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A data-driven PEMFC output voltage control method is proposed. Moreover, an Improved
deep deterministic policy gradient algorithm is proposed for this method. The algorithm
introduces three techniques: Clipped multiple Q-learning, policy delay update, and policy
smoothing to improve the robustness of the control policy. In this algorithm, the hydrogen
controller is treated as an agent, which is pre-trained to fully interact with the environment
and obtain the optimal control policy. The effectiveness of the proposed algorithm is
demonstrated experimentally.
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INTRODUCTION

Fuel Cell is the fourth type of power generation technology after hydroelectric, thermal and nuclear
power generation. It converts chemical energy stored in fuel and oxidizer directly into electricity
through electrode reactions in an isothermal environment (Yang et al., 2021a; Yang et al., 2021b). As a
new type of chemical power source, the fuel cell generation process is not a direct combustion of fuel
compared to thermal power generation, the power generation efficiency is not limited by the Carnot
cycle and the emission of harmful substances is extremely low(Yang et al., 2020; Yang et al., 2018). Its
energy conversion rate is as high as 80 %, and its actual efficiency is double that of an ordinary internal
combustion engine (Bougrine et al., 2013) The fuel cell is therefore a new power source with high
efficiency and clean features, combining new technologies in energy, chemicals, materials and
automatic control (Yang et al., 2019a; Yang et al., 2021c).

However, as the PEMFC system is a complex system with multiple inputs and outputs, nonlinear,
approximately east, with random disturbances, time-varying and high order (Yang et al., 2019b; Li
and Yu, 2021a), it is difficult to achieve satisfactory control results with traditional PID control (Li
et al., 2021). In order to obtain accurate and fast response results, various advanced control strategies
have been applied in the research of PEMFC output control strategies. (Zhang et al., 2019; Li and Yu,
2021b; Zhang et al., 2021).

In recent years, scholars at home and abroad have done a lot of research on the control of PEMFC,
which is mainly divided into the following categories:

1) Model-based control methods (Wang and Kim, 2014): including internal model control (IMC)
(Danzer et al., 2008), model predictive control (MPC) (Kim, 2010), model-based adaptive control
(Zhang et al., 2008), nonlinear model predictive control (NMPC) (Park and Gajic, 2014), model
multivariable control (nonlinear multivariable control) (Talj et al., 2009), time delay control (Liu
et al., 2016), generalized model control (Damour et al., 2014), etc.
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2) Sliding mode control. Some higher order sliding mode control
methods have also been applied to PEMFC, (Ou et al., 2015)
such as first order sliding mode control, higher order super
twisted sliding mode control and (Chen et al., 2018) higher
order sliding mode control with an observer.

3) PID and its improvement algorithms. Some improved algorithms
on the PID algorithmhave also been used extensively, for example,
neural PID controller (Zhao et al., 2020), fuzzy PID control (Sun
et al., 2018), and algorithm combining PID and fuzzy controller
(Ou et al., 2017), feedback linearization controller, and reference
fractional order PID (FOPID) controller.

4) Adaptive control. Some adaptive control has also been applied
to PEMFC control, such as data-driven adaptive controller, an
adaptive control based on parameter identification, and
adaptive pole search controller.

5) Compound control. There are also some compound controllers,
for example, PID-neural network control, interval type II fuzzy
(Fuzzy)-PID control, fuzzy adaptive PID control.

The existing research problems are:

1) There is no model -free control algorithm that can effectively
adapt to the non-linear characteristics of PEMFC.

2) No optimal algorithm with adaptive capabilities and low
computational effort.

For this reason, model-free controllers with strong adaptive
capabilities are more suitable for such systems.

A data-driven PEMFC output voltage control method is
proposed. Moreover, an Improved deep deterministic policy
gradient algorithm is proposed for this method. The algorithm
introduces three techniques: double Q learning, policy delay
update, and policy smoothing to improve the robustness of the
control policy. In this algorithm, the hydrogen controller is treated as
an agent, which is pre-trained to fully interact with the environment
and obtain the optimal control policy. The effectiveness of the
proposed algorithm is demonstrated experimentally.

The innovations in this paper are.

1) A data-driven PEMFC output voltage control method is
proposed.

2) An Improved deep deterministic policy gradient algorithm is
proposed.

The remainder of this paper comprises the following sections:
the PEMFC model is demonstrated in PEMFC Model, and the
proposed algorithm is described in Proposed Method; the
experimental results are analysed and discussed in Case Studies,
and the findings in this paper are summarised in Conclusion.

PEMFC MODEL

PEMFC Output Voltage
The dynamic model of the PEMFC has been refined from the
electrochemical model. Ideally, the voltage released at full
reaction is 1.229 V. The actual potential decreases due to

irreversible losses, which in practice are also known as
polarization overvoltage. In the power generation process of a
PEMFC, polarization overvoltage is mainly manifested as activation
overvoltage, ohmic overvoltage and concentration overvoltage.
Therefore, in the actual power generation process, the individual
voltage is inevitably less than the ideal standard electric potential due
to the polarization overvoltage. In addition to the factors such as
temperature, pressure and current density, chemical and material
factors such as electrodematerial and electrolyte can also influence the
polarization or overvoltage of the electrodes.

Vcell � E − ηact − ηohm − ηcon (1)

For a fuel cell stack consisting ofN single cells connected in series,
the output voltage V can be expressed as

V � NVcell (2)

Ohmic Voltage Overvoltage
The ohmic polarization overvoltage ismainly caused by the equivalent
membrane impedance of the proton exchange membrane to the
transfer of protons and the impedance of the electrodes and current
collectors to the transfer of electrons. Based on the Amphlett model,
the PEMFC ohmic overvoltage mainly includes the voltage drop
caused by the impedance of the two parts of the PEMFC. These two
parts of impedance, one part is the equivalent membrane impedance
of the protonmembrane, The other part is the resistance that prevents
protons from passing through the proton membrane which is usually
a constant. According to the resistivity theorem, the equivalent
membrane impedance Rm can be obtained by the following formula:

RM � ρMB

A
(3)

In the formula, ρ(M) is the resistivity of the proton membrane to
the electron flow (Ω · (cm)), B is the thickness of the proton
exchange membrane. ρM can be obtained by the following
formula.

ρM � 181.6[1 + 0.03( I
A) + 0.062( T

303)(fracIA)25[λ − 0.634 − 3( I
A)] exp[4.18(T−303T )] (4)

Empirically, the internal resistance of the battery is

Rint � 0.01605 − 3.5 × 10−5T + 8 × 10−5i (5)

Ohmic polarization overvoltage can be expressed as:

ηohm � IRint � I(Rm + Rc) (6)

Activation Overvoltage
Activation overvoltage is the deviation of an electrode’s potential
from its equilibrium potential due to a delay in its electrochemical
reaction. The activation polarization overvoltage of the cathode
can be obtained

Vux t,c � RT

αcFn
(ln[nFK0

c exp(−ΔGRT)
× (Ci2)(1−αi)(CH2)(1−αc)(CH2o)αι] − ln I) (7)
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Anode activation polarization overvoltage:

Vat,a � −ΔG
2F

+ RT

2F
ln(4FAK0

aCH2) − RT

2F
ln I (8)

The total activation polarization overvoltage is the sum of the
anode activation overvoltage and the cathode activation
overvoltage, expressed as:

ηact � ξ1 + ξ2T + ξ3T ln c(O2) + ξ4T ln I (9)

c(O2)is the concentration of dissolved oxygen at the cathode
catalyst interface which is calculated as follows:

c(O2) � PO2/5.08 × 106 exp(−498/T) (10)

Thermodynamic Electric Potential
According to the empirical formula for the PEMFC, the
thermodynamic electric potential can be obtained as follows:

E � ΔG
2F

+ ΔS
2F

(T − Tref ) + RT

2F
(lnpH2 +

1
2
lnp02) (11)

PEMFC can directly convert chemical energy into electrical
energy. The chemical energy release of a fuel cell can be
calculated by the change of the Gibbs self-burning energy(Δg(f)). The Gibbs self-burning energy is usually used to
calculate the externally available energy, for basic chemical
reaction formula of hydrogen/oxygen reaction PEMFC is:

H2 + 1
2
O2 −H2O (12)

The corresponding change in Gibbs’ self-reliance is:

Δgf � gf, products − gf, reactan is � (gf)H2O
− (gf)H2

− (gf)O2

(13)

The changed Gibbs self-burning energy is a function of
temperature and pressure:

Δgf � Δg0
f − RTfc ln⎡⎢⎢⎢⎣pH2p

1
2
O2

pH2O

⎤⎥⎥⎥⎦ (14)

We can deduce the voltage of the fuel cell:

E � −Δgf

2F
� −Δg0

f

2F
+ RTfc

2F
ln⎡⎢⎢⎢⎣pH2p

1
2
O2

pH2O

⎤⎥⎥⎥⎦ (15)

When specific values are brought in, the equation can be
transformed into

E � 1.229 − 0.85 × 10−3(T − 298.15) + 4.3085 × 10−5T(lnpH2

+ lnp02/2)
(16)

Dense Differential Polarization Overvoltage
Concentration overvoltage is a phenomenon caused by the deviation
of the electrode potential from the equilibrium potential due to the
difference between the concentration of ions in the solution at the
electrode interface layer and the concentration of the body solution in
the electrolytic bath, which can be expressed as:

ηcon � −β ln(J/Jmax) (17)

Dynamic and Capacitive Characteristics of
the Double Layer Charge
The phenomenon of a “double layer of charge” in a proton exchange
membrane fuel cell is particularly important for the dynamics of the
PEMFC. On the surface of the electrode electrons are collected and on
the surface of the electrolyte hydrogen ions are collected. Between
them there is a potential difference in which charge and energy are
stored, which acts as an equivalent capacitance. This “smoothest out”
the voltage loss across the equivalent resistance and results in a very
realistic dynamic model of the PEMFC. Therefore, when modelling
the dynamics of the PEMFC, a capacitance is added to the
electrochemical model. This “equivalent capacitance” is able to
better represent this effect by smoothing the output voltage
response of the fuel cell as the current changes, with a transition time.

In Figure 1, the polarization voltage across Rd isVd, given by
the differential equation for the voltage change of a single cell as

dVd/dt � I/C − Vd/RdC (18)

Vd � iRd � ηact + ηcon (19)

Thus, the voltage of the stack can be expressed as:

Vst � nVcell � n[E − I(Ract + Rcon + Rohm )] � n(E − IRequ )
(20)

The output power and efficiency of the stack can therefore be
expressed as:

Pst � I · Vstη � Vcell · I/E · I � Vcell /E (21)

PROPOSED METHOD

DDPG
The DDPG method fuses deep neural networks with Deterministic
Policy Gradients (DPG) algorithms and uses actor -critic a framework
as the basic architecture for the algorithm.The actor network is used to
update the policy and the critic network is used to approximate the
state action value function. The use a non-linear neural network as an
approximator. Inspired by the algorithm, DQN solve this problem by
setting up a target actor network and a target critic network, as well as
an experience replaymechanism. Instead ofDQNdirectly copying the
current network to the target network, DDPG updates the target
network in a “soft”way, ensuring that each parameter update is small,
thus achieving a stable training effect.

θ
Q
′ ← τθQ + (1 − τ)θQ′

θ
μ
′ ← τθμ + (1 − τ)θμ′ (22)

In DDPG, the objective function is defined as a sum with
discounted rewards

J(θμ) � Eθμ[r1 + cr2 + cr3 +/] (23)

L(θQ) � 1
N

∑
i

(yi − Q(si, ai∣∣∣∣θQ))2 (24)

Of which

yi � ri + cQ′(si+1, μ(si+1∣∣∣∣∣θμ′)|θα) (25)
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The actor network parameters are updated bymeans of a chain
derivative rule for the objective function:

∇θaJ(θμ) ≈ 1
N

∑
i

∇aQ(s, a|θϱ)
∣∣∣∣∣∣∣∣∣
s�s,a�μ(x)

∇θaμ(s|θμ)
∣∣∣∣sj (26)

To address the problem of under-exploration caused by actors
mapping states to deterministic actions in the DPG approach, the
DDPG algorithm generates temporal correlated noise through
the Ornstein-Uhlenbeck (OU) process to improve the exploration
capability of the algorithm under deterministic strategies.

DDPG uses an empirical replay mechanism based on random
sampling but suffers from Q-value overestimation.

The IDDPG algorithm uses two critics. The target value
formula is as follows:

yt � r(st, at) + cmini�1,2Qθt(st+1, πϕ′(st+1) + ε) (27)

CASE STUDIES

The DDPG control strategy, fuzzy PID controller (Fuzzy-PID),
PSO optimized fuzzy PID controller (PSO- PID), and PID are
introduced in this paper as comparative examples. The load
variation makes the step disturbance at 1 s. The load current
magnitude appears from 100 A with load disturbance and rises to
127 A. The results are shown in Figures 1A,B.

1 According to Figures 1A,B-, the IDDPG algorithm improves
the robustness of the algorithm because it uses advanced
techniques to solve the Q overestimation problem in
conventional deep reinforcement learning algorithms. In
contrast, the DDPG algorithm does not use an effective strategy
to improve the robustness of the algorithm, so the algorithm tends
to fall into local optima, making the final control strategy sub-
optimal and not robust. In addition, the other algorithms do not
have better optimal control capability and have difficulty in
adapting to the non-linear characteristics of the PEMFC,
therefore, their output voltage control performance is low.
2 For Fuzzy-based algorithms, their performance is mostly
better than Optimized-based algorithms due to their ability to
automatically adjust coefficients, but the simplicity of the
Fuzzy rule makes them less accurate.

Optimized-based algorithms are not adaptive and robust due to
the inability to adjust the coefficients in real time, which ultimately
leads to overshooting and instability of the output voltage.

In summary: In Case 1, the IDDPG algorithm has better static and
dynamicperformance and is able to control the output voltage effectively.

CONCLUSION

A data-driven PEMFC output voltage control method is proposed. An
improved deep deterministic policy gradient algorithm is proposed for
this method, which introduces three techniques: Clipped multiple
Q-learning, policy delay update and policy smoothing to improve
the robustness of the control policy. In this algorithm, the hydrogen
controller is treated as an agent, which is pre-trained to fully interact
with the environment and obtain the optimal control policy. The
effectiveness of the proposed algorithm is experimentally demonstrated.

The IDDPG algorithm has a short response time, a fast
response time, good dynamic and static performance
indicators, enabling timely and effective output voltage control.
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