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Large-scale renewable photovoltaic (PV) and battery energy storage system (BESS) units
are promising to be significant electricity suppliers in the future electricity market. A bidding
model is proposed for PV-integrated BESS power plants in a pool-based day-ahead (DA)
electricity market, in which the uncertainty of PV generation output is considered. In the
proposed model, we consider the market clearing process as the external environment,
while each agent updates the bid price through the communication with the market
environment for its revenue maximization. A multiagent reinforcement learning (MARL)
called win-or-learn-fast policy-hill-climbing (WoLF-PHC) is used to explore optimal bid
prices without any information of opponents. The case study validates the computational
performance of WoLF-PHC in the proposed model, while the bidding strategy of each
participated agent is thereafter analyzed.

Keywords: BESS, bidding strategy, incomplete information game, multiagent reinforcement learning, PV,
WoLF-PHC

INTRODUCTION

The share of photovoltaic (PV) installations experiences an exponential growth worldwide and
accounts for most of the electricity supply of renewable energy (Zucker and Hinchliffe, 2014).
However, the actual output of PV power may be different from the scheduled production, which
brings an inevitable challenge in power system real-time balancing. Battery energy storage system
(BESS) units can deal with the uncertainty of PV production by the flexible up-and-down regulation
capability (Li et al., 2013). Hence, the combination of PV farms and BESS sets will be a promising
form of virtual power plant, which will actively participate in the future energy spot market with
more deregulated paradigms. Thus, it is necessary to investigate the decision making of such
PV–BESS generation as prosumers in the market.

In the work of Shafie-khah and Catalao (2015) and Shafie-khah et al. (2015), bidding strategies of
large-scale renewable resources in oligopoly electricity markets were formulated as mathematical
programming with equilibrium constraints (MPEC) with the uncertainty of market competitors
considered using incomplete information dynamic game theory. However, the equilibrium of such
model is often difficult to be obtained because of the computational burden, and the complexity of
these models increases with consideration of numerous complicated real-world assumptions and
constraints (Ventosa et al., 2005). In this way, this complex set of equations is required to be solved
again to find the market equilibrium in the new situation (Salehizadeh and Soltaniyan, 2016/04).
With the development of artificial intelligence (AI) techniques in recent years, AI algorithms have
been applied in the power system to deal with various problems such as renewable energy forecasting
(Zeng et al., 2020), price prediction (Kebriaei et al., 2015), and energy management (Wang et al.,
2019). The electricity market can be modeled as an AI-enabled energy platform, where market
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participants are regarded as AI agents. Agents make bidding
decisions by gradually learning through repetitive
communication with the AI-enabled market platform. The
common AI learning technologies applied in the electricity
market refer to heuristic search, artificial neural network, and
reinforcement learning. Market participants make bidding
decisions with shuffled frog-leaping algorithm (Jonnalagadda
and DullaMallesham, 2013), genetic algorithm (Praça et al.,
2003), and fuzzy adaptive gravitational search algorithm
(Vijaya Kumar et al., 2013) by performing a heuristic search.
Some reinforcement learning methods are used to address
bidding problems, for example, the traditional Q-learning
algorithms in the work of Najafi et al. (2019) and a deep
reinforcement learning-based approach (Ye et al., 2019).
However, market players develop the bidding strategy by using
the abovementioned methods without consideration of other
competitors. In the real-world electricity market, each agent
achieves its purpose in response to other agents’ bidding
behaviors. Considering this, a multiagent multiobjective
architecture with reinforcement learning is proposed to
minimize energy costs for EV owners, in which agents should
communicate with all friendly agents and get their rewards
functions (Da Silva et al., 2019). The Markov game approach
is utilized to update multiagent competitive bidding strategies in
the work of Rashedi et al. (1049), while it is necessary to obtain
other agents’ previous bidding. However, market participants are
not willing to share neither perfect nor part information in
practice. The future research is expected to develop a bidding
strategy obtained by a fully distributed online training procedure
without any information communicated among agents.

Two bidding strategies are formulated considering the
uncertainty of PV prediction in the work of Bo et al. (2017).
The bidding strategy of battery storage systems in the secondary
control reserve market is investigated in the work of Merten et al.
(2020). Chen et al. (2021) studied the optimal bidding strategy of
a PV-BESS VPP in frequency control ancillary services markets.
A two-stage bidding strategy of households PV-BESSs is
proposed in peer-to-peer market (Zhang et al., 2019). Niknam
et al. (2012) introduced a bidding strategy of combined PV-
storage systems in day-ahead (DA) market, in which PV-storage
systems are considered as price takers. So far, to the best of the
authors’ knowledge, there is little research considering PV-
attached BESS power plants in a pool-based DA wholesale
market as oligopolists to make their bidding decisions without
any information of opponents. Furthermore, prior research
studies consider aggregated PV-BESSs developing bidding
strategy with either complete or part information of other
strategic players. In other words, previous work cannot deal
with the situation that each strategic participant of PV-BESSs
does not share any information with other rivals. This challenging
issue is required to be addressed properly. In this study, we
propose a DA bidding strategy of PV-attached BESS power plants
to maximize their benefits by self-bidding not relied on any
information of competitors. A multiagent reinforcement
learning win-or-learn-fast policy-hill-climbing (WoLF-PHC) is
used to solve the proposed bidding problem. The main
contributions of this study are summarized as follows:

1) A stochastic bidding strategy model of PV-attached BESS
power plants in a pool-based DA wholesale market is
developed, to maximize revenues of PV-attached BESS
power plants considering the uncertainty of potential
maximum PV power production

2) A multiagent stochastic game framework with incomplete
information is used to describe the proposed bidding model,
and the proposed model is then solved by a multiagent
reinforcement learning WoLF-PHC without any opponents’
information

3) The validity of the proposedmodel and theWoLF-PHC algorithm
is validated by the modified IEEE 6-bus and 118-bus systems

The remaining part of this article is arranged as follows.
Proposed Bidding Model introduces the proposed bilevel
stochastic bidding model. In Methodology, the WoLF-PHC is
used to solve the proposed bidding problem. Simulation results
and analysis are conducted in Case Study, while Conclusion
concludes the whole article.

PROPOSED BIDDING MODEL

The DA wholesale pool-based market is considered in this study.
Strategic participants PV-attached BESS power plants submit bid
prices and power capacities to the market operator (MO) on an
hourly basis. TheMO runs the market clearing process to confirm
the locational marginal pricing (LMP) and scheduled power
production of PV-attached BESS power plants. The overall
structure figure of the proposed model is presented in Figure 1.

The assumptions of the proposed market model are as follows:

1) Uncertainty of potential maximum PV power production is
considered in this study, which is dealt with a scenario-based
stochastic optimization method. The uncertainty is modeled
as a set of scenarios derived from a scenario generation
process on account of the roulette wheel mechanism in the
work of Niknam et al. (2012) and an efficient scenario-
reduction method in the work of Morales et al. (2009). In
this way, a stochastic optimization problem can be converted
into a deterministic one and solved with many methods.

2) PV-attached BESS power plants are assumed as large-scale strategic
players in the wholesale market. Each PV-attached BESS
power plant makes a bidding decision to increase its revenue.

3) Loads submit their bid prices to MO but not strategically. The
bid prices are their marginal cost prices which are open to
strategic PV-attached BESS power plants.

4) The transmission network only considers DC optimal power
flow (DC-OPF) without losses.

5) Bertrand model of competition is considered in the proposed
work with bidding prices as decision variables. Although the
cournot model and the supply function equilibrium (SFE)
model, in which a quantity and a pair of bid price and
quantity are seperately chosen to bid, can be considered to
make bidding decision, the cournot model and SFE model are
required to be formulated using mathematical programming
approaches, which makes solving difficult (Shafie-khah and
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Catalao, 2015; Shafie-khah et al., 2015). There is no such
limitation in the Bertrand competition model, and thus, it is
selected in this study.

A stochastic bidding model is introduced where the total cost
is minimized for the MO completing the market clearing, while
respective revenues are maximized for strategic participants PV-
attached BESS power plants.

Market Clearing Model
In the market clearing process, suppliers PV-attached BESS
power plants and loads first submit their bid prices πbidco,t and
πD
d,t, respectively, to the MO. The MO then completes market

clearing by minimizing the total cost relied on the OPF. At last,
the dispatched power production of PV-attached BESS power
plants PCO

co,α,t and LMP λn,α,t will be returned tomaximize revenues
of strategic PV-attached BESS power plants.

Minimize

∑
α∈Nα

τα · ( ∑
co∈ΩCO

n

πbid
co,t · PCO

co,α,t − ∑
d∈ΩD

n

πD
d,t · PD

d,t) (1)

subject to

PCO
co,α,t − ∑

m∈ΩN
n

Bnm · (θn,α,t − θm,α,t) � PD
d,t: λn,α,t,∀n, t, α, (1.1)

PPV
pv,α,t + PBE

be,α,t � PCO
co,α,t, (1.2)

PCO
co,α,t ≥ 0. (1.3)

0≤PPV
pv,α,t ≤P

PV,max
pv,α,t ,∀pv, t, α, (1.4)

−PBE,min
be ≤PBE

be,α,t ≤P
BE,max
be ,∀be, (1.5)

−fmax
nm ≤Bnm · (θn,α,t − θm,α,t)≤fmax

nm ,∀n,m ∈ ΩN
n , t, α, (1.6)

θn,α,t � 0,∀t, α, n: ref, (1.7)

−π ≤ θn,α,t ≤ π,∀t, α, n\n: ref, (1.8)

SOCmin ≤ SOCbe,α,t ≤ SOCmax,∀be, t, α, (1.9)

SOCbe,α,t � SOCbe,α,t−1 − (PBE
be,α,t/ηdis · Δt/Emax

be ),∀be, t, α, PBE
be,α,t ≥ 0,

(1.10.1)

SOCbe,α,t � SOCbe,α,t−1 − (PBE
be,α,t . ηc · Δt/Emax

be ),∀be, t, α, PBE
be,α,t < 0.
(1.10.2)

The objective of Eq. 1 is to minimize the total cost. The first
term is the costs of purchasing electricity from PV-attached BESS
power plants πbidco,t · PCO

co,α,t, while the second term represents the
revenues of selling electricity to load demands πD

d,t · PD
d,t. P

CO
co,α,t

and PD
d,t are the power output of the coth PV-attached BESS

power plant and the dth load in each hour. α indexes scenarios of
PVs, and τα is the corresponding probability. The constraint of
Eq. 1.1 is the power production and consumption balance for
node n with a dual variable λn,α,t donating the LMP, where Bnm is
the susceptance of the line connecting nodes n and m, and θ is the
voltage angle. Eq. 1.2 represents the scheduled power of PV-
attached BESS power plants PCO

co,α,t supplied from PVs PPV
pv,α,t and

BESS units PBE
be,α,t. The scheduled power of PV-attached BESS

power plants should be nonnegative, as shown in Eq. 1.3.
Maximum and minimum capacity limitation for PV units and
BESS units are considered in Eq. 1.4 and Eq. 1.5 respectively.
Inequality Eq. 1.6 limits the thermal capacity of the transmission
line fmax

nm . Eq. 1.7 and inequality Eq. 1.8 set voltage angle limits at
the slack bus and other buses, respectively. Inequality Eq. 1.9
represents the SOC range of the BESS at the present hour, while
constraints Eq. 1.10.1 and Eq. 1.10.2 indicate time-series SOC
formulation of the BESS at present and the previous hours. ηc and
ηdis are the charging and discharging efficiency of the BESS
separately. Emax

be refers to the maximized power capacity of BESS.

The PV-Attached BESS Power Plant
Revenue Model
The strategic player revenue for the coth PV-attached BESS
power plant is maximized and represented by scenarios α with
corresponding probabilities τα and represented in Eq. 2, where

FIGURE 1 | Overall structure figure of the proposed model.
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LMP λn,α,t and scheduled power output of PV-attached BESS
power plant PCO

co,α,t are obtained from the market clearing process.
The revenue of a PV-attached BESS power plant in Eq. 2 includes
the income of selling electricity to the electricity market λn,α,t ·
PCO
co,α,t and the battery degradation cost (Κb/ϖb) · ∣∣∣∣PE

be,α,t

∣∣∣∣.
Κb and ϖb are battery lifetime and battery capital cost,
respectively. Absolute-value function in Eq. 2 can be
addressed by a linear programming simplex method in the
work of Hill and Ravindran (1975).

Maximize

Rco � ∑
α∈Nα

τα · (λn,α,t · PCO
co,α,t − (Κb/ϖb) ·

∣∣∣∣PE
be,α,t

∣∣∣∣). (2)

METHODOLOGY

Introduction to Multiagent Reinforcement
Learning
The proposed bidding model brings fundamental problems:
how the strategic market participants work as AI agents to
learn and determine the optimal bid prices? This research
implies that, in the electricity market, it is possible to train
agents with AI algorithms to better solve the optimization of
bidding problems. The common core techniques for AI are
classified as the artificial neural network, reinforcement
learning, genetic algorithms, and multiagent systems (Xu
et al., 2019).

In reinforcement learning (RL), the agent makes its decision in
terms of communication with the external environment as in
Figure 2 (Hwang et al., 2017). First, the agent perceives a state xn

and a reward rn based on its past action an−1 from the
environment at each step n. Then, its learning is reinforced by
comparing the returned scalar reward signal rn every time with
the one in last round rn−1 for evaluating the quality of its
environment-based behavior. Specifically, the probability of
this potential action p will be increased if the compared result
is better and decreased if conversely. Last, the highest probability
action an would be chosen through the learning by itself.
There are three main classes of methods that made use of RL
principles, namely, dynamic programming methods, Monte

Carlo techniques, and temporal difference learning methods
(Tellidou and Bakirtzis, 2006). The premise of using dynamic
programming is the complete availability of system information.
Although Monte Carlo techniques could cope with unknown
environments, the solution process is very time consuming and a
long time would be needed to wait for the final outcome of
learning. Temporal difference learning methods used to learn
from an unknown environment after every step without the final
result are more suitable for the problem presented in this study,
and Q-learning is one of such most frequently used RL
approaches. In Q-learning, sets of states g and actions k of
each agent are represented as χ � {x1, x2 , . . . , xg } and Λ �
{a1, a2 , . . . , ak }. Then Q values are updated in the nth step Eq. 3,

FIGURE 2 | Reinforcement learning process of the agent.

FIGURE 3 | Flowchart of solving the proposed bidding problem with the
WoLF-PHC.

FIGURE 4 | Scenarios for electricty output capacities of the PV unit.
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in which xn ∈ χ, an ∈ Λ, and rn refers to each pair (xn, an). α and β
are the learning rate and discount factor separately, which are
both in the range (0,1].

Qn+1(xn, an)← (1 − α)Qn(xn, an) + α(rn + βmax
an′

Qn+1(xn, an′)).
(3)

Multiagent reinforcement learning (MARL) is developed from
the single-agent RL with adding the game relationship between all
agents, which are similar to strategic players in the electricity
market. Let a tuple (K, χ, Λ, P, r) represent a multiagent game
framework, where K � {1, 2, . . . , k} is a set of agents and χ is a set
of states {xg}. The sects of actions of each agent ai are described as
ai � {aamin, . . ., aamax} in Λ � {a1, . . . , ai, . . . , ak}. P refers to the
transition function written as χ × Λ × χ→ [0, 1]. r � {r1,. . ., ri . . .,
rk} is the set of reward functions of all agents, where ri: (xg,
ai) →R implies the ith agent’s reward function with a pair (xg,
ai). In each episode, the agent observes the state xg ∈ χ and selects
to execute the action ai relying on an appropriate policy of
learning algorithm and then steps into the next state xg ∈ χ.

Assumptions and Definitions
The proposed bidding model in Proposed Bidding Model can be
expressed as the multiagent game framework. We consider agents

K � {co ∈ ΩCO
n }, (4)

where K is a set of strategic participants PV-attached BESS power
plants, states

X � {xco}co∈ΩCO
n
, (5)

where χ is defined as different levels of PV-attached BESS power
plants’ capacities. PCO

co,α,t is obtained from the market clearing,
which would show that a state xco is selected after the
communication with the extra environment, and actions

Λ � {ai}. (6)

Λ is used to update bid price {πbid
co,t}co∈{aj}.

Reward function: ri (xco, ai) →R is the revenue of the coth
player with the bid price πbidco,t in the PV-attached BESS power
plant’s capacity level xco.

In this way, K, χ, Λ, and r have been defined. The optimal
policy p, which is used to choose an action in current state, is
required to find. Here, a suitable algorithm win-or-learn-fast
policy-hill-climbing (WoLF-PHC) would be introduced in
this study.

The Step-by-Step Implementation of the
Proposed Model With WoLF-PHC
The WoLF-PHC is developed from the Q-learning, which
requires two learning parameters with winning
ξw and losing ξl. The convergence is enhanced with these two
learning rates. It is defined that ξω should be smaller than ξl. If the
agent loses, it will learn faster with ξl to update its action. On the
contrary, the agent will keep caution with ξω when it wins. The
evaluation criterion of winning or losing is comparing the
expected revenue and the average profit, in which the average
strategy replaces the original equilibrium policy. TheWoLF-PHC
algorithm of agent i is represented as follows.

TABLE 1 | | Parameters of the BESS.

Probability 1 2 3 4 5 6 7 8 9 10

τα 0.2340 0.1800 0.1110 0.0480 0.0220 0.0110 0.0100 0.0060 0.2570 0.1210

TABLE 2 | Parameters of the BESS.

Parameter SOCmax (pu) SOCmin (pu) ηc ηdisc Emax
be (MWh)

Value 0.9 0.1 0.9 0.85 3000

TABLE 3 | Parameters of the WoLF-PHC.

Parameter α β ξw ξl

Value 0.1 0.7 0.01 0.02

FIGURE 5 | Bid prices of three suppliers PV-attached BESS power
plants in the 6-node system.

FIGURE 6 | Revenues of three suppliers PV-attached BESS power
plants in the 6-node system.
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Algorithm 1. The WoLF-PHC for agent i.

Specific learning procedures for the ith PV-attached BESS
power plant strategically bidding with WoLF-PHC are described
in following steps. 1) Bid price λi, parameters α, β, η, ξw, and ξl,
andQi, pi, and c(xco) are initialized. 2) In the nth episode, market
clearing is completed as (1)–(10b). After that, the reward function
of the ith agent rin can be obtained as (2). Then, Qi, pi, ξ, and pi

are updated in sequence as (9), (10)–(11), (15), and (12)–(14),
individually. Last, the bid price of ith agent λi is updated
according to the updated policy pi. 3) n � n + 1 is set, and
step 2) is repeated until n > number of intervals. The
abovementioned implementation of WoLF-PHC for solving
PV-attached BESS power plants’ bidding problems in
Proposed Bidding Model is shown in Figure 3.

CASE STUDY

The proposed model is tested on the IEEE 6-node and 118-
node systems. Scenarios for electricty output capacities of the

FIGURE 7 | (A) Scheduled power output of PV unit 1, BESS 1, and PV-
attached BESS power plant 1 in the 6-node system. (B) SOC of PV-attached
BESS power plant 1 in the 6-node system.

FIGURE 8 | (A) Scheduled power output of PV unit 2, BESS 2, and PV-
attached BESS power plant 2 in the 6-node system. (B) SOC of PV-attached
BESS power plant 2 in the 6-node system.

FIGURE 9 | (A) Scheduled power output of PV unit 3, BESS 3, and PV-
attached BESS power plant in the 6-node system. (B) SOC of PV-attached
BESS power plant 3 in the 6-node system.
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PV unit are derived from historical data from the work of
Agathokleous and Steen (2019) and represented in Figure 4
after scenario generation and deduction (Niknam et al., 2012)
(Morales et al., 2009). 10 corresponding probabilities are
shown in Table 1. Parameters of BESS and WoLF-PHC are
shown in Table 2 and Table 3, respectively. We run all
simulations in MATLAB with a 1.6 GHz Intel Core i5-5250U
computer.

Case 1
In the 6-node system, three suppliers PV-attached BESS power
plants are located in buses 1–3 separately and three loads are
connected to buses 4-6 individually. Bid prices of loads are
assumed as constant in 24 h, which are 59.4 $/MWh, 50.8
$/MWh, and 39.7 $/MWh (Zugno et al., 2013).

Three suppliers PV-attached BESS power plants represent
three strategic participants in this case. According to the
parameter setting given above, their bid prices and revenues
are shown in Figure 5 and Figure 6. It demonstrates that
WoLF-PHC could be used to, respectively, optimize bid
prices for the competitive PV-attached BESS power plants.
During this process, each strategic participant obtains
optimal bid price only relying on the communication with
the extra environment ISO. Rivals’ cost functions, bidding
information, and historical bidding information are not
open to the agent. We protect the personal information of
market players with the WoLF-PHC. Three PV-attached
BESS power plants’ power outputs and SOC are,
respectively, shown in Figures 7–9. There is no solar power
output in 1:00-5:00 and 20.00–23:00, and BESSs supply loads
by discharging, while PV units satisfy the requirement of load
demand and charging of BESSs during 6:00–19.00.

Comparison
The proposed bidding model of the PV-attached BESS power
plant is compared with the other two models, which consider
only PV units and only BESSs as strategic market participants.
Revenue comparison of the proposed model, PV unit,
and BESS for 24 h is represented in Table 4. Due to the
limited light time and the degradation of the battery,
revenues of PV unit and BESS separately as the strategic
player are both lower than the profit of the proposed
model. The social welfare of the proposed model is higher
than that of the other two models.

TABLE 4 | Revenues comparison of the proposed model, PV unit, and BESS for 24 h.

Market model Revenue ($) Social welfare ($)

Proposed model PV-attached BESS Power Plant 1 43890.25 79943.1
PV-attached BESS Power Plant 2 28749.12
PV-attached BESS Power Plant 3 8340.97

Model of PV units as strategic players PV unit 1 24981.01 3790.25
PV unit 2 11979.48
PV unit 3 3590.6

Model of BESSs as strategic players BESS 1 3590.23 4219.76
BESS 2 1507.43
BESS 3 5289.04

FIGURE 10 | Bid prices of three suppliers PV-attached BESS power
plants within increased load in the 6-node system.

FIGURE 11 | Bid prices of three suppliers PV-attached BESS power
plants within reduced load in the 6-node system.

FIGURE 12 | Bid prices of three suppliers PV-attached BESS power
plants within increased players in the 6-node system.
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Case 2
In this case, results of bidding prices are analyzed with different
load levels and different numbers of strategic players. First, the
total load demand is set equal to the total capacity of the three
strategic players. Figure 10 represents bid prices of three
suppliers in 100 iterations. Compared with bid prices in
Figure 5, bid prices of three participants are higher in
Figure 10. The lack of competition among market participants
shows that they are not required to lower their bid prices for
selling more. On the contrary, each player tries to raise its bid
price for earning more profits. Then, total demand is set as half of
the load in case 1. Bidding results are shown in Figure 11. More
competition drives all participants to reduce their bid prices than
those in Figure 5. Last, the number of strategic players is
increased to five and the corresponding curves of bidding
prices in 100 iterations are represented in Figure 12. Suppliers
adopt relatively conservative behaviors so that their price levels
are lower than those in Figure 5.

Case 3
The proposed model is applied in the IEEE 118-node system
with three and nine PV-attached BESS ower plants, respectively,
in this case. The three suppliers of PV-attached BESS power
plants are located in node 12, 29, and 98, which are then

individually duplicated to be three strategic players in the
same nodes and then become nine players. The convergences
of bidding prices for three suppliers and nine suppliers are
shown in Figure 13 and Figure 14 separately, which imply that
each agent can get its convergent bid price withWoLF-PHC in a
larger power system with more participants. In this process, any
information of opponents is not required. Each supplier
communicates just with the ISO in the clearing process,
which ensures the privacy of suppliers. Additionally, the
overall bid level of nine strategic suppliers in Figure 14 is
lower compared with three suppliers in Figure 13,. This is
because more competition compels market players to reduce bid
prices for selling more.

CONCLUSION

A bidding model with incomplete information for considering
the uncertainty of generation output of PV units is proposed. A
MARL algorithm WoLF-PHC is used to explore optimal bid
prices for strategic PV-attached BESS power plants, and it
protects personal privacy and respects the autonomy of
market players. Three cases are implemented in the modified
IEEE 6-node system and a larger IEEE 118-node system, with
some conclusions represented as follows: 1) multiple strategic
market players can obtain their bid prices individually with the
WoLF-PHC in the electricity markets; 2) compared with models
of PV unit and BESS as strategic participants independently, the
revenue of proposed model is higher; and 3) decreased load and
increased numbers of market players bring more competition,
resulting in strategic suppliers bidding at lower prices.
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