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A fault detection method of wind turbine pitch system using semi-supervised optimal
margin distribution machine (ssODM) optimized by dynamic state transition algorithm
(DSTA) [ssODM-DSTA] was proposed to solve the problem of obtaining the optimal
hyperparameters of the fault detection model for the pitch system. This method was
adopted to input the three hyperparameters of the ssODM into the dynamic state transition
algorithm in the form of a three-dimensional vector to obtain the global optimal
hyperparameters of the model, thus improving the performance of the fault detection
model. Using a random forest to rank the priority of features of the pitch system fault data,
the features with large weight proportions were retained. Then, the Pearson correlation
method is used to analyze the degree of correlation among features, filter redundant
features, and reduce the scale of features. The dataset was divided into a training dataset
and a test dataset to train and test the proposed fault detection model, respectively. The
real-time wind turbine pitch system fault data were collected from domestic wind farms to
carry out fault detection experiments. The results have shown that the proposed method
had a positive fault rate (FPR) and fault negative rate (FNR), compared with other
optimization algorithms.

Keywords: fault detection, wind turbine, pitch system, dynamic state transition algorithm, semi-supervised optimal
margin distribution machine, random forest

INTRODUCTION

China’s energy structure is unceasingly transforming towards low carbon and environmental
protection by striving to build a new energy system and vigorously advocating the development
of renewable energy industry to achieve the overall objective of carbon emission peak by 2030 and
carbon neutrality by 2060 (Li and Bo, 2020; Qian and Wang, 2020; Sun et al., 2015). Renewable
energy is a kind of clean and green energy that can replace traditional energy. The emergence of this
energy has made a great contribution to reducing pollution and emission in the world. Renewable
energy power systems (Zhang et al., 2021; Zhang and Ruan, 2019) mainly include wind power
generation, solar power generation, and hydropower generation. Wind power, as an indispensable
part of renewable energy, continues to expand in scale. By the end of 2020, China’s installed capacity
of grid-connected wind power has reached 281.53 million kW, increasing by 34.6% year over year,
accounting for 12.79% of the total installed capacity (Blaabjerg et al., 2012; Blaabjerg and Ke Ma,
2013). However, as the wind power industry is rapidly developing, the maintenance and repair
pressure of wind turbines is also increasing. The operating environment of wind turbines is relatively
bad. Abnormal climate, unstable wind speed, and other factors often lead to the faults of wind
turbines and the shutdown (Song et al., 2021; Yang et al., 2021). The fault rate and complexity of the
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pitch system, an important part of the wind turbine, are higher
than those of the main shaft, gearbox, and generator (Wang et al.,
2021). In case of any fault, the power generation rate of the wind
turbine will be directly affected, leading to damage to the wind
turbine and huge economic losses. For this reason, effective fault
detection is of great significance for wind turbine pitch systems.

In the wake of the era of big data and emerging machine
learning, fault detection and fault diagnosis methods for wind
turbines based on machine learning algorithms have gradually
matured in recent years (Hu et al., 2021; Tang et al., 2021; Long
et al., 2020). With the wind turbine fault data in the SCADA
system, which can collect, monitor, and control the operation
data of wind turbines in real-time, it is a common and reliable
method to choose an appropriate machine learning algorithm for
the fault detection of wind turbines. Machine learning algorithms
mainly include supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning. Generally,
classification methods for wind turbine fault detection include
support vector machine (SVM), artificial neural networks
(ANNs) (Xi et al., 2021), and Large margin distribution
machine (LDM) (Zhang and Zhou, 2014). In the literature
(Tuerxun et al., 2021), a SVM based on a sparrow search
algorithm (SSA) was used for wind turbine fault diagnosis and
had achieved excellent results. Moreover, a fault diagnosis
method based on stochastic subspace identification and
multinuclear SVM was proposed to identify bearing faults of
wind turbines (Zhao et al., 2019). The ANNs and empirical mode
decomposition (EMD) were used to effectively identify different
turbine imbalance faults in (Malik and Mishra, 2017). In (Zhang
and Wang, 2014), the artificial neural networks had a great
diagnosis effect on the main bearing of the wind turbine
during early fault prediction. The cost-sensitive large margin
distribution machine (CLDM) proposed in (Tang et al., 2019) can
better deal with the classification imbalance data and
misclassification cost inequality of wind turbine datasets.

The above methods are only applicable to the input data with
characteristic values and tags. However, tags are usually scarce
and expensive in the actual wind turbine data, which can be
effectively dealt with using the semi-supervised learning method.
Commonly used semi-supervised learning methods include
transductive support vector machine (TSVM), safe semi-
supervised support vector machine (S4VM), and Laplacian
support vector machine (LaSVM) (Chong et al., 2020). In
(Shen et al., 2012), a gear reducer fault diagnosis model based
on EMD and TSVM was proposed to solve the problem of
insufficient tags of gear reducer data samples, and results have
shown a high fault diagnosis accuracy. In (Li, 2010), graph theory
and transductive support vector machine (GTSVM) was used to
solve the problem of insufficient fault samples for training in
mechanical fault diagnosis, and results have shown that this
method improved the accuracy of fault diagnosis. A new fault
alarm rule based on the upper bound of S4VM generalized error
proposed in (Mao et al., 2020) can self-adaptively identify the
occurrence of early bearing faults. In (Dai et al., 2017), a rolling
bearing fault diagnosis method based on composite multi-scale
entropy (CMSE), sequential forward modeling selection, and
LaSVM was proposed to solve the problem of the large sample

size of and tagging difficulty in rolling bearing fault diagnosis, and
results have shown that the effect of fault diagnosis was improved.

The semi-supervised optimal margin distribution machine
(Zhang and Zhou, 2018) was a classification algorithm with
high generalization ability, proposed for generalization ability
based on optimal margin distribution machine (ODM) (Tan
et al., 2020). “Lables” were given to the samples without lables
and the semi-supervised learning was transformed into
“supervised learning” via this algorithm. On this basis, on the
premise of optimizing the minimum margin and maximizing the
hyperplane, the distribution of sample margin was fully
considered and the mean value and variance between samples
were introduced to improve the classification ability of the
algorithm.

The reasonable selection of hyperparameters can significantly
affect the fault detection performance during fault detection for
wind turbine pitch systems based on a machine learning
algorithm. For this reason, the optimal hyperparameters of the
fault detection model should be obtained by optimizing the
parameter optimization algorithm (Long et al., 2021a; 2021b).
In (Zhang et al., 2020), a particle swarm optimization algorithm
(PSO) was used to optimize SVM for fault diagnosis of wind
turbine gearbox bearings, and results have shown that the
precision and accuracy of diagnosis were improved. In (Chen,
2020), backpropagation neural network (BPNN) and long short-
term memory network (LSTMN) were combined with PSO and
great fault diagnosis results were obtained in wind turbine rolling
bearing fault diagnosis. In (Odofin et al., 2018), a genetic
algorithm (GA) was adopted to optimize the machine learning
algorithm to improve the reliability of the wind turbine energy
system. In (Zhang et al., 2018), GA was introduced into anomaly
identification of wind turbine state parameters to successfully
optimize the anomaly identification results. In (Yao et al., 2021),
grid search (GS) was used to optimize the fault classification
algorithm during battery fault diagnosis and the fault diagnosis
accuracy was improved. In (Zhang and Sheng, 2021), GS was used
to optimize the hyperparameters and kernel functions of support
vector machines to improve the accuracy of the motor fault
diagnosis.

With a design based on a state transition algorithm (STA)
(Zhou et al., 2012), the DSTA (Zhou et al., 2018) is a dynamic
stochastic intelligent global optimization method with its own
risk prisk and restoration in probability prest adjustment strategy.
For the fault detection model of wind turbine pitch system with
high complexity, using some of the above-mentioned common
optimization algorithms to optimize its hyperparameters is often
easy to fall into local optimization because the scale of
optimization object is too large and the optimization problem
is too complex. Facing these problems, DSTA can use a dynamic
adjustment strategy to surpass local optimization, and the
optimization algorithm provides four search operators and
novel update and selection methods to support its excellent
searchability according to the different needs of optimization
objectives. Using DSTA to optimize the fault detection model of
the wind turbine pitch system can carry out global search and
converge quickly. It is a novel optimal combination of fault
detection models.
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For complex and variable pitch system faults, it is often
difficult to select the optimal parameters for the fault detection
model of the wind turbine pitch system. Meanwhile, variable
pitch fault data without tags will lead to unsatisfactory fault
detection results. For this problem, a method of optimizing a
ssODM based on a DSTA was proposed.

SEMI-SUPERVISED OPTIMAL MARGIN
DISTRIBUTION MACHINE

Suppose the mean margin value of training dataset samples after
normalization is r̂m. The difference between the margin of the
sample (xi, yi) after normalization and themeanmargin value was∣∣∣∣ĉ(xi, yi) − ĉm

∣∣∣∣. So the variance between the maximum mean
margin value and the minimum mean margin value could be
represented in the following form:

max
ω,̂ξi ,̂ϵi

ρĉ2m − 1
m

∑m
i�1

(ξ̂2i + ϵ̂2i )
s.t.ĉ(xi, yi)≥ ĉm − ξ̂ i

ĉ(xi, yi)≤ ĉm + ϵ̂i,∀i ∈ [m],

(1)

where the parameter ρ was used to weigh two priorities. As ĉ(xi, yi)
could not bemore than and less than the mean value at the same time,
there were a nonnegative value and a non-zero value in ξ̂i, ϵ̂i. The
second itemof the objective functionwas themargin variance. ξi � ωξ̂i
and ϵi � ωϵ̂i. The above equation could be rewritten as follows:

max
ω,ξi ,ϵi

ρ
ĉ2m
ω2 −

1
m

∑m
i�1

ξ2i + ϵ2i
ω2

s.t.yiω
Tϕ(xi)≥ cm − ξ i

yiω
Tϕ(xi)≤ cm + ϵi,∀i ∈ [m],

(2)

where cm did not affect the optimization. When cm was scaled,
ω, ξi and ϵi were scaled on the same scale. In this case, the
constraint was still satisfied, and the objective function value
remained unchanged. Set cm � 1; the equation could be further
rewritten as follows:

max
ω,ξi ,ϵi

1

ω2
⎛⎝1 − 1

m
∑m
i�1

ξ2i + ϵ2i⎞⎠s.t.yiω
Tϕ(xi)≥ 1 − ξ iyiω

Tϕ(xi)≤ 1 + ϵi,∀i ∈ [m].

(3)

As themaximumobjective functionwas equal to theminimumω2 and∑m
i�1 ξ

2
i + ϵ2i , there was a constant λ to make the above optimization

equation have the same solution as the following equation:

max
ω,ξi ,ϵi

1
2
ω2 + λ

m
∑m
i�1

(ξ2i + ϵ2i )
s.t.yiω

Tϕ(xi)≥ 1 − ξi

yiω
Tϕ(xi)≤ 1 + ϵi,∀i ∈ [m].

(4)

A parameter μ ∈ (0, 1) was introduced to weigh the deviation loss in
two different directions between the sample margin and the mean

margin value 1. A parameter θ-insensitive loss was introduced to
control model sparsity. Thus, the final equation form was as follows:

max
ω,ξi ,ϵi

1
2
ω2 + λ

m
∑m
i�1

(ξ2i + μϵ2i )
(1 − θ)2

s.t.yiω
Tϕ(xi)≥ 1 − θ − ξ i

yiω
Tϕ(xi)≤ 1 + θ + ϵi,∀i ∈ [m].

(5)

ŷ � [ŷi, . . . , ŷm ∈ { ± 1}m ] was unlabeled. The ssODM could be
converted into the following form:

min
ŷ∈B

min
ω,ξi ,ϵi

1
2
ω2 + λ1

l
∑l
i�1

ξ2i + μϵ2i
(1 − θ)2 +

λ2
u

∑l+u
i�l+1

ξ2i + μϵ2i
(1 − θ)2

s.t.yiω
Tϕ(xi)≥ 1 − θ − ξ i

yiω
Tϕ(xi)≤ 1 + θ + ϵi,∀i ∈ [m].

(6)

where B � {ŷ∣∣∣∣∣∣∣∣eT ŷUm−l � eTyL
l } was equilibrium constraint to prevent

the occurrence of trivial solutions. λi � λ1(m−l)−λ2 l
l(m�l) 1i∈L + λ2

m−l .
λ1 and λ2 were loss parameters to weigh the tagged and untagged
data. The above questions could be further written as follows:

min
ŷ∈B

min
ω,ξi ,ϵi

1
2
ω2 +∑m

i�1
λi
ξ2i + μϵ2i
(1 − θ)2

s.t.ŷiω
Tϕ(xi)≥ 1 − θ − ξi

ŷiω
Tϕ(xi)≤ 1 + θ + ϵi,∀i ∈ [m].

(7)

The final dual form of ssODM is as follows:

min
μ∈M

max
α∈A

φ(μ, α). (8)

When a dataset containing a large number of unlabeled samples is
input into ssODM, the saddle point (μ̂, α̂) of the above problem
can be obtained by the random mirror proximal descent method,
and the category label of unlabeled samples can be predicted
according to sign(∑ k: ŷk∈Bμ

p
k ŷk).

DYNAMIC STATE TRANSITION
ALGORITHM

The expression framework of the dynamic state transition
algorithm is as follows:

{ xk+1 � Akxk + Bkuk

yk+1 � f (xk+1) , (9)

where xk � [x1, x2, . . . , xn]
T is the candidate solution of the

optimization problem and Ak and Bk are the state transformation
operators. uk represents the control variable, that is, the current and
historical state function. f ( · ) represents the fitness function.

The four transformation operators of the dynamic state
transition algorithm covered the fast rotation transformation
operator, translation transformation operator, expansion
transformation operator, and axesion transformation operator.
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Fast Rotation Transformation Operator

xk+1 � xk + αR̂r
u
u2
, (10)

where α represents the rotation factor and R̂r ∈ Rn×n is the
uniformly distributed random matrix. u represents the random
variable that was uniformly distributed on [ − 1, 1]. ‖ · ‖2 is the
second norm of the vector. It was found that the fast rotation
transformation operator was provided with lower computational
complexity, local searchability, and a hypersphere with a radius of
α being the search range through the comparison with the
rotation change operator.

Translation Transformation Operator

xk+1 � xk + βRt
xk − xk−1
xk − xk−12

, (11)

where β represents the translation factor. The values of Rt ∈ R were
uniformly distributed with the range of [0, 1]. The translation
transformation operator was a heuristic search operator
performing the linear search with β being the maximum step length.

Expansion Transformation Operator

xk+1 � xk + cRexk, (12)

where c represents the stretching factor. Re ∈ Rn×n is the diagonal
matrix whose element value was not equal to zero and was in line
with Gaussian distribution. The stretching transformation
operator was a global search operator that could stretch all
elements in xk to ( −∞,+∞) to further search the whole space.

Axesion Transformation Operator

xk+1 � xk + δRaxk, (13)

FIGURE 1 | Flowchart of dynamic state transition algorithm.
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`where δ represents the axesion factor. Ra ∈ Rn×n is the sparse
random diagonal matrix whose value was not equal to zero and
was in line with Gaussian distribution. The axesion

transformation operator was also a heuristic search operator
that could carry out a one-dimensional search along the
coordinate axis.

FIGURE 2 | Fault detection flowchart of wind turbine pitch system based on ssODM-DSTA.
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The flowchart of the DSTA is shown in Figure 1.

FAULT DETECTION FOR WIND TURBINE
PITCH SYSTEM

Concerning the fault detection process of the wind turbine pitch
system, it was roughly made of data screening, data preprocessing,
feature selection, data segmentation, training fault detection model
and hyperparameter optimization, fault detection model testing,
and detection result evaluation. The fault detection flowchart of the
ssODM-DSTA wind turbine pitch system is shown Figure 2.

Dataset Description
The experimental data originated from the real-time operation
data of the SCADA system of 1.5 MW double-fed wind turbines
in the domestic wind farm for one year. The data sampling
interval was 1 s. The data of the wind turbines in the wind farm in
the 12th month were selected and the data of three kinds of wind
turbines’ pitch faults from half an hour before the start of the
faults to half an hour after the end of the faults were intercepted
according to the fault codes. Three kinds of pitch system faults are
used as fault detection targets: emergency stop fault of the pitch
system, CAN communication fault of the blade 1 servo driver,
and low-temperature fault of the blade 2 axle box of the pitch,
respectively.

A pitch emergency stop fault is a fault triggered when the pitch
safety chain acts. The treatment method of this fault is to check
whether the pitch safety chain is closed and check the pitch fault
specifically.

CAN communication fault of the blade 1 servo driver is the
CANBUS communication fault between pitch PLC and
pitchmaster of blade 1. The troubleshooting method is to
check the wiring between the main control cabinet EL6751
and the X5 terminal on the pitchmaster in the shaft cabinet 2;
check whether there is 24V DC voltage between x5-6 and x5-9;
check the resistance between x5-2 and x5-7 (60Ω); check whether
the axis 2 servo driver is normal.

The low-temperature fault of the blade 2 axle box of the pitch
is a temperature fault of the pitch system. The starting reason is
generally the sensor fault. The fault can be eliminated and
handled by checking various indicators of the sensor. The
three fault data structures are shown in Table 1.

Data Cleaning and Preprocessing
The data of the wind turbine pitch system was fed back to the
SCADA system in the form of a signal after the information was
collected through various sensors such as current, voltage, and
speed. The sensors were precision components. They were easily
disturbed by the environment and their abnormalities in the
monitoring process, which often led to abnormalities and
vacancies in the data output of SCADA. The fault detection
model had high requirements for the quality of data, so it was
necessary to preprocess the data such as standardization,
normalization, elimination of outliers, vacancy values, and all
“0” eigenvectors (Tang M et al., 2020; Tang S et al., 2020).

Feature selection belongs to a data dimensionality reduction
process. The commonly used feature selection methods cover the
random forest method (Charvent et al., 2021), extreme gradient
boosting (XGBoost)method (Chen et al., 2020), Pearson’s correlation
analysis method (Jebli et al., 2021), and categorical boosting
(CatBoost) method (Yuan et al., 2021). The random forest
algorithm was used for ranking the importance of all sub-features
of the preprocessed fault data of the pitch systemwith the wind speed
as the target feature. Then, the threshold (mean value of all feature
importance scores) was set to screen the features that were highly
related to the target variable. On the premise of ensuring no loss of
data information content, the number of features of the original data
was reduced from 58 to 30, which effectively reduced the difficulty of
learning the fault detection model of the wind turbine pitch system.
The feature importance ranking of the fault data of the pitch system
based on the random forest is shown in Table 2 (the bold part of No.
1–No. 30 was the 30 features that were saved after screening).

As redundant features with a high correlation may exist
between features and the Pearson-related analysis method
could be used for ensuring the equal relationship between

TABLE 2 | Feature importance ranking of the fault data of the pitch system based on the random forest.

Serial number Feature variable name Random forest feature importance score

1 main_loop_rotor_speed_demand 0.056641
2 pitch_position_1 0.055856
30 converter_power 0.009573
57 pitch_Atech_SG1_error_code_3 0.001598
58 average_wind_speed_30s 0.001518

The bold part of No. 1–30 was the 30 features that were saved after screening.

TABLE 1 | Data structures of three faults of pitch system.

Fault type Number of data samples Number of data features

Emergency stop fault of pitch system 1,158 58
CAN communication fault of blade 1 servo driver 1,679 58
Low-temperature fault of the blade 2 axle box of the pitch 2,144 58
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features and analyzing the correlation degree between features,
the Pearson-related analysis method was adopted to analyze the
feature correlation of 30 pieces of screened fault data of the pitch
system and remove the redundant features with a high correlation
for further reducing the data capacity. The correlation results
between the features are shown in Table 3.

Pearson correlation coefficient was an index describing the
intensity of feature correlation with a value range of [-1, 1]. The
closer the absolute value of the coefficient was to “1”, the stronger
the correlation was. The bold parts of Table 3 show that the
feature correlation between different parts of the pitch systemwas
also extremely high and the correlation coefficient between these
features was close to “1” with basically the same effect in the
dataset. These features that belonged to redundant features were
eliminated in the fault dataset of the pitch system and the
remaining features were constructed into a new sample
dataset. The final data structure is shown in Table 4.

Improved Semi-supervised Optimal Margin
Distribution Machine
The ssODM was equipped with three hyperparameters λ, μ, and
θ representing the margin variance balance hyperparameter,
margin deviation balance hyperparameter, and insensitive loss
function, respectively. The meaning and value range of ssODM
hyperparameters are shown in Table 5.

The dynamic state transition algorithmwas adopted to optimize
the three hyperparameters of ssODM. The classification accuracy
of ssODM was taken as the fitness function to determine the
update and selection of hyperparameters by the dynamic state

transition algorithm. The pseudo-code of the improved ssODM is
shown in Algorithm 1.

Algorithm 1 Improved semi-supervised optimal margin
distribution machine.

1: Best←Best0(λ0; μ0; θ0)
2: repeat
3: if α(β, c, δ)< αmin(βmin, cmin, δmin) then
4: α(β, c, δ)←αmax(βmax, cmax, δmax)
5: end if
6: λ←Best(1)
7: μ←Best(2)
8: θ←Best(3)
9: ssODM←(λ, μ, θ, training dataset)
10: accuracy(ssODM)←testing dataset
11: funfcn←accuracy(ssODM)
12: [Best, fBest]←rotation fast(funfcn,Best, SE, α, β)
13: [Best, fBest]←expansion(funfcn,Best, SE, β, c)
14: [Best, fBest]←axesion(funfcn,Best, SE, β, δ)
15: if fBest < fBestp then
16: Bestp←Best
17: fBestp←fBest
18: end if
19: if rand < prest then #prest : restoration in probability
20: Bestp←Best
21: fBestp←fBest
22: end if
23: α(β, c, δ)←α(β,c,δ)

fc
24: Until the specified termination criterion is met
25: Output Best

TABLE 3 | Correlation results between the features.

Pearson correlation coefficient main_loop_rotor_speed_demand pitch_position_1 pitch_Atech_position_target_1 pitch_position_target_1

converter_motor_speed 0.993101 −0.9962 −0.99644 −0.99646
pitch_Atech_actual_pitch_angle_2 −0.99292 0.999211 0.999689 0.9997
average_pitch_position_blade_10m 0.396733 −0.37188 -0.37148 −0.37142

The bold parts show that the feature correlation between different parts of the pitch systemwas also extremely high and the correlation coefficient between these features was close to “1”
with the basically same effect in the data set.

TABLE 4 | Final data structures of 3 faults of pitch system after feature selection.

Fault type Number of data samples Number of data features

Emergency stop fault of the pitch system 1,158 24
Can communication fault of the blade 1 servo driver 1,679 24
Low-temperature fault of the blade 2 axle box of the pitch 2,144 24

TABLE 5 | Meaning and value range of ssODM Hyperparameters.

Hyperparameter Meaning Value range

λ Adjust the weight of the margin variance of the objective function [20 , 220]
μ Adjust the weight of sample margin deviation from the positive and negative directions of margin mean (0.1, 0.9)
θ Control the sparsity of the model and reduce the number of sample support vectors (0.1, 0.9)
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Performance Evaluation Index of Fault
Detection Model
The correct prediction of the purity of normal samples and fault
samples was deemed to be an index to evaluate the quality of a
model. To verify the effectiveness of fault detection of ssODM-

DSTA, the FPR and the FNR proposed based on the confusion
matrix were taken as the evaluation indexes of the model:

FPR � FP
FP + TN

, (14)

FNR � FN
FN + TP

, (15)

where the specific meanings of TP, FP, TN, and FN are shown in
Table 6.

EXPERIMENTAL RESULTS

For verifying the effectiveness of using DSTA to optimize the
hyperparameters of ssODM, the PSO, GA, and GS were

FIGURE 3 | Boxplot of FPR of fault detection regarding the pitch
emergency stop (5% labeled samples).

FIGURE 4 | Boxplot of FNR of fault detection regarding the pitch
emergency stop (5% labeled samples).

FIGURE 5 | Boxplot of FPR of fault detection regarding the pitch
emergency stop (10% labeled samples).

FIGURE 6 | Boxplot of FNR of fault detection regarding the pitch
emergency stop (10% labeled samples).

TABLE 6 | Names and meanings of evaluation indexes of the model.

Indicator name Meaning

TP Positive samples are predicted to be positive samples
FP Negative samples are predicted to be positive samples
TN Positive samples are predicted to be negative samples
FN Negative samples are predicted to be negative samples
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introduced to carry out the optimization comparison for the
ssODM, respectively. The experimental data were from wind
turbine pitch system fault data (the fault data of pitch system are
set as 5% labeled data and 10% labeled data for experiments,
respectively; the normal sample label is 1 and the fault sample
label is—1), as shown in Table 4.

When the experimental sample was the emergency stop fault
of the pitch, Figures 3, 4 represent the FPR of fault detection and
the FNR of fault detection, respectively (5% labeled samples).
Figures 5, 6 represented the FPR of fault detection and the FNR
of fault detection (10% labeled samples).

When the experimental sample was the CAN communication
fault of blade 1 servo driver, Figures 7, 8 represent the FPR of fault
detection and the FNR of fault detection, respectively (5% labeled

samples). Figures 9, 10 represent the FPR of fault detection and the
FNR of fault detection (10% labeled samples).

When the experimental sample was the low-temperature fault of
the blade 2 axle box of the pitch, Figures 11, 12 represent the FPR of
fault detection and the FNR of fault detection, respectively (5%
labeled samples). Figures 13, 14 represent the FPR of fault
detection and the FNR of fault detection (10% labeled samples).

The above results have demonstrated that the FPR and the
FNR of fault detection regarding the faults for the wind
turbine pitch system by ssODM-DSTA were the lowest
among the four comparison algorithms. It can be
concluded that using DSTA to optimize ssODM can obtain
super parameters that more meet the performance requirements of
the pitch system fault detection model, effectively improve the

FIGURE 7 | Boxplot of FPR of CAN communication fault detection
regarding blade 1 servo driver (5% labeled samples).

FIGURE 8 | Boxplot of FNR of CAN communication fault detection
regarding blade 1 servo driver (5% labeled samples).

FIGURE 9 | Boxplot of FPR of CAN communication fault detection
regarding blade 1 servo driver (10% labeled samples).

FIGURE 10 | Boxplot of FNR of CAN communication fault detection
regarding blade 1 servo driver (10% labeled samples).
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classification performance of ssODM, and reduce the error of wind
turbine pitch system fault detection.

CONCLUSION

In terms of the problem of obtaining the optimal hyperparameters in
the fault detectionmodel of the wind turbine pitch system, the DSTA
was used for optimizing the three hyperparameters of ssODM. To
verify the effectiveness of this method, ssODM-DSTA was compared
with ssODM-PSO, ssODM-GA, and ssODM-GS. The experimental
data originated from the three kinds of pitch system fault data
preprocessed by the random forest method and Pearson
correlation analysis method, including the emergency stop fault

data of the pitch system, CAN communication fault data of the
blade 1 servo driver, and the low-temperature fault data of the blade 2
axle box of the pitch. The experimental results showed that the
ssODM-DSTA had a strong fault detection ability for the fault of the
wind turbine pitch system. It was provided with a lower FPR and
FNR than those of themodel using the other three kinds of parameter
optimization algorithms. It was proved that the fault detection
method of the wind turbine pitch system based on the ssODM-
DSTA had an outstanding performance.

Concerning the wind turbine fault detection based onmachine
learning, the fault detection model could not be fully learned due
to a shortage of labels, seriously affecting the accuracy of fault
detection. Consequently, the application of unsupervised learning
to wind turbine fault detection could further weaken the weight of

FIGURE 11 | Boxplot of FPR of low-temperature fault detection
regarding the blade 2 axle box of the pitch (5% labeled samples).

FIGURE 12 | Boxplot of FNR of low-temperature fault detection
regarding the blade 2 axle box of the pitch (5% labeled samples).

FIGURE 13 | Boxplot of FPR of low-temperature fault detection
regarding the blade 2 axle box of the pitch h (10% labeled samples).

FIGURE 14 | Boxplot of FNR of low-temperature fault detection
regarding the blade 2 axle box of the pitch h (10% labeled samples).
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labels and reduce the cost of fault detection when compared with
supervised learning and semi-supervised learning.
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