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Wind energy has been connected to the power system on a large scale with the advantage
of little pollution and large reserves. While ramping events under the influence of extreme
weather will cause damage to the safe and stable operation of power system. It is
significant to promote the consumption of renewable energy by improving the power
prediction accuracy of ramping events. This paper presents a wind power prediction
model of ramping events based on classified spatiotemporal network. Firstly, the spinning
door algorithm builds parallelograms to identify ramping events from historical data. Due to
the rarity of ramping events, the serious shortage of samples restricts the accuracy of the
prediction model. By using generative adversarial network for training, simulated ramping
data are generated to expand the database. After obtaining sufficient data, classification
and type prediction of ramping events are carried out, and the type probability is
calculated. Combined with the probability weight, the spatiotemporal neural network
considering numerical weather prediction data is used to realize power prediction. Finally,
the effectiveness of the model is verified by the actual measurement data of a wind farm in
Northeast China.

Keywords: spinning door algorithm, generative adversarial network, spatiotemporal neural network, ramping
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1 INTRODUCTION

As one of the renewable sources of energy, wind energy has the advantages of large reserves and little
pollution (Vargas et al., 2019). The new power system with wide access to wind energy has become a
heated topic at home and abroad in recent years. However, the randomness and volatility of wind
energy in nature, especially ramping events under the influence of extreme weather, bring huge
challenges to the planning, and dispatching of power systems (Chun et al., 2009; ZongheGao et al.,
2013; Zhang, 2017). This will not only increase operating costs and energy consumption, but also
lead to the phenomenon of “abandonment of wind”, resulting in a waste of resources (Chun et al.,
2009; Zhang, 2017; Xie et al., 2019). Therefore, improving the prediction accuracy of the ramping
power is of great significance to the safe and stable operation of the new power system.

From the time scale, power prediction methods can be divided into ultra short-term prediction,
short-term prediction, medium-term prediction, and long-term prediction (Oh and Wang, 2020).
Among them, the ultra-short-term prediction is mainly used for the control of wind turbines, the
short-term prediction is made for the scheduling of the power grid, the medium-term prediction is
used for the arrangement of large-scale maintenance, and the long-term prediction is designed for
the evaluation of the site selection of the wind farm (Khosravi et al., 2013; Qin, 2018). In principle, it
can be divided into physical methods, time series methods, and artificial intelligence methods.
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Among them, Ma Yanhong combined neural network and
Bayesian rules to make ultra-short-term predictions for
Jiuquan Wind Power Base (Ma and Wang, 2013). On the
basis of NWP, Fan Gaofeng developed a prediction system
with a good human-machine interface based on artificial
neural networks, and realized a seamless connection with
energy management (Fan et al., 2008). C. Wan proposed a
wind power prediction strategy that combines artificial neural
network and genetic algorithm. Through the improvement of the
algorithm, the calculation efficiency and prediction accuracy have
been improved (Wan et al., 2014). In short, artificial learning
methods can better consider non-linear factors, and have
adaptive and self-learning capabilities, but they have higher
requirements for the quantity and quality of training data.

This paper presents a wind power prediction model of
ramping events based on classified spatiotemporal network
(CSN). Firstly, the spinning door algorithm is used to extract
effective ramping events from the historical database. Due to the
rarity of extreme weather and the lack of sample data of ramping
events, the reliability of prediction is restricted. The database is
expanded by using the generative adversarial network model. The
generator generates and simulates the ramping data according to
the characteristic value of the input ramping data. The
discriminator distinguishes between historical data and
simulated data. After the confrontation training, the generator
can generate the simulated ramping data with high similarity, and
then realize the expansion of the ramping database. After that, the
association rules mining algorithm is used to mine the data set
frequently. The ramping events are classified by clustering
algorithm, and the type probability of the next ramping event
is calculated according to the correlation analysis. Combined with
weight information and weather characteristics, the
spatiotemporal neural network model is used to predict the
ramping power. Taking the wind power dataset of a certain
region in Northwest China as the basis, the feasibility of the
proposed model is verified through simulated experiments.

2 DATA PROCESSING AND EVALUATION
INDEX

This chapter is to conduct qualitative and quantitative analysis on
history data, summarize the evaluation indexes of commonly-
used prediction methods, and lay a theoretical foundation for the
research. Firstly, the optimal spinning door algorithm is used to
extract effective ramping events from redundant data to form an
effective ramping event set. Then, the feature set with
spatiotemporal correlation is obtained by feature extraction. In
order to ensure the accuracy of power prediction, all the feature
sets are standardized to get the optimal power. Finally, two
indexes of evaluation are introduced, namely, the prediction
accuracy of ramping events and the prediction accuracy of
power waveform.

2.1 Spinning Door Algorithm
Spinning door algorithm (SDA) is a kind of compression
algorithm, which can find key points by building
parallelogram, and then realize data compression (Erdem and
Shi, 2011; Liu et al., 2018a). By using the spinning door algorithm,
the ramping up and down events can be identified (Faris et al.,
2018). Figure 1 shows the quadrilateral construction principle of
spinning door algorithm. Construct parallelogram 1–3, all points
are in the quadrilateral. When the parallelogram 4 with points B,
C, and D outside the quadrilateral is constructed, the search ends.
At this time, points A, B, C and D can be regarded as a ramping-
up event. The optimized spinning door algorithm is an
improvement of the spinning door algorithm, which can adapt
to the ramping recognition under different time scales, and
integrate the adjacent events with the same direction and
similar slope, so as to determine the ramping events (Huang
et al., 2019; Zhang et al., 2019). The recognition result is shown in
Figure 2.

FIGURE 1 | The principle of spinning door algorithm.

FIGURE 2 | Diagram for identifying ramping events.
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The algorithm takes an interval (i, j) in the wind power time
series, and k (i < k < j) is any time in the interval. The objective
function P is constructed as follows:

P(i, j) � max((i − k)2C(i, k) + P(k, j)) (1)

C(i, j) �
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

∣∣∣∣∣∣∣∣∣∣(Pj − Pi)(tj − ti)
∣∣∣∣∣∣∣∣∣∣≥ λ

0

∣∣∣∣∣∣∣∣∣∣(Pj − Pi)(tj − ti)
∣∣∣∣∣∣∣∣∣∣< λ

(2)

where, C(i, j) is the ramping criterion, which is used to judge
whether the power in the time interval (i, j) meets the definition of
ramping event. λ is the ramping threshold.

2.2 Feature Extraction
In order to better explore the characteristics of the ramping
database data and improve the prediction accuracy, the feature
extraction of power ramping events identified by the optimized
spinning door algorithm is carried out (Ronay et al., 2017; Naik
et al., 2018). The ramping power ΔP, ramping time Δt and
ramping speed ΔP/Δt of ramping events are calculated
respectively, and combined with starting power Ps, the feature
set E is formed as below:

E � {Ps,ΔP,Δt,ΔP/Δt} (3)

There is spatial correlation between different feature types.
And there is a temporal connection between the data at different
times. Therefore, such feature sets can be modeled as
spatiotemporal data. The feature extraction method can be
used not only for power waveform, but also for
meteorological factors, such as wind speed, temperature,
pressure, and so on.

2.3 Standardization Treatment
Because the units of different types of data and different
features of the same type of data are different, the scale
difference is too large (He et al., 2016). In order to ensure
the accuracy of power prediction, it is necessary to standardize
the data. Standardize the attributes of all data points, that is,
transfer to a specific data interval, such as [−1, 1]. In order to
prevent the influence of noise points on the standardization,
median and absolute standard deviation are used to
standardize the data.

x
∧ � x − xmid

Asd
(4)

Asd � ∑Md

q�1

∣∣∣∣xq − xmid

∣∣∣∣ (5)

where, Asd is absolute standard deviation, xmid is median, Md is
the number of objects, xq represents No. q data, x represents
raw data.

2.4 Performance Evaluation
In this paper, critical success index CSI, root mean square error
λrmse, mean absolute percentage error λmape are used to evaluate

the proposed prediction model’s performance (Zang et al., 2016;
Mi et al., 2017). The formulas are as follow:

CSI � nTP
nTP + nerror

(6)

crmse �
������������
1
n
∑n
i�1
(yt − yt

∧ )√
(7)

cmape �
1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣∣yt − yt
∧

yt

∣∣∣∣∣∣∣∣∣∣ (8)

where, nTP signifies the number of correct prediction on ramping
events, nerror represents the number of wrong prediction, n stands
for the number of samples, yt shows the predicted power and yt

∧

is the actual power.

3 PREDICTION MODEL BASED ON
CLASSIFIED SPATIOTEMPORAL
NETWORK
3.1 Flow Chart of Prediction Model
Deep learning is an important branch of machine learning. It
improves the ability to extract data features by building a more
profound and complex neural network architecture (Yan et al.,
2018; Abedinia et al., 2020). Compared with the traditional
shallow neural network, deep learning can extract the deeper
sub-features contained in the data through a network
hierarchical structure by a series of nonlinear changes, so as
to achieve classification or prediction (Liu et al., 2019; Wang
et al., 2019). Convolutional neural networks (CNN) specializes
in extracting spatial information features of data, and recurrent
neural networks (RNN) is good at extracting time series feature
information of data (Ji et al., 2017). The spatiotemporal neural
network first uses CNN to extract the spatial features of the data,
and then uses long-short term memory (LSTM) units or GPUs
to extract the temporal dimensional features of the data (Dowell
and Pinson, 2016; Shahid et al., 2020). This paper takes weather
forecast information into account, and proposes a classified
spatiotemporal network model that considers the numerical
weather prediction (NWP) data. The model can extract
preprocessed historical wind power data and NWP spatial
information, and then transfer the extracted spatial features
to the bidirectional GPU module to extract timing features.
Finally, the classic data splicing method of deep learning is used
to integrate historical wind power and NWP feature
information, and is input to the fully connected layer for
power prediction. The flow chart of the prediction model is
shown in Figure 3.

3.2 The Structure of Generative Adversarial
Network
In light of the problems of low accuracy and poor reliability
caused by insufficient ramping samples in traditional method, a
new data generation method is proposed. Generative adversarial
network (GAN) is used to generate simulated ramping data,
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which is an important part of the proposed power prediction
scheme (Yu et al., 2019). The simulated ramping data are
generated by confrontation training. Enrich the sample
number of prediction model and improve the accuracy of
prediction. The generator G in the generation countermeasure
network mainly generates data, using two 3 × 3 convolution
kernel and 64 feature mapping convolution layers, and then use
batch standardization layer and relu as activation function; The
discriminator D mainly distinguishes the data, including 8
convolution layers, uses step convolution to reduce the image
resolution, and finally calculates the probability of sample
classification through two dense and one sigmoid activation
function. The whole network structure is completed in
tensorflow framework.

To enlarge the database, a generative adversarial network is
used to create simulated ramping event considering historical
data and meteorological data. The increase in the sample of
ramping events provides conditions for sufficient training of the
spatiotemporal neural network and lays the foundations for the
improvement of the prediction accuracy of wind power.

FIGURE 3 | Flow chart of the prediction model based on classified spatiotemporal network. (A) Flow chart of generating simulated ramping data, (B) Flow chart of
type probability calculation, (C) Flow chart of classified spatiotemporal network, and (D) Predicted wind power waveform.

FIGURE 4 | Type prediction of ramping events.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 7542744

Xia et al. Classified Wind Power Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


3.3 Type Classification of Ramping Events
Based on Data Mining
After the data expansion of GAN, the number of ramping event
set samples is enough to support high-precision ramping power
prediction. It can be seen from the previous article that ramping
data has four important attributes. The single attribute statistical
characteristics of ramping events can be obtained by ramping
detection of wind power data. On this basis, the multi-attribute
statistical model of ramping events is obtained by multi-attribute
clustering. In this paper, we select these important attributes and
use the sorting recognition clustering structure options algorithm
for data mining. By sorting the distance of the output points,
clusters of any shape can be detected, and the robustness of the
input parameters can be guaranteed. It is suitable for multi-
attribute joint statistical characteristics detection of wind power
ramping events. The output results of options algorithm ensure
that the close points are together, which can classify the basic
patterns of ramping events. 400 ramping up and 400 ramping
down events are selected for type classification, and the results are
as shown in Table 1. All ramping events are divided into 8 types
according to ramping speed, ramping time and ramping
direction. After the classification of ramping events is realized,
the type of ramping events can be predicted.

3.4 Prediction on the Type of Ramping
Events
In the wind power prediction, the autocorrelation of wind power
is often used to predict the power series. However, in the
traditional ramping prediction model, there is a lack of similar
autocorrelation statistical model of wind power ramping events

(Chang et al., 2019). In this paper, apriori algorithm is used to
mine frequent patterns of ramping events, and the
autocorrelation statistical model of ramping events is
established. After type classification of ramping events,
probability prediction is carried out according to the
autocorrelation of recent ramping events.

Taking the frequent binominal set as an example, the
probability of the next ramping event of type B, which occurs
after the ramping event A, is shown in the formula.

P(A, B) � SC(A,B)
SC(A) (9)

where, SC(·) means the number of climbing events of a
particular type.

In order to improve the prediction accuracy and reduce the
amount of calculation, frequent trinomial set is used to predict
the ramping events. According to the autocorrelation, the
probability of possible ramping types can be calculated
respectively, as shown in the figure below.

In the Figure 4, the last two ramping events are both type A by
using type classification, and the type probability of the next
ramping event is calculated according to the autocorrelation. The
possible ramping events and the probability of occurrence can be
seen. Among them, P(A) � 55%, P(C) � 35%, P(D) � 10%.
Through this way of data mining and correlation analysis,
under the premise of having enough ramping event database,
we can accurately predict the probability of different types of
ramping events next time.

3.5 Model of Spatiotemporal Neural
Network
After feature extraction and standardization of historical ramping
data, feature set can be obtained. There is a spatial connection
between different types of features, while there is a temporal
connection between the same type of feature data. Therefore, such
a feature set can be used in power prediction. Since each feature
set has four different variables, each input sample is a 4 × N
matrix.

This paper not only uses power data as input, but also takes
weather factors into account. It calculates the correlation between
meteorological factors and wind power ramping. It can be seen
that wind speed, temperature, and air pressure have the greatest
correlation. NWP data is added to the model, and the feature

TABLE 1 | The classification of ramping events.

Type Numbers Ps/(p.u) ΔP/(p.u) Δt/(min) ΔP
Δt /( × 10−3p.u/min) Explanation

A 220 0.3069 0.2684 130 2.0646 Short, slow, ramping up
B 107 0.2615 0.6442 97 6.6412 Short, fast, ramping up
C 52 0.2423 0.4257 316 1.4325 Long, slow, ramping up
D 21 0.1254 0.6884 52 13.2385 Extremely short, extremely fast, ramping up
E 240 0.6232 0.3125 84 3.7202 Short, slow, ramping down
F 93 0.7873 0.6739 75 8.9853 Short, fast, ramping down
G 56 0.6642 0.5857 217 2.6991 Long, slow, ramping down
H 11 0.7164 0.6884 48 14.3417 Extremely short, extremely fast, ramping down

TABLE 2 | The similarity between simulated data and historical data.

Group Historical data D(x, y)
A B C D

Historical data A 1.3 (%) 34.6 (%) 31.2 (%) 43.4 (%)
B 34.6 2.0 62.4 26.7
C 31.2 62.4 0.9 65.9
D 43.4 26.7 65.9 5.7

Simulated data A 1.4 39.4 33.7 46.9
B 39.4 2.3 66.1 30.8
C 33.7 66.1 1.1 69.9
D 46.9 30.8 69.9 6.4
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extraction, and standardization are also carried out to form a
sample set. There are 12 different features in the meteorological
feature set, so each input sample is a 12 × N matrix.

In this paper, based on spatiotemporal neural network, CNN,
and GRU models are used to extract the eigenvalues of the input
data to achieve power prediction. The process is shown in the
Figure 5.

In the figure, CNN of three convolution kernels with different
sizes is used to extract feature, and then three vectors can be
obtained after linear rectification function and one-dimensional
pooling operation. After feature fusion, the spatial feature vector
can be extracted. Then it is input to the three-layer GRU unit to
extract the time sequence features of the vector value. Finally,
after pooling, dropout, and ReLU functions, the output power
prediction waveform is obtained.

To further improve the accuracy of power prediction, the
spatiotemporal neural network is trained according to the event
type. After sufficient sample training, we can get 8 different
spatiotemporal neural networks which are highly correlated
with the ramping type A to H. After the prediction of
ramping types based on data mining, the probability weights
of different types of ramping events are calculated. After the
classification of spatiotemporal neural network power prediction,
combined with the weight data, a comprehensive power
prediction waveform can be obtained.

Because this spatiotemporal neural network is a model
considering NWP data, in the process of classification and
prediction, the spatial features of historical ramping data and
NWP data are extracted respectively, and then transferred to
GRU module to extract time series information. Finally, the
feature fusion method is used to splice all the feature
information and input it to the full connection layer to realize
the power prediction.

4 EXPERIMENTAL RESULTS AND
ANALYSIS

In this paper, the actual data of a wind farmwith a rated capacity of
45MW in China is used as a test case to verify the effectiveness of
the proposed method. The time of data is from 2018 to 2020, and

the measurement interval is 5 min 80% of the entire data set is used
as the training set, and the remaining 20% is used as the test set.

4.1 Similarity Comparison
In order to verify the reliability of the classification of ramping
events, a quantitative comparison of the similarity of different
types of ramping events, and ramping events of the same type
from different data sources are carried out. The distance function
is used as the evaluation index, and the similarity is inversely
proportional to the distance between data objects. The distance
function is as follows:

D(x, y) � ����������∑n
i�1
(xi − yi)2√

(10)

where, xi ,yi represent the n-dimensional series of similarity.
D(x, y) shows the Euclidean distance between the two columns
of data.

Taking the above ramping event as an example, the Euclidean
distance of different data sources and different types of climbing
are calculated in Table 2.

To present the actual number of simulated data and historical
data, and to analyze the error rate of simulated data, we made
some experiments to verify the reliability. By increasing the
proportion of simulated data, the reliability of power
prediction is calculated. Historical and simulated data sets are
used as the input of the prediction model, and the number of
simulated data and historical data are changed. Then MAPE and
RMSE are calculated respectively. The data is shown in Table 3.

It can be seen that the accuracy of prediction will be gradually
improved by increasing the number of simulated data. However,
when the simulated data is too large, the accuracy of the
prediction algorithm will be limited to a certain extent. And
when the simulate data is close to 80%, the effect of the promotion
algorithm is the best.

4.2 Evaluation of Ramping Events
Prediction
At present, support vector regression (SVR), back propagation
(BP), and Elman neural networks have been widely used for wind

FIGURE 5 | The structure of spatiotemporal neural network.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 7542746

Xia et al. Classified Wind Power Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


farm prediction. Based on structural risk minimization, SVR has
strong robustness (Chang et al., 2019). BP neural network is a
classical neural network, which has a fast learning speed, and is
widely used in many fields (Liu et al., 2018b). The structure of
Elman neural network is similar to BP, but the output of its
hidden layer is connected with the input, which plays an
important role in the global optimization of the network (Lu
et al., 2015; Wang et al., 2017). In this paper, a wind power
ramping prediction model based on classified spatiotemporal
neural network is proposed and established, compared with

the previous methods mentioned. In the sample set, 500
ramping data and 500 non-ramping data are chosen
experiments. The misjudgment of ramping events is shown
Figure 6.

It can be seen from the statistics of ramping data that the
proposed method has the lowest error rate and the best effect. To
evaluate the effect of ramping events prediction, the CSI, crmse,
and cmape are calculated respectively. The results obtained are
shown in Table 4.

FIGURE 6 | Misjudgments of ramping events in the wind farm. (A)
Prediction of ramping events by using CSN, (B) Prediction of ramping events
by using SVR, (C) Prediction of ramping events by using BP, and (D)
Prediction of ramping events by using Elman.

FIGURE 7 | Comparison of power waveform prediction.

TABLE 3 | Prediction effect of different proportions of simulated data.

Ramping evnets With generative adversarial
network

Historical Simulated crmse cmape

100 0 366.4231 132.7564
100 50 303.8912 102.5522
100 100 247.0815 94.5116
100 150 184.5760 71.3648
100 200 126.9921 52.0311
100 300 84.7316 32.3807
100 400 72.3265 22.1764
100 500 73.5491 28.2041
100 600 78.4536 29.0589
100 700 83.5722 31.9267
100 800 88.6920 34.8489

TABLE 4 | Prediction evaluation of ramping events.

Model CSI crmse cmape Computational time (s)

CSN 98.22% 72.3265 22.1764 0.21
SVR 76.64% 94.8642 34.2063 0.24
BP 88.03% 131.0226 27.9074 0.42
Elman 72.95% 150.1042 28.3366 0.63
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CSN, SVR, BP, and Elman are used to predict the ramping
events. It can be found that the CSN method has the highest
prediction accuracy, which is approximately 99%, while the
accuracy of other methods is only about 80%. It also has the
smallest error and a higher accuracy. The simulation experiment
results prove that the wind power prediction algorithm based on
the classified spatiotemporal network realizes accurate prediction
on ramping power waveform. Figure 7 shows the comparison of
power waveform prediction.

5 CONCLUSION

In this paper, a wind power ramping prediction model based on
classified spatiotemporal network (CSN) is proposed. The
innovation points are as follows:

1) Valid ramping events are extracted from historical data based
on spinning door algorithm. According to the waveform
characteristics of ramping events and weather
characteristics, a historical ramping feature set is constructed.

2) Generative adversarial network is proposed to generate data to
enrich the set of historical ramping events’ feature. Adequate
feature database provides a guarantee for adequate training
and can improve the efficiency of prediction.

3) After the database is expanded, data mining algorithm is adopted
to predict the climbing type. Then, the classified spatiotemporal
neural network is used to predict the power according to the
weight. Compared with traditional methods, the prediction and
training quality is better and the efficiency is higher.
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