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For low-voltage distribution networks (LVDNs), accurate models depicting network and
phase connectivity are crucial to the analysis, planning, and operation of these networks.
However, phase connectivity data in the LVDN are usually incorrect or missing. Wrong or
incomplete phase information collected could lead to unbalanced operation of three-phase
distribution systems and increased power loss. Based on the advanced measurement
infrastructure (AMI) in the development of smart grids, in this study, a novel data-driven
phase identification algorithm is proposed. Firstly, the method involves extracting features
from voltage–time matrices using a non-linear dimension reduction algorithm. Secondly,
the density-based spatial clustering of applications with noise (DBSCAN) algorithm is used
to divide customers into clusters with arbitrary shape. Finally, the algorithms were tested
with the IEEE European Low Voltage Test Feeder of the IEEE PES AMPS DSAS Test
Feeder working group. The results showed an accuracy of over 90% for the method.

Keywords: phase identification, DBSCAN cluster, smart meter, low-voltage distribution network, non-linear
dimensionality reduction algorithm

INTRODUCTION

Since the introduction of the concept of “Digital Power Grid” (Islam, 2016) and the development of
measurement technology, how to deal with electrical data in smart grids has become a focus of
research. At the same time, distributed energy resources (DERs) are being deployed in the electric
power distribution systems at an unprecedented pace (Yang et al., 2016; Yang et al., 2017; Yang et al.,
2018; Yang et al., 2019a). To fully exploit the benefits of the DERs, the distribution network must be
actively managed (Yang et al., 2019b; Xi et al., 2020; Yang et al., 2020; Li et al., 2021). The low-voltage
distribution network is the last link to connect users in the whole power system. Therefore, the
network’s level of information interaction ability directly affects the user experience. The distribution
network must be actively managed.

The introduction of the smart grid and advanced measurement infrastructure (AMI) concepts has
brought new opportunities for developing distribution networks. To operate the distribution system in
an efficient and reliable manner, distribution system operators typically need to perform a series of
tasks, including three-phase optimal power flow, distribution system restoration and reconfiguration,
and three-phase unbalance degree. Although network connectivity models are often accurate, phasing
errors are common. Therefore, an accurate phase identification method is needed.

Electric utility companies typically do not have accurate information on phase connectivity.
Moreover, phase connectivity of a distribution network may change when new distribution lines are
constructed and included in the network. Correct phase connectivity data are essential to the efficient
and reliable operation of a distribution system, especially when more advanced applications are
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connected. A model has been established to identify transformers
and user phases based on voltage correlation using linear
regression (Short, 2013). The correlation between a circuit and
transformers in it can be determined by analyzing the correlation
in voltage between buses and user meters from the perspective of
power flow (Luan et al., 2013; Tang and Milanovic, 2018).
Topology can also be identified by analyzing the correlation in
load between lines at upper and lower levels (Pappu et al., 2018;
Lisowski et al., 2019). Most of these studies focus on medium-
voltage distribution networks, while the identification of topology
in LVDNs is yet to be studied. There are two methods to identify
the phase in LVDNs. The first method is based on the law of
conservation of energy. With all possible user phases listed, the
mixed integer programming model is used to find the optimal
solution, taking into consideration the degree of three-phase
unbalance and line loss (Tian et al., 2016; Tang and
Milanovic, 2018; Zhou et al., 2020). The method requires
complex calculation, and the electrical features of users in the
same phase sequence are not considered. When there are missing
user power values, accuracy is not guaranteed. The other method
is based on the clustering algorithm in machine learning. User
phases in an LVDN are identified by establishing clusters among
three-phase users (Wen et al., 2015; Wang et al., 2016; Liu et al.,
2020). However, the difference in load fluctuation between phases
is not intuitive enough after three-phase treatment in LVDNs.

To address the problem of the existing solutions, the current
study proposes a data-driven phase identification algorithm
based on the advanced metering infrastructure (AMI) that
allows for in-depth exploitation of data features. Then, the
LargeVis (Large-scale Visualizing Data) dimensionality
reduction algorithm is used to extract data from high-
dimensional time–voltage matrices of LVDN users, resulting in
low-dimension data which retain only the main features. Finally,
the DBSCAN (density-based spatial clustering of application with
noise) algorithm is used to analyze the features of users in clusters
and identify the specific user phases. The method may improve
the efficiency and accuracy of topology identification.

TOPOLOGY OF LOW-VOLTAGE
DISTRIBUTION NETWORKS

Through the high-voltage transmission line, the electric energy is
transmitted to the distribution network. After the distribution

transformer is stepped down to 400 V, the electric energy is
transmitted to the clients through the three-phase feeder.

Three-phase gate ammeters are installed at the outlet of the
distribution transformer to record voltage, current, active power,
reactive power, load, and other values for each of the three-phase
electrical data information of the feeder. Figure 1 shows the
relationship between the gate ammeter at the bus and the meter of
each user in a singer-phase line.

As low-voltage distribution feeders extend to a shorter
distance than high-voltage lines, no more than 500 m in most
cases, the influence of line reactance is not considered in this
study. Reactive power effects that exist on the lines are not
considered neither, as they are negligible in well-managed
networks:

U1 � U0 − R1P1

U0
, (1)

Um � U0 − R1P1

U0
− R2P2

U1
− · · · RmPm

Um−1
� U0 −∑m

i�1
RiPi

Ui−1
, (2)

△Um � Um − Um−1 � −RmPm

Um−1
< 0, (3)

where U0 represents the voltage at the bus node;
U1, Um−1, Um, Un are the voltage values at the corresponding
node; R1, R2, Rm, Rn are the impedance values of the
corresponding line; and △Um is the voltage difference between
adjacent nodes m and m − 1.

The voltage of users closest to the bus is related only to the bus
voltage and their own load. When positioned with short electrical
intervals, adjacent nodes in the same feeder will have similar
voltage values and the coefficient of correlation is higher than that
when they are in different feeders. By analyzing the changes of
user voltage values in time sequences, the phase relationships of
users can be identified.

DATA PRE-PROCESSING AND PHASE
RECOGNITION ALGORITHM

Time-Series Voltage Data Pre-Processing
The users’ smart meter collects voltage data at a given interval and
uploads them to the terminal. The time-series variation matrix of
voltage amplitude of users in the station area is obtained from the
historical data in the terminal. If some data are missing, and the

FIGURE 1 | Schematic diagram of single-phase power flow.
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interpolation method is used to complete the missing values,
U ∈ RN×M is shown as follows:

U �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1,t1 u1,t2 · · · u1,tM

u2,t1 u2,t2 · · · u2,tM

« « « «
uN,t1 uN,t2 · · · uN,tM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where ui,tj represents the measured voltage of user i at time tj,
N is the total number of users, and M represents the number of
voltage collection times within the analysis period.

For user nodes near the bus, since their voltage is only affected
by the bus voltage and their own load, their voltage timing curve
will be close to that of the bus if the value of their own load is low.
This will cause great disturbance to the subsequent clustering. To
avoid this problem, these nodes are distinguished from the rest of
thematrix and put into a separate cluster based on their correlation
with the bus in terms of voltage and their voltage amplitude. The
rest of the data are standardized to eliminate the influence of
variation in voltage fluctuation at different phases. The
dimensionality of the time–voltage matrix does not change after
standardization. The formula used for standardization is as follows:

Utj
′ � Utj − μ(Utj)

σ(Utj) , (5)

where Utj′ represents standardization of voltage at tj; Utj

represents initial values of the voltage at tj; μ(Utj) represents
the mean value of voltage at all measurement points at tj; σ(Utj)
represents the voltage standard deviation at all measurement
points at tj; and U′ represents the standardized user voltage
dataset.

Feature Dimension Reduction Based on
LargeVis
As the time for data collection mounts, the dimensionality of
time–voltage matrices also increases. High-dimensional datasets
contain excessively redundant information and data noise and
require more complex and time-consuming computation.

PCA linear dimension reduction first conducts projection
transformation and then finds the low-dimensional space that
maximizes its goal. The purpose is to maintain the maximum
variance of samples in the low-dimensional space, and the
processing speed is fast, but the information loss is serious when
the dimension is low. In this study, the LargeVis method is used to
reduce the dimensionality of the data, keeping only the main
features. It can reduce the high-dimensional dataset of the user
voltage matrix to two or three dimensional spaces for visualization
and retain the distribution characteristics of the original voltage
dataset. The above problems should be improved by means of the
feature dimension reduction method.

LargeVis (Tang et al., 2016) is a non-linear reductive
dimension algorithm, which can reduce the high-dimensional
dataset of the user voltage matrix to two or three dimensional
spaces for visualization and retain the distribution characteristics
of the original dataset. This algorithm was proposed by Professor
Tang Jian in 2016. The dimension reduction process is as follows:

1) In high-dimensional space, LargeVis retains only the weight of
KNN edges in the process of mapping. These edges are called
positive edges, while nodes that are not directly adjacent are
called negative edges. In high-dimensional space, the
Euclidean distance between users is transformed into
probability similarity, and the formula is as follows:

pj|i �
exp (− �����Xi′ −Xj′

�����2/2σ2i )
∑k≠i exp (− ����Xi′ −Xk′

����2/2σ2
i ), (6)

wij �
pj|i + pi|j

2L
, (7)

Wi � [wi1, wi2, wi3 . . . , wiL], (8)

wherewij is the probability similarity between user i and user j, to
avoid the outlier node, getting it by adding conditional
probabilities. Wi is the similarity matrix between user i and
other users in the same station. W is the Gaussian probability
distribution matrix of the normalized voltage dataset. σ i is the
standard deviation of the Gaussian model.

2) In low-dimensional space, the low-dimensional coordinates
are determined by the probability of observation, and the
probability of an edge connection between two points is set as
follows:

P(eij � 1) � f(�����yi − yj

�����), (9)

f(x) � 1
1 + exp (x2), (10)

P(eij � wij) � P(eij � 1)wij
, (11)

where eij represents the edge weight between two nodes and f(x)
is a probability function, indicating the distance between vertices
yi and yj. The closer the points are in higher dimensions, the
closer the points are in lower dimensions.

3) In the dimension reduction process, the final objective
function is as follows:

O � ∑(i,k)∈E wij logp(eij � 1)
+∑m

k�1Ejk ∼ Pn(j)c log (1 − p(ejk � 1)), (12)

where E is the set of positive edges, E
–
is a complement to E, and c

is the uniform weight assigned to the negative edge.
Using LINE technology (Tang et al., 2015), the weighted edge

is regarded as the wij unit edge. All positive edges are sampled
directly, and the weight of the edge is trained to obtain the low-
dimensional feature set Y. Y is consistent with the characteristic
distribution of the standardized voltage dataset UL×M′ .

Phase Identification Based on DBSCAN
Algorithm
Clustering of unlabeled voltage–time datasets can be performed
with unsupervised learning algorithms. DBSCAN (density-based
spatial clustering of applications with noise) as a density-based
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clustering algorithm can divide regions with enough density into
clusters and identify clusters of arbitrary shape in spatial
databases with noise.

After dimension reduction, the Euclidian distance between
two points is used as the distance between them. Users at the same
phase have relatively shorter distances between them and will
form a cluster. Therefore, the DBSCAN method is suitable.

The core point of DBSCAN is determined by setting
parameters, including the neighborhood radius (Eps) and the
minimum number of sample points (MinPts). To limit the space
of density clustering and achieve better visual performance, the
maximum and minimum values of the feature set Y after
dimension reduction are normalized. The formula is as follows:

yij′ �
yij −min (y*j)

max (y*j) −min (y*j), (13)

where yij is a member of matrix Y, max (ypj) is the maximum
value of the j column vector in the Y dataset, min (ypj) is the
minimum value of the j column vector in the Y dataset, and yij′
belongs to the normalized dataset Y′.

Based on the dataset Y′, the distance between all nodes in the
dataset is calculated to form a matrix D∈ RL×L. The calculation
formulas are as follows:

Di � [d(Yi′ , Y1′), d(Yi′ , Y2′), . . . , d(Yi′ , YL′)]T, (14)

D � [D1, D2, . . . , DL]. (15)

Here, d(Yi, Yj) indicates the Euclidean distance between Yi

and Yj.
To establish DBSCAN parameters Eps and MinPts, the

calculation formulas are as follows:

Eps �
min
i�1
L ⎧⎨⎩max

j�1
L [Dj]⎫⎬⎭
Z

, (16)

MinPts �
min⎛⎝count

i�1
L (Di <Eps)⎞⎠

Z
. (17)

Here, Z is the number of predicted clusters and
count (Di <Eps) is the number of nodes whose distance
between adjacent and surrounding nodes is less than Eps in
the distance vector Dj.

After that, set a certain step size, adjust the values of Eps (0.01)
and MinPts (1), and determine the most suitable parameter
coefficient according to the silhouette coefficient. The formula
for calculating the silhouette coefficient is as follows:

s(i) � b(i) − a(i)
max {a(i), b(i)}. (18)

Here, a(i) represents the average distance between node i and
other nodes in the same cluster and b(i) represents the average
distance between node i and other cluster nodes. The closer s(i) is
to 1, themore reasonable the clustering result is. In other words, the
closer s(i) is to -1, the more unreasonable the clustering result is.

After clustering, each cluster group is obtained, and the phase
recognition results of users are tested according to the phase tags
of clustering results. The specific flow chart is shown in Figure 2.

ANALYSIS OF EXAMPLES

The dataset used in this paper is the IEEE European Low Voltage
Test Feeder of the IEEE PES AMPS DSAS Test Feeder working
group (IEEE and PES, 2019). The low-voltage test feeder is a
radial distribution feeder with a base frequency of 50 Hz. The
feeder is connected to the medium-voltage power system through
the transformer of the substation, which makes the voltage from
11 kV to 416 V. There are 55 users in total, and all of them are
single-phase users. There are 21 households with phase A load, 19
households with phase B load, and 15 households with phase
C load.

According to the configuration file, the power factor of all
loads was set to be 0.95 in the whole simulation range. According
to the power load curve of 55 users, the power flow calculation
was carried out by OpenDSS software, and the voltage curve
lasting 24 h with a resolution of 1 minute was obtained.

Parameter Settings of LargeVis and
DBSCAN
In the actual environment, the situation of smart meter
measurement may be more complicated, and the error is
inevitable. To evaluate the effectiveness of the algorithm in the
actual environment, we need to test it in a noisy dataset. Smart
meters have a non-negligible uncertainty, and their accuracy
levels vary in different countries. According to the
measurement, the accuracy can be roughly divided into the
following grades: 0.2, 0.5, 1, and 2, which means the
uncertainty of 0.2, 0.5, 1, and 2%, respectively.

The number of nodes near the bus caused by error clustering
accounted for 5∼8% of the total number of nodes. According to the
correlation between voltage amplitude and bus, related nodes will
be classified separately. The voltage timing matrix composed of
other meters has been standardized by the Z-score to obtain the
matrixU′. The LargeVis algorithm is used to reduce the dimension
of the user timing voltage matrix U′. After dimension reduction,
the low-dimensional voltage characteristic matrix Y is
obtained. The low-dimensional Y is maximally and
minimally normalized to Y′. Calculating the distance
matrix between each node of the user, Z is 3 to obtain the
initial DBSCAN parameter value (Eps � 0.126, MinPts � 4).
Eps changes with the step size of 0.005, MinPts changes with
the step size of 1, and the specific values of cluster parameters
are determined by the profile coefficient method.

Analysis of Numerical Example Results
Eps � 0.131, MinPts � 3, as the final cluster input parameter.
Three clusters are formed after clustering. After comparing the
correlation coefficient between the user voltage in the cluster
center and the bus voltage, the phase sequence of the users in the
station area can be determined.
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To further prove the accuracy of the proposed method in
phase recognition, the proposed method is compared with
k-means, PCA, and k-means (Wen et al., 2015) and spectral
clustering algorithm (Wang et al., 2016). The cluster number of
each method is preset as 3. The recognition accuracy of the results
is shown in Table 1.

The method proposed in this study showed the highest
accuracy compared with the other methods. One of the
reasons might be that the users near the bus were put into a
separate cluster to avoid interference. Moreover, the LargeVis
algorithm is able to retain data features after dimensionality
reduction and the DBSCAN algorithm can cluster data points of
arbitrary density, making them more suitable for processing
datasets. For k-means, errors with ammeters may cause

excessively redundant information in the time–voltage
matrix, resulting in the instability of clustering results. For
PCA, the linear dimensionality reduction approach they use
to remove redundant information may lead to loss of data
details and thus decreased accuracy. As for spectral
clustering, the clustering effect directly depends on the
similarity matrix generated in advance, which requires high
precision of the original data.

To verify the usability of the proposed algorithms in
engineering problems, disturbance errors were set for accuracy
analysis under different sampling frequencies. The sampling
frequency of the ammeters was set to 15 min, 30 min, 1 h, or
2 h, and the disturbance error was set to no error, 1%, or 2%. The
results are shown in Table 2.

FIGURE 2 | Phase recognition algorithm process.

TABLE 1 | Accuracy comparison of phase recognition methods.

Method No error 1% error 2% error

k-means 0.927 0.89 0.818
PCA + k-means 0.945 0.927 0.909
Spectral clustering 0.945 0.909 0.892
Method in this paper 1.0 1.0 0.981

TABLE 2 | Evaluation indicators of phase identification in different cases.

Measurement error sampling
frequency

0 1% 2%

15 min 1.0 1.0 0.98
30 min 1.0 0.927 0.818
1 h 1.0 0.927 0.6
2 h 0.96 0.854 /
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When the metering error is small, the identification accuracy
of the algorithm in this paper decreases. When the metering error
increases, the accuracy of phase sequence identification can be
guaranteed only on high sampling frequency (15 min). The
decrease of acquisition frequency will decrease the accuracy of
recognition rate. When the collection frequency is reduced to 2 h,
the identification cannot be completed, which indicates that a
certain sampling frequency should be guaranteed for phase
identification based on users’ daily voltage variation
characteristics.

CONCLUSION AND DISCUSSION

This paper presents a data-driven method for user phase
identification in LVDNs. The LargeVis reductive dimension
method is used to extract features from the standardized
timing voltage matrix. Then, based on the DBSCAN method,
the low-dimensional dataset is clustered as a result of user phase
identification. Simulations show that the proposed method is
more reliable than other unsupervised learning algorithms for
single-phase user identification in LVDNs. The method used in
this paper only needs to collect the user’s load data for analysis,
without additional hardware equipment costs and special

personnel to check users one by one, so it can save the cost of
user phase verification in the low-voltage distribution network.
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