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Aiming at the problem of difficulties in modeling the nonlinear relation in the steam coal
dataset, this article proposes a forecasting method for the price of steam coal based on
robust regularized kernel regression and empirical mode decomposition. By selecting the
polynomial kernel function, the robust loss function and L2 regular term to construct a
robust regularized kernel regression model are used. The polynomial kernel function does
not depend on the kernel parameters and can mine the global rules in the dataset so that
improves the forecasting stability of the kernel model. This method maps the features to
the high-dimensional space by using the polynomial kernel function to transform the
nonlinear law in the original feature space into linear law in the high-dimensional space and
helps learn the linear law in the high-dimensional feature space by using the linear model.
The Huber loss function is selected to reduce the influence of abnormal noise in the dataset
on the model performance, and the L2 regular term is used to reduce the risk of model
overfitting. We use the combined model based on empirical mode decomposition (EMD)
and auto regressive integratedmoving average (ARIMA) model to compensate for the error
of robust regularized kernel regression model, thus making up for the limitations of the
single forecasting model. Finally, we use the steam coal dataset to verify the proposed
model and such model has an optimal evaluation index value compared to other contrast
models after the model performance is evaluated as per the evaluation index such as
RMSE, MAE, and mean absolute percentage error.

Keywords: the steam coal price forecasting, kernel function, empirical mode decomposition, Huber loss function, L2
regular term

INTRODUCTION

Accurate forecasting of the steam coal price can provide a certain basis for enterprises related to
steam coal to formulate the procurement plan. The steam coal price indicates the general
performance of supply and demand on the steam coal market. China is a big consumer of coal
(Xiong and Xu, 2021; Wang and Du, 2020). Forecasting the steam coal price accurately can help in
the analysis of the steam coal market, grasp the implied law in the steam coal market, and improve
the steam coal market’s efficiency.
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In recent years, many references have proposed many different
methods for coal price forecasting. The time series model can mine
the implicit law in the time series. Matyjaszek et al. removed the
effect of abnormal fluctuations in prices on the forecasting model
by using the transgenic time series (Matyjaszek et al., 2019). Ji et al.
effectively improved the forecasting accuracy of the forecasting
model by using the ARIMA model and neural network model (Ji
et al., 2019). Wu et al. decomposed the price series into several
components, used the ARIMAmodel and SBLmodel for coal price
forecasting, and added up the forecasted values of all the
components as final forecasting result. Compared to the
contrast model adopted, this model can effectively improve the
model forecasting precision (Wu et al., 2019). Chai et al. combined
STL decomposition method with ETS model. The experimental
results show that it has the best forecasting performance compared
with benchmarkmodels and neural network (Chai et al., 2021). It is
difficult to learn the implicit nonlinearity law in the data by using
the time series model, which is sensitive to the abnormal value in
the data and only considers a single variable factor other than other
influence factors.

A neural network model can learn the nonlinearity law in the
data which is studied based on the interconnection between nerve
cells. Alameer et al. effectively improved the forecasting accuracy of
coal price based on LSTMmodel and DNNmodel (Alameer et al.,
2020). Lu et al. adopted the full empirical mode to decompose and
preprocess the original dataset, and then chose the radial basis
function neural network model for model training and forecasting.
The results show higher stability (Lu et al., 2020). Yang et al.
adopted the improved whale optimization algorithm to optimize
the decomposition and LSTM combined model based on the
improved integration empirical model, which has a better
model forecasting performance compared to other reference
models (Yang et al., 2020). Zhang et al. decomposed the
original data series by multi-resolution singular value
decomposition method and forecasted the coal price by using
MFO-optimized ELM model. Experimental results show the
forecasting performance of the proposed model was superior to
that of the contrast model (Zhang et al., 2019). However, the neural
network model is a black box model which is difficult to interpret.

The steam coal market is a complex nonlinear system,
containing influence factors such as economy, steam coal
transportation, steam coal supply, and steam coal demand. The
influence factors involve a wide range and many feature data and
contain some noise data. This method improves the model
interpretability by using linear model and reduces the adverse
impact of noise data on the forecast model by using Huber loss
function (Gupta et al., 2020). We use the kernel function to mine
the implicit nonlinearity law in the steam coal data (Li and Li, 2019;
Vu et al., 2019; Ye et al., 2021). The combined model can improve
the model performance based on the advantages of the sub-model
(Wang et al., 1210; Zhou et al., 2019; Wang et al., 2020a; Wang
et al., 2020b; Qiao et al., 2021; Zhang et al., 2021). This method can
decompose the forecasting error of the forecasting model into
multiple modal components by using the EMD method (Yu et al.,
2008; Xu et al., 2019;Wang andWang, 2020; Xia andWang, 2020),
build the ARIMAmodel (Conejo et al., 2005; Karabiber and Xydis,
2019) for each modal component for forecasting, and add up the

forecasted values of all the modal components to compensate error
for the original forecasting model.

For the problem of difficulties in modeling the nonlinear
relation in the steam coal dataset, this article proposes a
forecast method for the price of steam coal based on robust
regularized kernel regression and empirical mode decomposition.
The second part introduces the used algorithm theory content;
the third part states the data preprocessing steps, the selection of
features, and the whole process of model training and forecasting;
the fourth part shows the model comparison and experimental
results; and the fifth part contains conclusion and prospect.

METHODOLOGY

Huber–Ridge Model
The Huber function (Huber et al., 1992) has great robustness, which
can effectively reduce the negative influence of abnormal data on
model performance. The Huber loss function is shown in Eq. 1:

ϕhub(u) � { u2 |u|≤M
M(2|u| −M) |u|>M, (1)

where u is the residual value and M is the threshold value of the
Huber function. The Huber function imposes the punishment
which is larger than the threshold value residual to effectively
lower the influence of abnormal sample points on the model
training.

The Ridge model is added with L2 penalty term based on the
objective function of the linear regression model. The objective
function of the model is shown in Eq. 2:

min
ω

1
2
‖Xω − Y‖22 + αl2‖ω‖22, (2)

where X refers to the set of feature parameters, ω refers to the
weight coefficient vector, Y refers to the forecasted target
quantity, ‖ω‖22 refers to the L2 penalty term, and αl2 refers to
the regular coefficient.

L2 regular term compresses the feature weight value adversely
to the model forecasting and makes it approximate to 0 in order
to reduce the impact of features with low correlation. When the
regular coefficient of αl2 is large, the L2 regular term makes more
parameters’ weight in the parameter weight vector approximate
to 0 to screen out main features and mitigate the degree of model
overfitting to some extent.

The Huber loss function and L2 regular term are combined to
construct the Huber–Ridge model (Owen, 2006), improving the
model robustness and lowering the overfitting risk. Its objective
function is shown in Eq. 3:

ŵj � argminw
⎛⎝ϕhub(u) +

λ

2
∑k
j�1
(wj)2⎞⎠. (3)

Polynomial Kernel Huber–Ridge Model
The T.M. Cover theorem (Cover, 1965) points out that the data in
the high-dimensional space can show the linearity law more
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easily. The kernel function maps the vector of low-dimensional
feature space to the high-dimensional feature space, and
transforms the nonlinearity law in the low-dimensional feature
space into linearity law in the high-dimensional space to learn the
linearity law in the high-dimensional space by using the linear
model and indirectly learn the nonlinearity law in the original
feature space based on the model. Due to the high-dimensional
feature space having high dimensionality, the dimension disaster
may happen if the model is directly used for fitting in the high-
dimensional space. The introduced kernel function can effectively
solve the above problem, and the kernel function can represent
inner product value in the high-dimensional space with the inner
product value in the low-dimensional space. Thus, it can avoid
the inner product calculation in the high-dimensional space and
greatly reduce the calculation of the model.

The regular risk functions have a unified expression mode
(Schölkopf et al., 2001), as shown in Eq. 4:

f(x) � ∑n
i�1

wik(x, xi) + b. (4)

The kernel function is introduced to the Huber–Ridge model
(Jianke Zhu et al., 2008). Thus, the model can learn the implicit
nonlinearity law in the data. The objective function of
Huber–Ridge kernel model is shown in Eq. 6:

u � yi − f(x), (5)

where yi is the actual value, f(x) is the forecasting value, and u is
the forecasting error

ϕhub(yi, f(x)) � ⎧⎪⎨⎪⎩M(2u −M) A1 � {x|u>M}
u2 A2 � {x| −M≤ u≤M}
−M(2u −M)A3 A3 � {x|u>M}

,

(6)

ŵj � argminw ∑n
j�1
ϕhub

⎛⎝yi,∑n
i�1

k(xi, xj)wj + b⎞⎠
+ λ ∑n

i,j�1
wiwjk(xi, xj), (7)

T � argminw ∑n
i�1

ϕhub
⎛⎝y,∑n

i�1
kTi w + b · I⎞⎠ + λwTKw. (8)

Eqs. 9–12 can be obtained, respectively, by getting the partial
derivative of w and b:

zT
zw

� 2(λKw +KI0Kw +Kq) � 0, (9)

q � −I0y +me + b · I0, (10)

ei �
⎧⎪⎨⎪⎩ 1

0
−1

xi ∈ A1

xi ∈ A2

xi ∈ A3

, (11)

zT

zb
� 2(I0Kw + q) � 0, (12)

where I0 is a diagonal matrix of shape (n, n), the values of its
elements in the A domain are 1, and the remaining values are 0.

The basic Newton method is used to iteratively update w and
b, as shown in Eq. 13:

[w′
b′ ] � [w

b
] − γH−1∇, (13)

where H−1 is the first derivative of the gradient matrix as shown in
Eq. 14, γ is the length of the step, usually with a value of 1, and ∇
is a Hessen matrix as shown in Eq. 15:

H−1 � 1
2
[ λK + KI0K I0K

KI0 I0
]−1

, (14)

∇ � 2[ λKw +KI0Kw +Kq
I0Kw + q

]. (15)

Simplify Eq. 13 to obtain the final computational equation of
objective function of the kernel Huber–Ridge model, as shown in
Eq. 16:

[w′
b′ ] � [ 0

b
] + [ λI + I0K 1

1 0
]−1[ q

0
]. (16)

The polynomial kernel is a commonly used kernel function,
and the polynomial kernel function is shown in Eq. 17:

K(x, x) � (x · x + 1)d, (17)

where x � (x1, x2,/, xn) is the feature vector and d is the kernel
parameter. The polynomial kernel function (17) is substituted
into Eq. 16 to obtain the final computational equation of
polynomial kernel Huber–Ridge model objective function.

EMD Model
The empirical mode decomposition is a signal decomposition
technology and decomposes the original signal into a series of
components which are the intrinsic mode functions. The empirical
mode decomposition is often used to handle the time series data
and decomposes the original time series into a series of different
components to explore the implicit law in the time series data.

The intrinsic mode function should meet the two conditions
below:

1. In the data interval, difference between numbers of extreme
points and zero points is at most one.

2. The average value of the upper envelope and the lower
envelope is zero.

The EMD model is adaptive and can decompose the original
series for a time series data without the number of components
specified till the standard of stopping decomposition is met. The
relationship between the original series and the decomposed
components is shown in Eq. 18:

X(t) � ∑n
i�1

imfi + r, (18)

where X(t) refers to the original time series, ∑n
i�1 imfi refers to the

sumof the components, and r refers to the residual.When the residual
series is a monotonic function, the decomposition stopped.
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The decomposition step of empirical mode decomposition is
shown as follows:

STEP 1: Identify all the maximum points andminimum points
in the time series, and fit the upper envelope eu and the lower
envelope el by using the cubic spline finite difference method
according to maximum points and minimum points.

STEP 2: Calculate the average value of the upper envelope eu
and the lower envelope el, and obtain the mean envelope emean(emean�eu+el

2 ) .
STEP 3: Calculate the difference between the original series

X(t) and the mean envelope emean, and obtain the intermediate
time series( ei � X(t) − emean).

STEP 4: Judge whether the intermediate time series ei can be
an intrinsic mode function according to the constraint condition
of intrinsic mode functions. If satisfied, the intermediate time
series shall be used as the imf i component. If unsatisfied, such
intermediate time series shall be used as the basis to execute the
steps 1–4.

STEP 5: Subtract the component imf i from the original time
series X(t) and execute the steps 1–4 again. If the standard of
stopping decomposition is satisfied, the decomposition process
will end.

ARIMA Model
The autoregressive integrated moving average (ARIMA) model is
defined in Eq. 19:

yt � φ1y
t−1 + φ2y

t−2 +/ + φpy
t−p + εt − θ1ε

t−1 − θ2ε
t−2 −/

− θqε
t−q + θ0,

(19)

where yt and εt indicate the actual value and residual value at the
time point t, respectively, and φ � (φ1,φ2,/,φp) and θ �
(θ1, θ2,/, θq) refer to the weight vectors. p and q are the
model orders. The historical time series data and historical
white noise error data of the variable are used to forecast the
current value.

The prerequisite of using ARIMA model is to use stationary
data. The non-stationary data can be handled by combining the
autoregressive integrated moving average (ARIMA) model and
different methods (Gilbert, 2005). The ARIMA model has three
parameters, (p, d, q), in which d refers to the differential order of
the data series.

Evaluation Indexes
The model performance is evaluated by the mean absolute error
(MAE) and the definition of MAE is shown in Eq. 20:

MAE � 1
n
∑n

i�1
∣∣∣∣yi − ŷi

∣∣∣∣. (20)

The root-mean-square error (RMSE) is used for model
performance assessment and the definition of RMSE is shown
in Eq. 21:

RMSE �
������
1
n
∑n

i�1

√ (yi − ŷi)2. (21)

Themean absolute percentage error (MAPE) is used for model
performance assessment and the definition of MAPE is shown in
Eq. 22:

MAPE � 1
n
∑n

i�1

∣∣∣∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣∣∣∣, (22)

where n is the number of samples in the set verified, ŷi is the
forecasted value of the model, and yi is the true value. The closer
the MAE, RMSE, and MAPE values are to 0, the better the model
performance will be.

The Training and Forecasting Process of
Polynomial Kernel
Huber–Ridge–EMD–ARIMA Model
The training and forecasting process for the forecast framework
of polynomial kernel Huber–Ridge–EMD–ARIMA model
(PK–Huber–Ridge–EMD–ARIMA) proposed is shown in
Figure 1. Its process steps are as follows.

STEP 1: Data preprocessing and feature selection: Screen the
correlation features according to Pearson correlation coefficient
and Spearman correlation coefficient after the data preprocessing
and divide training dataset and test dataset.

STEP 2: Model training: The model parameter M, αl2, and
training dataset are input to the polynomial kernel Huber–Ridge
for model training.

STEP 3: Model forecasting: The test dataset is input to the
trained polynomial kernel Huber–Ridgemodel. Themodel outputs
the time series {y1′ ,/, yk′ , yk+1′ } of coal price forecasting data.

STEP 4: Forecast the forecasting error of steam coal price at the next
time point: The forecasting error series {ε1,/εk} of coal price is input
to the EMDmodel, and the EMDmodel outputs j modal components
(IMF1,/, IMFj). Each modal component is subject to training and
forecasting by the ARIMA model; the ARIMA model
(ARIMA1,/,ARIMAj) corresponding to each modal component
outputs the coal price forecasting error (ε1k+1,/, εjk+1) of each modal
component at the next time point, respectively. The (ε1k+1,/, εjk+1)
series accumulation is conducted, and the accumulation result {ε’k+1} is
used as the forecasted value of the coal price forecasting error at a time
point k+1.

STEP 5: Obtain the final forecasted value of steam coal price at
the next time point: The forecasted value {ε’k+1} of coal price
forecasting error at the time point k+1 is used for {y’

k+1}
correction of the forecasted value of coal price at a time point
k+1. The forecasted value {y’’

k+1} of coal price after correction is
used as the forecasted value of coal price at the final time point k+1.

EMPIRICAL STUDY

Data Description
Qinhuangdao steam coal price data that are 4500-kilocalorie,
5000-kilocalorie, and 5500-kilocalorie steam coal exit price data
of Qinhuangdao Port from Jan. 2017 to Jul. 2021, are used for
experimental study. The sampling is conducted once a week,
which is the weekly frequency data.
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Data Preprocessing
The original data about steam coal price and its features have the
disadvantage of missing value and inconsistent data time

sampling frequency; so, such original data shall be pre-
processed and the data processed can be brought into the
model for model training and forecasting.

FIGURE 1 | Flowchart for training and forecasting of the PK–Huber–Ridge–EMD–ARIMA model.
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FIGURE 2 | Dynamic division of training dataset and test dataset.

TABLE 1 | Selection of steam coal feature data.

Types of the feature Feature set

Coal production Raw coal production of key state-owned coal mines, coal production of large coal enterprises, . . . . . . . . . , and raw coal
production of non–state-owned coal mines

Coal supply National coal import quantity, coal inventory and dispatching data of Qinhuangdao Port, cargo ship ratio of four ports around
Bohai Sea, and historical data of total coal storage in five ports around Bohai Sea

Coal transportation Coal transportation quantity of Daqin Line, coal sales volume of national key coal mines, . . . . . . . . ., and daily average number
of coal railway loading vehicles

Coal consumption National industrial power consumption, national social electricity consumption, power generation in coastal provinces, and
coal consumption in power grid

Macroeconomic Coal future price, added value of national secondary industry, GDP, consumer price index, the producer price index, and
investment in fixed assets of the whole society

TABLE 2 | Parameters setting of the feature selection process.

Types of parameter rmp rsp delaymax

Parameter value 0.5 0.5 5

TABLE 3 | Linear features with optimal delay.

Features Optimal
delay order (delay)

Pearson correlation coefficient
(rp)

Quantity of anchored vessels in Caofeidian Port 1 0.589,706,909
Volume of ships anchored at Caofeidian Port Phase II 1 0.594,892,547
Total coal stock in ports around the Bohai Sea 1 0.552,136,323
Power coal future closing price 1 0.895,980,863
/// /// ///

Total coal stock in Fangcheng Port 4 0.575,740,516
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The data preprocessing step is shown as follows:

1. Unify the data sampling frequency: The data input to the
model have the features of one-to-one relationship between
coal feature data and coal price, that is, the sampling frequency
of coal feature data and coal price data is the same. When the
sampling frequency of the original coal price data and related
feature data is inconsistent, such original data shall be
operated at the unified data sampling frequency; the
frequency of the data higher than the specified sampling
frequency shall be reduced and the frequency of the data
lower than the specified sampling frequency shall be raised.
The daily frequency data are reduced to weekly frequency data.
The quarterly and monthly data are raised to the weekly data
and the missing value arises after the low-frequency data are

raised to the high-frequency data. The raised data are
processed by ascending order as per the date, and then the
missing value is filled up by linear difference filling.

2. Fill up the missing value: There are some missing values and
non-numerical parts in the original coal data which need to
be filled up to better utilize the dataset. The missing part in
the data is filled up by linear difference, and the non-
numerical part is deleted and then the missing part
deleted is filled up by linear difference. The equation of
missing value between filling points (x0, y0) and (xk , yk) is
shown in Eq. 23:

ϕ(x) � x − xk

x0 − xk
y0 + x − x0

xk − x0
yk. (23)

3. Standardize the dataset: There is a dimensional difference
between different types of data. To avoid the dimensional error
and lower the model performance, the standardized equation
is used to transform the data distribution into standard
distribution with the mean value of 0 and variance of 1.
The standardized equation is shown as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ xki � Xki −Xi

σ i
σ i � (X1i −Xi)2

+
(X2i −Xi)2

+ . . . + (Xni −Xi)2

n
.

(24)

After transformation as per Eq. 24, the distribution of original
feature data is transformed into a standard normal distribution
with the mean value of 0 and variance of 1. xki indicates the kth
numerical value of the ith feature index. Xi indicates the mean
value of the ith feature index data, σ i indicates the standard
deviation of the ith feature index, and n indicates the sample size
of the ith feature index.

4) Divide training dataset and test dataset: The training
dataset and test dataset are not fixed, but they change
dynamically. In the energy market, the influencing factors
of energy indicators change with time (Liang et al., 2019). The
coal data and related feature data at the time point within the
sliding window of k width are used as the training dataset for

TABLE 4 | Nonlinear features with optimal delay.

Features Optimal
delay order (delay)

Pearson correlation coefficient
(rs)

Ship ratio of four ports around the Bohai Sea 3 0.74,183,513
Quantity of anchored vessels in Qinhuangdao Port 2 0.743,160,533
Quantity of anchored vessels in CIT Jingtang Port 2 0.552,341,897
Total coal stock in mainstream ports 5 0.625,224,659
/// /// ///

Total coal stock at coastal ports 5 0.589,975,915

TABLE 5 | Value of hyper-parameters for five different models.

Forecasting model Value of hyper-parameters
for forecasting model

Lasso αl1 � 0.1
Ridge αl2 � 0.2
Huber–Ridge M � 1.35; αl2 � 0.2
PK–Huber–Ridge d � 2;M � 1.35; αl2 � 0.2
PK–Huber–Ridge–EMD–ARIMA dk � 2;M � 1.35; αl2 � 0.2;p ∈ [1,2, 3, 4];

da ∈ [1, 2, 3];q ∈ [1, 2, 3, 4]

TABLE 6 | Evaluation index value of forecasting results of five forecasting models.

Dataset Forecasting model MAE RMSE MAPE(%)

Dataset 1 Lasso 36.0138 53.6206 6.6257
Ridge 28.6532 44.1649 5.1159
Huber–Ridge 30.7005 50.0595 5.6320
PK–Huber–Ridge 26.8503 40.3592 4.8223
PK–Huber–Ridge–EMD–ARIMA 19.2267 26.0293 3.4813

Dataset 2 Lasso 38.6772 60.7722 6.2920
Ridge 29.8993 47.9723 4.5484
Huber–Ridge 32.3476 55.5871 5.1023
PK–Huber–Ridge 30.4047 45.9770 4.6723
PK–Huber–Ridge–EMD–ARIMA 18.9126 26.3342 2.9432

Dataset 3 Lasso 37.6168 63.9781 5.3979
Ridge 34.8572 57.777 4.7187
Huber–Ridge 34.0952 61.9462 4.8548
PK–Huber–Ridge 33.828 56.22 4.7179
PK–Huber–Ridge–EMD–ARIMA 22.9183 37.6673 3.1237
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training the price forecasting model. The price forecasting
model outputs the forecasted coal price at a time point
according to the coal-related feature data after sliding the
window. The corresponding original price data and relevant
feature data are used as the test dataset to verify the model
forecasting performance. The dynamic division of the training
dataset and test dataset progresses over time, as shown in
Figure 2.

Feature Selection
Selecting comprehensive and relevant features can greatly
improve the performance of the forecasting model. All feature
data are presented as a data matrix, and the optimal feature
variable is chosen according to the feature type and feature
optimal time interval.

Feature type: The coal price pertains to many factors; there are
many factors influencing coal market price, and the main

FIGURE 3 | A histogram of the predictive evaluation index values based on dataset 1 for five types of forecasting models.

FIGURE 4 | A histogram of the predictive evaluation index values based on dataset 2 for five types of forecasting models.
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influence factors cover coal supply coal consumption, coal
transportation, and economic factor. The feature indexes
chosen are shown in Table 1.

There are many initial feature indexes, so the feature screening
needs to be performed. The feature variable at the same time
point as the forecasted target variable does not necessarily have
the highest correlation, and it is necessary to find out the optimal
time interval, that is, optimal delay order, for each feature
variable. The optimal delay linear feature and the optimal
delay nonlinear relevant features are screened as per Pearson
correlation coefficient and Spearman correlation coefficient.

The value range of Pearson correlation coefficient rp Spearman
and correlation coefficient rs is [-1, 1]. The closer the absolute
value of rp and rs is to 1, the stronger the correlation will be; the
closer the absolute value of rp and rs is to 0, the weaker the
correlation will be.

Given the corresponding threshold values of the Pearson
correlation coefficient and Spearman correlation coefficient are
rmp and rsp, respectively, the feature indexes whose correlation
coefficient exceeds the threshold value rmp and rsp are screened.
Given the maximum delay order of the feature is delaymax, the
parameter setting is shown in Table 2.

The chosen feature variables and steam coal price are input to
the forecasting model mentioned, and the model outputs the
steam coal price at the next time point. Table 3 and Table 4 show
the selection of the optimal delay feature variable when
forecasting the steam coal price on Jul. 6, 2021. The feature
variable selected as per this method changes over time.

ExperimentResult
In this article, Lasso, Ridge, Huber–Ridge, PK–Huber–Ridge, and
PK–Huber–Ridge–EMD–ARIMA models are used for
comparison. One-step forecasting is used for empirical test.

Qinhuangdao thermal coal data and feature data at the first
120 time points are used as the data variables of the
forecasting model, and the forecasting model outputs the
thermal coal price data at the 121st time point.

The set values of hyperparameters of Lasso, Ridge, Huber–Ridge,
PK–Huber–Ridge, and PK–Huber–Ridge–EMD–ARIMA models
are shown in Table 5.Here, αl1 is the coefficient of L1 regular
term; αl2 is the coefficient of L2 regular term; M is the threshold of
Huber loss function; dk is the kernel parameter of the polynomial
kernel and represents the order of the polynomial; p is the
autoregressive order of ARIMA model; da represents the
difference order; and q represents the moving average order. BIC
criterion (Burnham and Anderson, 2004) is used to select the
optimal ARIMA model hyperparameters p, da, and q.

The forecasting model is used to forecast 4500-kilocalorie
steam coal price data (Dataset 1), 5000-kilocalorie steam coal
price data (Dataset 2), and 5500-kilocalorie steam coal price data
(Dataset 3) of Qinhuangdao Port from March 17, 2020 to July 6,
2021. Table 6 and Figure 3 and Figure 4 and Figure 5 show the
evaluation index results of the forecasting model.

Through the comparison of the experimental results of five
thermal coal price forecasting models, the following conclusions
can be obtained.

Compared with the single model, the proposed combination
model has a better forecasting performance. In dataset 1, dataset 2,
and dataset 3 experiments, the forecasting performance of
PK–Huber–Ridge–EMD–ARIMA model is better than the Lasso
model, Ridge model and Huber–Ridge model, and
PK–Huber–Ridge model. The thermal coal price dataset is
complex, and the forecasting performance of a single forecasting
model is very limited. The combination model can better deal with
complex datasets. PK–Huber–Ridge–EMD–ARIMAmodel adopts
the method of decomposition integration and time series

FIGURE 5 | A histogram of the predictive evaluation index values based on dataset 3 for five types of forecasting models.
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forecasting model to compensate for the error of single model. We
consider the residual error rule of model forecasting to
complement the hidden rules that the original single model
does not learn.

Compared with the ordinarymodel, the robust kernel function
model has better performance. In dataset 1, dataset 2, and dataset
3 experiments, the forecasting performance of
PK–Huber–Ridge–EMD–ARIMA model is better than the
Lasso model, Ridge model, and Huber–Ridge model. Thermal
coal dataset has nonlinear law. PK–Huber–Ridge–EMD–ARIMA
model uses polynomial kernel function to map nonlinear features
into high-dimensional space, so that the linear model can learn
the nonlinear law in the original feature space, so as to further
improve the forecasting performance of the forecast model.

RESULT AND DISCUSSION

For the nonlinearity law in the steam coal dataset and
limitations of the single forecasting model, this article
proposes the forecast method for the price of steam coal
based on robust regularized kernel regression and empirical
mode decomposition. The robust regularized kernel regression
model learns the nonlinearity law in the original data by using
the kernel function. This model selects the Huber loss function
to enhance the robustness of the forecasting model. We select
the L2 regular term to lower the risk of model overfitting. The
combined model based on EMD and ARIMA is used for error
compensation against the Huber–Ridge polynomial kernel
model, further improving the forecasting performance of the
forecasting model. Compared to Lasso, Ridge, Huber–Ridge,
and PK–Huber–Ridge, the proposed forecasting model
(PK–Huber–Ridge–EMD–ARIMA) has the minimum value of
MAE, RMSE, and MAPE.

The influence factors of steam coal price are complex which
are easily affected by national policies. How to quantify policy
factors and input them into the forecasting model for model
training and model forecasting is the next work.
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