AUTHOR=Lu Dan , Painter Scott L. , Azzolina Nicholas A. , Burton-Kelly Matthew , Jiang Tao , Williamson Cody TITLE=Accurate and Rapid Forecasts for Geologic Carbon Storage via Learning-Based Inversion-Free Prediction JOURNAL=Frontiers in Energy Research VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2021.752185 DOI=10.3389/fenrg.2021.752185 ISSN=2296-598X ABSTRACT=
Carbon capture and storage (CCS) is one approach being studied by the U.S. Department of Energy to help mitigate global warming. The process involves capturing CO2 emissions from industrial sources and permanently storing them in deep geologic formations (storage reservoirs). However, CCS projects generally target “green field sites,” where there is often little characterization data and therefore large uncertainty about the petrophysical properties and other geologic attributes of the storage reservoir. Consequently, ensemble-based approaches are often used to forecast multiple realizations prior to CO2 injection to visualize a range of potential outcomes. In addition, monitoring data during injection operations are used to update the pre-injection forecasts and thereby improve agreement between forecasted and observed behavior. Thus, a system for generating accurate, timely forecasts of pressure buildup and CO2 movement and distribution within the storage reservoir and for updating those forecasts