,
industrialization, and income, have been identified. In this study, the
GPR method and the other proposed algorithms are applied to study
carbon emissions in China. Economic growth is approximated by
GDP (100million RMB), energy consumption is approximated by per
capita energy consumption (tons of standard coal), the population is
approximated by population size (10,000 people), industrialization is
weighted by the percentage of secondary industry in China, and
income is measure by the average annual salary (RMB).

The data of GDP, population size, energy consumption,
percentage of secondary industry, and average annual salary are
collected from the China City Statistical Yearbook. CO2 emissions
data come from fourmain sources of energy consumption. These are
electricity, fuel, heating, and transportation. Those data can be
obtained and calculated through the China Urban Construction
Statistical Yearbook, the China City Statistical Yearbook, and the
submerged government Panel on the change of weather and climate.
Since some of those data is not available after 2014, the data in this
paper range from the year 2002–2014.

Statistical Analysis of Prediction Results
The commonly used criteria in prediction performance are
used in this study to evaluate the validity of the fitting. In
Table 1, the root means squared error (RMSE), the mean
squared error (MSE), the R-square, and the mean absolute
error (MSE) are shown, where a well-fitted model should have
R-square close to 1, whereas the RMSE, the MSE, and the MAE
should be as small as possible. As per the observation from
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Table 1, Exponential GPR provides the best fit data as it has the
smallest RMSE, MSE, and MAE, and an R-square closest to 1.

Data Visualization
Since the data set is large, which made it difficult to demonstrate
and view the whole set of data, visualization methods are typically
needed especially for representative scenarios. The prediction
results were analyzed at the model level to see the allover
authenticity of the three models and at the individual
component level to get a picture of the estimates produced by
the three models over the range of some particular variable.

At the overall level, the comparison and deviation of the actual
value and the predicted dimension of the emission of carbon dioxide
are determined. Figure 1 demonstrates the comparison of actual value
and prediction of CO2 emissions predicted by the three models; for
each model, the predicted value is plotted against the actual value. To
have a good fit, each plot should resemble a straight line at 45°.
However, compare with the exponential GPR model, for the classical
least squares model and the robust least-squares model, the predicted
values are larger than the actual values over the range of 3.5–4
logarithm units of CO2 emissions. This means that the classical
least squares model and the robust least-squares model are
overestimating CO2 emissions over a particular range compare
with the exponential GPR model. The same issue can be observed
from Figure 2 which shows the deviation of actual value and
prediction of CO2 emissions for the three models. Figure 2 shows
that, compare with the other two models, the deviations for the

exponential GPR model cluster more closely around the horizontal
line which represents no deviations. It suggests that the exponential
GPR model provides a much better fit than the other two models.

Apart from analyzing the prediction results at the overall model
level, the all over performance of the threemodels is also be evaluated
at an individual component level. At the individual component level,
the estimates produced by the selected models are analyzed over the
extended range of some particular variables. Figures 3–7 below plot
the actual and predicted values of CO2 emissions against each of the
most predominant factors of the models.

Figure 3 plots the predicted values of CO2 emissions against the
logarithm of the GDPmeasured in 10,000 Chinese Yuen. Ideally, it’s
convenient if the predicted values are as much closer possible to the
actual values for all conducted observations. As shown in Figure 3C
predictedCO2 emissions are quite close to the actual values predicted
by using the logarithm of GDP. Even though a small number of
deviations can be observed. On the contrary, Figures 3A,B revealed
that the classical least squares and the robust least-squares
overestimate the CO2 emissions over the range of 3.2–3.7
logarithm units of GDP. It implies that conditioning on GDP,
the Exponential GPR model provides more accurate CO2

emissions predictions compare with the other two models.
Figures 4–6 show similar results. The predicted CO2 emissions

by using the exponential GPR model are tensed to the actual values
over the entire range of population size (see Figure 4), the energy
consumption (see Figure 5), and the level of industrialization (see
Figure 6). However, when the classical least squares and the robust

TABLE 1 | Statistical Analysis of Prediction Results.

Classical least squares Robust least squares Exponential GPR

RMSE 0.10964 0.11045 0.083734
R-Squared 0.95 0.94 0.97
MSE 0.012022 0.012198 0.0070114
MAE 0.08049 0.079101 0.059303

FIGURE 1 |Comparison of actual value and prediction of CO2 emissions between the selectedmodels. (A)Classical Least Squares. (B)Robust Least Squares. (C)
Exponential GPR. Notes: 1) The horizontal axis represents actual CO2 emissions in logarithm, and the vertical axis represents predicted CO2 emissions in logarithm. 2)
CO2 emissions are measured in ten thousand tons of standard coal.
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least-squares model are used, extreme deviations between the actual
value and predicted value can be observed. In Figures 4A,B, it is
determined that the classical least squares and the robust least-
squares model overestimate the CO2 emissions over the range of
2.7–2.8 logarithm units of population size. Similarly, in Figures
5A,B, CO2 emissions are overestimated by the classical least squares
and the robust least squares models over the range of 0.5–1
logarithm units of per capita energy consumption. In Figure 6,
although not obvious, CO2 emissions are overestimated by the
classical least squares and the robust least squares models over
the range of 40–50% of secondary industry in China.

Figure 7 shows how the predicted values deviate from the actual
values when the independent variable is non-Gaussian for the
presence of threshold data points from extreme references. As with

the evidence presented above, extreme upward bias over a particular
range can be observed when the classical least squares and the robust
least squares are used; the models overestimated CO2 emissions over
the range of 4.5– to 4.75 logarithm units of average annual salary. The
extreme bias disappears when the exponential GPR model is used.
Moreover, when the exponential GPR model is used, the deviations
between the actual values and the predicted values are smaller for the
extreme data values observed over the range of 1– to 1.5 and 5 to 5.5
logarithm units of average annual salary.

In summary, Figures 3–7 show that predicted CO2

emissions conditional on individual components (i.e., GDP,
population size, energy consumption, and industrialization)
are quite close to the actual values predicted using the
exponential GPR model. Even the underlying distribution of

FIGURE 2 | The deviation of actual value and prediction of CO2 emissions between the selected models. (A) Classical Least Squares, Robust Least Squares,
Exponential GPR. Notes: 1) The horizontal axis represents actual CO2 emissions in logarithm, and the deviation of the actual extremity of the CO2 emission from the
predicted value is represented by the vertical axis. 2) CO2 emissions are measured in ten thousand tons of

FIGURE 3 | Comparing actual and predicted CO2 emissions against GDP of the selected models. (A) Classical Least Squares. (B) Robust Least Squares. (C)
Exponential GPR. Notes: 1) The vertical axis denotes the value of CO2 emissions in the logarithm. 2) The horizontal axis denotes the value of GDP in logarithm. 3) CO2

emissions are measured in 10,000 tons of standard coal. 4) The blue dots represent actual values whereas the yellow dots represent the predicted values. (5) GDP is
measured in 100 million Chinese Yuan.
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the independent variable is non-Gaussian. Meanwhile,
extreme upward bias per component in the technique can
be observed when the classical least squares and the robust
least squares models are used. Thus, a conclusion may be
drawn upon the study that the exponential GPR model gives
the most accurate predictions on CO2 emissions compared
with the remaining models.

CONCLUSION AND FUTURE WORKS

In this paper, the Gaussian process regression method is
proposed for CO2 emissions analysis in China. The

traditional linear regression approach is limited by its rigid
functional form and the approach often encounters an over-
fitting problem. The Gaussian progress regression approach
relaxes the parametric assumption by applying the Bayesian
nonparametric inference approach. The preciseness and
exactitude of the prediction of the exponential GPR were
compared and discussed with the classical least squares and
the robust least-squares model. Based on the outcome of the
whole study, it is proved that the Gaussian progress regression
algorithms can give the most accurate predictions on CO2

emissions compared with the other two traditional models and
thus is applicable for CO2 emissions prediction analysis to
enhance forecast performance.

FIGURE 4 | Comparing actual and predicted CO2 emissions against population size of the selected models. Classical Least Squares, Robust Least Squares,
Exponential GPR. Notes: 1) The vertical axis represents the value of CO2 emissions in logarithm. 2) The horizontal axis represents the population size in logarithm. 3) CO2

emissions are measured in 10,000 tons of standard coal. 4) The blue dots represent actual values whereas the yellow dots represent the predicted values. 5) The unit of
population is 10,000 people.

FIGURE 5 |Comparing actual and predicted CO2 emissions against energy consumption of the selected models. Classical Least Squares, Robust Least Squares,
Exponential GPR. Notes: 1) The vertical axis represents the value of CO2 emissions in logarithm. 2) The horizontal axis represents the value of per capita energy
consumption in a logarithm. 3) CO2 emissions aremeasured in 10,000 tons of standard coal. 4) The blue dots represent actual values whereas the yellow dots represent
the predicted values. 5) Per capita energy consumption is measured in tons of standard coal.
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The prediction performances of the selected methods
discussed only focus on the six predominant factors
affecting carbon emissions. Future research should focus on
further reviewing the completeness of the set of driving factors
and the effectiveness of model predictions, compared them
with other commonly used models.
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FIGURE 6 | Comparing actual and predicted CO2 emissions against the industrialization of the selected models. Classical Least Squares, Robust Least Squares,
Exponential GPR. Notes: 1) The vertical axis represents the value of CO2 emissions in logarithm. 2) The horizontal axis represents the percentage of secondary industry in
China. 3) The blue dots represent actual values whereas the yellow dots represent the predicted values. 4) CO2 emissions are measured in 10,000 tons of standard coal.

FIGURE 7 | Comparing actual and predicted CO2 emissions against average annual salary of the selected models. Classical Least Squares Robust Least Squares
Exponential GPR Notes: 1) The vertical axis represents the value of CO2 emissions in logarithm. 2) The horizontal axis represents the average annual salary in logarithm. 3)
CO2 emissions are measured in 10,000 tons of standard coal. 4) The blue dots represent actual values whereas the yellow dots represent the predicted values. 5)
Average annual salary is measured in the Chinese Yuan.
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