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Current models for the prediction of the output power of photovoltaic (PV) clusters suffer
from low prediction accuracy and are prone to overfitting. To address these problems, we
propose an improved random forest (RF)-based method for ultra-short-term prediction of
PV cluster output power. The total output power data for the PV clusters are used as the
training dataset and fed into the RF model to obtain preliminary predictions. The error and
accuracy of the preliminary predictions for individual sampling points concerning the actual
values of the PV cluster output power are assessed. Each of the daily time series of
preliminary predictions is divided into two phases according to whether the output power
is increasing (morning) or decreasing (afternoon). The final ultra-short-term predictions of
the PV cluster output power are obtained by correcting the two phases of preliminary
predictions through trend correction and peak correction, respectively. The results show
that, compared with the unimproved model, the accuracy of the stochastic forest model is
1.48% higher than that of the modified random forest model., which proves the
effectiveness and practicability of the proposed method.

Keywords: improved random forest, photovoltaic cluster output power, peak correction, trend correction, ultra-
short-term prediction

INTRODUCTION

Traditional fossil fuels, including coal, petroleum, and natural gas (Chen, 2019), currently account
for the majority of global energy consumption. However, their use produces large amounts of
greenhouse gases, other harmful gases, and waste, all of which threaten environments all over the
world. New energy sources are attracting increasing attention. In particular, solar energy is
increasingly widely used, due to its advantages of zero emissions, zero pollution, and no
limitations in geographical resource allocation; this has led to photovoltaic (PV) generation
technology becoming an important research topic (Jing et al., 2017). PV clusters that integrate
multiple PV stations are an increasingly popular model of PV generation. However, due to the
inherent properties of the output power of PV clusters, ensuring the balance and stability of the grid
necessitates the effective planning and scheduling of the electric energy that is input and output
(Pang, 2017). Operating costs must also be considered in the assessment of the expense of a normal
power supply (Li et al., 2020). The effective prediction of PV output power is among the most
important steps in the study of grid.
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PV output power predictions can be classified as ultra-short-
term (0–4 h), short-term (0–72 h) and medium-to-long-term
(1 month–1 year) predictions according to their time scale
(Yang et al., 2018a). Methods of predicting PV output power
can be grouped into numerical weather prediction (NWP) (Xu
et al., 2016), an environmental factor-based physical method, and
a historical data-based statistical method and learning method. A
previous study (Savarimuthu and Victor, 2020) explains the
relationship between the bonding between current, power, and
the potential developed in the solar PV module and the
consequences of changes in solar insolation levels on the
parameters involved. A PV output power periodicity
extraction and locality sensitive hashing (LSH)-based ultra-
short-term prediction method has been proposed (Yang and
Huang, 2018). The periodicity of PV output power includes
extraction of the periodic components. For the remaining
components, the LSH algorithm is used to achieve the rapid
classification of PV power segments under different weather
conditions, and Euclidean distance is adopted as a
classification measure. This method was verified using data
from PV stations, demonstrating high prediction accuracy. A
previous study (Yang et al., 2018b) classified weather conditions
into four types according to the weather forecast—namely, sunny,
cloudy, overcast, and rainy—and proposed an adaptive network-
based fuzzy inference system (ANFIS) model for ultra-short-term
prediction of PV output power in different types of weather
conditions. The initial structure of the fuzzy inference system was
created using a subtractive clustering algorithm, thereby
effectively avoiding the problem of combinatorial explosion.
The proposed model had good prediction accuracy for all
weather conditions, confirming the effectiveness of the
proposed method. Another method of predicting PV output
power has been proposed that uses the gradient boosting
decision tree (BOA-GBDT), a fine-grained, feature-based
Bayesian optimization algorithm (Chen et al., 2018). This
method first created instantaneous weather model features and
time window trend features and then reasonably reduced the
number of types of fine-grained features using the BOA. It
ultimately fitted the relationship between the features and the
PV output power curve using the GBDT model, thereby greatly
reducing its running time and error. A deep random forest (RF)
algorithm in two stages, namely, multi-grained scanning and
cascade forest stages has been found not to require human
adjustment of the parameters, as is required for deep neural
networks (Cui et al., 2020). A machine learning-based technique
has been shown to be capable of predicting the short-term output
power of PV–wind hybrid power generation clusters (Yan et al.,
2014). This technique first identifies typical power stations in
individual regions based on the correlation between the historical
output power data of individual power stations in individual
regions and the total output power data of individual regions to
predict the total output power of the cluster using a weighted-
error, back propagation neural network (BPNN). The overall
performance of the proposed technique is slightly better than that
of the build-up method; however, as the number of stations in the
cluster increases, the prediction error of the proposed technique
becomes slightly higher than that of the build-up method.

To address the problem of the low predictability of the PV
output power using traditional RF ultra-short-term prediction,
we propose a method for ultra-short-term prediction of PV
cluster outputs that corrects noontime prediction accuracy loss
through peak correction. The method first performs preliminary
predictions for individual sampling points using an RFmodel and
then divides each of the daily time series of preliminary
predictions into morning and afternoon phases. For the
morning phase, the phase relationship between the
preliminary predictions and the actual values was adjusted
using a discrete grey prediction model (DGM), thereby
obtaining corrected ultra-short-term predictions. The
experimental results show that the improved model
outperforms the original in terms of fitting capacity,
prediction error, and accuracy.

RF MODEL

The RF regression algorithm is an important application of RF
theory, a statistical learningmethod proposed by Breiman in 2001
(Xu, 2013). It takes multiple samples from the source using a
bootstrap resampling method, establishes a decision-tree model
for each bootstrap sample set, combines the decision trees for
prediction, and averages the predictions to obtain a final
prediction. In essence, the algorithm uses decision trees as
base learners and assembles them to create a forest. The
algorithm has a high prediction accuracy and controllable
generalization error, is capable of rapid convergence, requires
the adjustment of fewer parameters, and can effectively avoid
overfitting; thus, it is suitable for the computation of a variety of
datasets, such as ultra-high-dimensional characteristic vector
spaces (Breiman, 1996). Its core idea is to combine several
weakly performing classification and regression trees (CARTs)
into a forest according to certain rules to obtain final results based
on the voting of all of the decision trees in the forest.

RF regression increases the difference between the
classification models by creating different training datasets,
thereby increasing the capacity of the combined classification
models for extrapolative prediction. Through k rounds of
training, a series of classification models
{h1(X), h2(X), . . . , hk(X)} is obtained, which is then used to
create a system of multiple classification models. The final
classification decision can be expressed as:

H(x) � argmax
Y

∑k
i�1

I(hi(x) � Y) (1)

where H(X) is the combined classification model, hi is the ith
individual decision-tree classification model, Y is the output
variable (or target variable), and I (·) is a characteristic
function. Eq. 1 denotes the final classification using a simple
majority voting method.

For each of a given set of classification models
{h1(X), h2(X), . . . , hk(X)}, the training dataset was taken from
the source dataset (X, Y) through random sampling; thus, the
margin function can be expressed as:
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mg(X,Y) � avkI(hk(X) � Y) −maxavkI(hk(X) � j) (2)

The margin function measures the degree to which the average
number of correct classifications exceeds the average number of
incorrect classifications. A larger margin indicates higher
reliability of classification prediction. The extrapolative error
(or generalization error) can be expressed as:

PEp � PX,Y(mg(X,Y)< 0) (3)

As can be proven, as the number of decision-tree classification
models increases, all series Θ1 . . .PE* converge almost
everywhere on:

PX,Y(PΘ(h(X,Θ) � Y)) −max
j≠Y

PΘ(h(X,Θ) � j)< 0 (4)

Therefore, the RF regression method does not have the
problem of overfitting as the number of decision trees increases.

CART is a binary recursive partitioning technique (Zhang,
1997), with the current sample set split into two subsets at each of
the nodes (except for leaf nodes). The CART algorithm uses the

Gini Index as the attribute selection criterion. If we suppose that
dataset D contains m classes, the Gini Index GD can be obtained
with the following equation:

GD � 1 −∑m

j�1 p
2
j (5)

where pj is the frequency of occurrence of the jth class of elements.
The Gini Index needs to consider the binary partition on each

attribute (Huang et al., 2019a). Suppose dataset D is split into D1
and D2 through a binary partition on attribute A; then the Gini
Index for splitting sample set D on attribute A at this subnode can
be expressed as:

GD,A � |D1|
D

GD1D1 + |D2|
D

GD2D2 (6)

For each attribute, all possible binary partitions are
considered, and the partition with the lowest Gini Index is
used. Therefore, a smaller Gini Index for attribute A GD, A

indicates a better partition for attribute A. Following this
rule, splitting is performed in a recursive, top-down manner

FIGURE 1 | Working principles of the random forest model.

TABLE 1 | Comparison of prediction methods and strategies.

Set-pair method
(build-up)

Accuracy Mean square Set-pair method
(ensemble)

Accuracy Mean square

76 88.92 15.98 76 88.78 16.39
77 87.36 16.33 77 87.28 16.69
78 86.64 18.49 78 86.44 18.67
79 84.13 19.74 79 83.98 19.96
80 86.4 16.98 80 86.17 17.28
Mean 86.69 17.504 Mean 86.53 17.798

RF (build-up) Accuracy Mean square RF (ensemble) Accuracy Mean square

76 90.17 9.38 76 92.64 8.88
77 89.22 10.25 77 91.9 9.43
78 88.73 11.67 78 90.28 9.81
79 88.49 12.79 79 89.64 10.62
80 88.38 11.89 80 90.71 9.27
Mean 88.998 11.196 Mean 91.034 9.602
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until a complete decision tree is created (Zhang, 1997; Zhu,
2006).

RFs have the following statistical advantages:

1) They only need to adjust two parameters, namely, the number
of trees in the forest Ntree and the number of features selected
for splitting each tree Mtry.

2) As guaranteed by the law of large numbers, RFs have a very
high classification accuracy and are not prone to overfitting.

3) Another characteristic of RFs is their out-of-bag (OOB)
estimate. When training subsets are generated through
bagging, close to 37% of the samples in the source set do not
fall into the training subset for any CART. These samples are
referred to as OOB samples, and they can be used to estimate the
generalization error of the RFs and to compute the importance
of individual features (Huang et al., 2018; Huang et al., 2019b).

The simplest random feature selection for RFs is the random
selection of a small number F of input variables for splitting at
each node. In this way, the splitting of the decision tree at
each node can be based on the selected F features, so not all of
the features need to be examined. Then, complete trees are
grown using the CART method that does not need pruning,
thus facilitating the minimization of the skewness of the trees.
Once the decision trees are grown, ensemble predictions can
be performed using the majority voting method. This process
is a random selection of input variables. F input variables, a
fixed number, are selected to establish an RF. To increase
randomness, bootstrap samples of the input variables can be
generated using the bagging method. Both the strength and
correlation of RFs depend on the value of F. The correlation
between the trees decreases with F, and the strength of
classification models increases with F. After being verified,

FIGURE 2 | Improved stochastic forest model process.

TABLE 2 | Forecast results using 60-days historical data.

Index Number
of trees

1 2 3 4 5 6 7 Mean

Accuracy
(%)

100 92.8 89.92 94.35 89.06 93.65 93.26 90.81 91.98
200 92.72 90.57 94.39 89.07 93.26 93.4 91 92.05
300 92.51 90.19 94.3 89.13 93.08 93.48 91.06 91.96

RMSE (%) 100 7.2 10.8 5.65 10.94 6.35 6.71 9.19 8.12
200 7.28 9.43 5.61 10.93 6.74 6.6 9 7.94
300 7.49 9.81 5.7 10.87 6.92 6.52 8.94 8.04

TABLE 3 | Forecast results using 30-days historical data.

Index Number
of trees

1 2 3 4 5 6 7 Mean

Accuracy
(%)

100 92.62 91.2 96.27 89.39 93.18 94.35 91.37 92.62
200 92.5 91.03 96.33 89.34 92.97 94.29 91.4 92.55
300 92.52 91.12 96.41 89.38 93.48 94.25 91.44 92.65

RMSE (%) 100 7.5 8.8 3.73 10.61 6.82 5.65 8.63 7.39
200 7.28 8.97 3.67 10.66 7.03 5.71 8.6 7.41
300 7.48 8.88 3.59 10.62 6.52 5.75 8.56 7.34
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only one subset of an input variable needs to be considered at
each node, thereby significantly reducing the running time of
the algorithm.

Figure 1 shows the decision-making process of the RF models.

ESTABLISHMENT OF AN IMPROVED
RF-BASED ULTRA-SHORT-TERM PV
CLUSTER OUTPUT POWER PREDICTION
MODEL

Preliminary Predictions
There are three main strategies for predicting the output
power of PV clusters consisting of distributed stations,
namely, build-up, spatial upscaling, and ensemble
strategies. The build-up strategy obtains predictions for
individual stations and stacks the final predictions for
those stations to obtain the overall final prediction for the
output power of the entire cluster. The spatial upscaling
strategy divides a cluster into several regions following
certain rules and stacks the weighted predictions for
stations that best represent the output power of the
respective regions to obtain the predictions for the entire
cluster. The ensemble method, which is the simplest and
most straightforward one, obtains predictions for the total

output power of the entire cluster using the historical total
output power data of the cluster as training data (Yang et al.,
2020).

There are no state variables that cover a large area, such as
historical weather conditions or NWP, for the entire cluster; there
are only temporal features, such as different sunrise and sunset
times and maximum irradiance times (or peak output-power
times) at the geographical location of the PV cluster in different
seasons. Therefore, the set-pair method and RF model were used,
because neither method requires a state variable. Using data from
the previous 30 days as the training data, the output power of a
PV cluster in Northeast China over 5 days (numbered days
76–80) in 2019 was predicted using build-up and ensemble
strategies separately, and the prediction errors were
comparatively analyzed. The cluster consisted of 20 stations,
had a total output power of 650 MW, and was sampled every
15 min. Table 1 shows the results.

FIGURE 3 | Monthly root mean square error frequency curve.

TABLE 4 | Monthly average indexes of preliminary predictions.

Monthly
average accuracy (%)

Monthly
average RMSE (%)

January 89.78 14.52
February 89.08 14.71
March 89.7 13.57
April 90.5 9.86
May 93.22 8.94
June 95.61 6.17
Mean 91.33 11.28

FIGURE 4 | Daily forecast accuracy curve for each day from January to
June in 2019.

FIGURE 5 | Daily forecast accuracy from April to June.
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Due to the influence of the pooling effect in the output power
of the cluster, the predictions yielded by the ensemble strategy
using the RF model for the 5 days had smaller prediction errors
compared to those yielded by the build-up strategy. The RFmodel
improved the accuracy of the predictions for the 5 days by 2.47,
2.68, 1.55, 1.15, and 2.33%, respectively, and by 2.03% on average.
The set-pair method had lower accuracy, with an average
accuracy for the 5 days that was 1.6% lower. Therefore, the RF
model and the ensemble strategy were used for predicting the
output power of the PV cluster.

Correction of Preliminary Predictions
To address the problem of the loss of prediction accuracy for
the RF model, the preliminary predictions were corrected
using the peak correction method. The daily time series of
output power data was divided into morning and afternoon
phases:

Morning (or increasing) phase: because the sampling points
are before the peak output power time, the correction was
made using the peak output power predicted based on
the trend.

FIGURE 6 | Daily prediction accuracy curves for the 5 days with the highest daily average prediction accuracy.

FIGURE 7 | Daily curves for observed cluster total output power from 21 to 30 June.
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Afternoon (or decreasing) phase: because the time of
maximum output power has already occurred, the correction
was made using the current maximum output power.

If Ptmax > Pmax, the:

Pi′ � (1 − ∣∣∣∣∣∣∣Ptmax − Pimax

Ptmax

∣∣∣∣∣∣∣)Pi (7)

If Ptmax < Pmax, then:

Pi′ � (1 + ∣∣∣∣∣∣∣Ptmax − Pimax

Pimax

∣∣∣∣∣∣∣)Pi (8)

where Pi is the preliminary prediction for the ith sampling point,
Pimax is the maximum of the preliminary predictions, Pi′ is the
correction, and Ptmax is the maximum of the observations up to
the current sampling point.

The output power predictions for the morning phase were
corrected using a different method because different from that of
the afternoon phase, as the PV output power in the morning
phase gradually increases with solar irradiance, and the actual
peak output power of the prediction day is unknown at the time
of prediction (Li and Fang, 2009).

The DGM(1,1) has a broader modeling mechanism than
GM(1,1) and can effectively avoid the error between the
whitening model and the whitening equation (Lin et al.,
2013; Jiang et al., 2014; Yang et al., 2021). In this study, the
increasing trend for PV output power was predicted using the
metabolic DGM(1,1) model, which replaces the oldest
information x(0)(1) with the latest information x(0)(k+1) to
predict the following set of data. The grey model varies with
time. For the DGM(1,1) model, suppose there is a source series
as follows:

X(0) � (x(0)(1), x(0)(2), . . . , x(0)(n)) (9)

then the following equation is referred to as DGM(1,1) model:

x(1)(k + 1) � cx(1)(k) + ρ (10)

Designate the first-order accumulating generation operator
as α(1):

α(1)x(1) � x(1)(k) − x(1)(k − 1), k � 2, . . . , n (11)

x(1)(k) � ∑k
i�1

x(0)(i), k � 1, 2, . . . , n (12)

then the following equation is referred to as the whitening
equation of the DGM(1,1) model:

d2

dt2
+ c

dx(1)

dt
� ρ (13)

Suppose:

FIGURE 8 | Daily observed output power curves for the 5 days with the
highest prediction accuracy.

FIGURE 9 | Prediction accuracy at individually sampled points for June
21, the day with the highest daily average prediction accuracy.

FIGURE 10 | Sampling points with the highest prediction accuracy for
June 21, the day with the highest daily average prediction accuracy.
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B �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−x

(1)(1) 1
−x(1)(2) 1
« «
−x(1)(n − 1) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,Y �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ x

(1)(2)
x(1)(3)
«
x(1)(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

then the least-square estimate of the parameter α̂ � [c ρ]T of
DGM(1,1) is:

α̂ � (BTB)–1BTY (15)

Finally, the mathematical model of the source series can be
expressed as:

x(0) � α(1)x(1)(k) � (c − 1)[x(0)(1) − ρ

1 − c
]ck−1 (16)

For example, the time series of the output power of the cluster,
beginning from the time of startup, is predicted at moment t � 4
using DGM(1,1), as follows: The time series was reversed and
then fed into the DGM(1,1) model for prediction, yielding (t2,
Yt2), which has an angle of φ with respect to the x-axis. Another
straight line runs through the starting point of prediction t5 and
the point of the maximum of predictions t11. The two straight
lines are translated such that they converge at (t4, Yt4). Accuracy
is maximized when the two straight lines have the same slope.

The preliminary predictions yielded by the RF model for the
morning phase can be corrected using the following equation:

P′i � (Pi − Px) × tanφ
tan θ

(i � 1, 2, . . . , 16) (17)

tanφ � Yt−1 − Yt−3
2

, tan θ � Pimax − P1

tPmax − t1
(18)

where Pi is the preliminary prediction for the ith sampling
point, Pi′ is the correction, Px is the actual output power at the
current moment, Yt is the observed output power, and tPmax is
the moment of the peak output power predicted based on
the trend.

Prediction Process of Improved RF-Based
Ultra-short-term PV Cluster Output Power
Prediction Model
Figure 2 shows the prediction process.

Selection of Assessment Indexes
Themodel was assessed using the root mean square error (RMSE)
and accuracy. These two indexes were calculated using the
following equations:

FIGURE 11 | Sampling points with daily peak cluster output power in different seasons.
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RMSE �

�����������������
1
n
∑n
i�1

[P̃(i) − P(i)
Pcap

]2

√√
× 100% (19)

where P̃(i) is the predicted PV output power, P(i) is the actual PV
output power, Pcap is the total installed capacity of the station, n is
the length of the sampling point, and i is the serial number of the
sampling point of prediction.

Average prediction accuracy:

r1i �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 −

�����������������
1
n
∑n
i�1

(P̃(i) − P(I)
Pcap

)2

√√ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 100% (20)

r1 � 1
n
∑n
i�1

r1i (21)

where r1i is the prediction accuracy at the ith point, and r1 is the
average prediction accuracy.

TESTING AND ANALYSES

Analyses of Preliminary Predictions
The output power of a PV cluster in Jilin Province, China over 7
consecutive days inMarch 2019 was predicted using 90 and 10% of
the total output power data of 5,760 clusters in the 60 days prior to
the prediction days as the training and testing datasets, respectively.
Table 2 presents the results.

For a given period of historical data, prediction runs using
different numbers of trees yielded largely similar results. Thus, the
number of trees has a nonsignificant effect on the classification
process and results. However, this may be due to an inadequate
amount of time series data; thus, further verification was
performed by increasing the length time considered.

Further prediction runs were performed using 90 and 10% of
the total output power data of 2,880 clusters over the 30 days prior
to the prediction days as the training and testing datasets,
respectively. Table 3 shows the results.

The prediction runs using different numbers of trees yielded
markedly different results depending on the length of the period
considered. A shorter span of time series data improved the
quality of the predictions. Following the preliminary predictions,
the parameters of the RF model were configured as follows: using
the data of 2,880 clusters in 30 days prior to the prediction day as
the training data; Ntree � 100.

Using the data of the cluster from January to June 2019 as the
training dataset for the preliminary prediction, the ultra-short-
term prediction was performed using the RF model. Figure 3
shows the monthly RMSE error frequency curves. Table 4 shows
the monthly average prediction accuracies and RMSEs.

FIGURE 12 | Comparison of results before and after improvement in the
afternoon phase.

FIGURE 13 | Prediction accuracy of each step after improved prediction
in the afternoon phase.

FIGURE 14 | Comparison of results before and after improvement in the
morning phase.
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Figure 4 shows the daily accuracy curves of the ultra-short-
term predictions yielded by the RFmodel for 180 days (January to
June) in 2019. As shown in Figure 5, the predictions yielded by
the RF model for noon (high output power) have large errors, and
the prediction accuracy of the 35th to 55th sampling points were
generally lower than 80%, greatly affecting the overall prediction
accuracy of the model.

As shown in Figure 5, the predictions for April to June had
relatively high accuracies, namely, 90.50, 93.22, and 95.61%,
respectively; however, the model failed to identify the peak
output power.

Figure 7 shows the daily curves of the observed cluster of
actual total output power in June 21–30. The daily average
prediction accuracies for June 24 and 30 were 94.6 and
95.72%, respectively. As shown in Figures 6–10, the
correlations of prediction accuracy and error of the RF model
with the level of PV cluster output power are nonsignificant, with
the prediction accuracy remaining above 93% for sampling points
with the lowest level of output power. The weather type of the

entire cluster cannot be defined due to the geographically
scattered distribution of the stations. As noted earlier, low-
accuracy sampling points mainly occur in the range of the
35th to 55th sampling points, i.e., the period corresponding to
the peak output power. Therefore, the accuracy loss in prediction
for noon was corrected through peak correction.

Because the sunrise and sunset times in the geographical
location of the cluster are different or because the time of
peak output power is different in different seasons it is
necessary to identify the critical point of the daily
increasing and decreasing trends of the total output power
of the cluster in different seasons. For example, the seasonal
critical points of a PV cluster in Jilin Province were identified
using the daily observational data of the cluster’s 20 stations
in 2028 at a sampling interval of 15 min. First, the daily time
points of peak output power were identified, as shown in
Figure 2.

The time point of maximum output power in the cluster
occurred at the 49th sampling point in 25 days from January to

TABLE 5 | Comparison of results for each prediction method.

Month Persistence method Rank-set pair RF Improved RF

Accuracy (%) January 82.93 87.72 88.43 89.57
February 82.40 87.69 89.17 89.29
March 84.82 88.24 89.82 89.78
April 87.37 91.37 89.13 91.62
May 87.56 91.40 91.24 93.14
June 89.38 92.26 92.63 95.59

Average 85.91 89.78 90.07 91.55

RMSE (%) January 21.52 17.59 15.09 12.25
February 19.95 18.24 14.83 11.96
March 17.28 16.31 14.91 10.04
April 17.66 13.22 12.35 9.87
May 16.04 12.96 10.87 8.19
June 15.87 12.81 10.20 8.27

Average 18.05 15.19 13.04 10.10

FIGURE 15 | Prediction accuracy at individual sampling points in the
morning phase after improvement.

FIGURE 16 | Comparison of predictions for the morning phase yielded
by different methods.
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March (a ), at the 47th sampling point in 18 days from April to
June (b ), at the 47th sampling point in 14 days from July to
September (c ), and at the 47th sampling point in 14 days from
October to December (d ) (Figure 11). The seasonal time points
of maximum output power identified above were used to identify
the respective seasonal critical points between the daily increasing
and decreasing trends of cluster output power, thereby
minimizing prediction error.

Correction of Preliminary Predictions
As shown in Figures 12,13 the preliminary predictions for January
21 (observed peak output power was 391.16MW) showed a peak
output power of 218.36 MW, daily average prediction accuracy of
88.38%, and an RMSE of 16.10%, while the improved predictions
showed a peak output power of 390.9MW, daily average prediction
accuracy of 89.09%, and an RMSE of 14.54%. After correcting the
predictions for all sampling points in the afternoon phase
separately, the monthly average prediction accuracy for January
2019 improved from 89.89 to 91.76%, and the RMSE decreased
from 14.42 to 11.21%.

As shown in Figures 14,15, the output power predictions for the
morning phase were corrected using a different method because,
unlike the afternoon phase, PV output power in the morning phase
gradually increases with solar irradiance, the actual peak output
power of the prediction day is unknown at the time of prediction,
and the actual peak is not available for correcting the preliminary
predictions yielded by the RF model. For example, the daily average
prediction accuracy and RMSE for January 21 before the correction
of the morning phase were 90.76 and 13.26%, respectively, while
after the correction they were 93.16 and 10.44%, respectively. The
monthly average accuracy improved from 97.16 to 92.55%, and the
monthly average RMSE decreased from 11.21 to 9.87%.

From Figures 16,17, it can be seen that the PV power curve
has an obvious upward trend in the morning period. Both the
Persistence method and the RF method have poor effects and
cannot track the actual power well. The Rank-set pair method is

compared the prediction effect of the first two methods is better,
but the prediction effect of the time period before the 8th sample
point is still not ideal, and the Improved RF prediction model
proposed in this paper has the best effect, which fits the full curve
of actual photovoltaic output best; in the afternoon, it can be seen
that the photovoltaic power curve has a clear downward trend
and fluctuates to varying degrees. The Improved RF method
proposed in this paper has a significant correction before the
improvement, so that the predicted curve is closer to the actual
photovoltaic output curve. At the same time, combined with the
morning from the graph in the afternoon, the peak correction
method has significantly improved the accuracy of the prediction
model.

Comparison With Other Methods
As shown in Table 5, compared to persistence and rank-set pair
methods, the improved RF ultra-short-term prediction model
proposed above improved the monthly average prediction
accuracy by 5.64 and 1.77% and reduced the RMSE by 7.95
and 5.09%, respectively, outperforming the other two prediction
models in terms of all assessment indexes. Compared to the
original version, the improved version of the RF model improved
prediction accuracy by 1.48% and reduced RMSE by 2.94%. The
daily maximumRMSE is not larger than 15%. After correction for
both the morning and afternoon phases, the prediction accuracy
improved by 5.23%, and the RMSE decreased by 4.65%. The
results show that the correction method proposed in this paper
can effectively improve the ultra-short-term prediction accuracy
of photovoltaic cluster power, and has certain credibility and wide
applicability.

CONCLUSION

To further improve the accuracy of output power prediction of
PV, we proposed an RF model for ultra-short-term prediction of
PV cluster output power that considers the characteristics of
particular PV clusters and makes corrections based on them. The
model was through application to observational datasets. The
results are summarized as follows:

1) The model was tested using time series of historical data of
different lengths and with different parametric settings. For a
given period of data, changing the number of trees in the
model does not affect the model’s performance. For a given
number of trees, decreasing the span of data greatly improves
the prediction accuracy of the model. Based on these findings,
the model was preliminarily optimized for subsequent
predictions.

2) The predictions yielded by the RF model with optimized
parameters were analyzed. The results show that the
traditional RF model fails to identify the peak output power
for various levels of the actual output power. Considering that a
PV cluster usually consists of stations distributed over a large
geographical region, and it is difficult to define the state
characteristics of the entire cluster, the error of output
power predictions is corrected through peak correction.

FIGURE 17 | Comparison of predictions for the afternoon phase yielded
by different methods.
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3) In contrast to BPNN and other artificial intelligence methods,
the improved RF based ultra-short-term PV cluster output
power prediction method corrects the trends in the morning
and afternoon phases and the peak output power, thus better
reflecting the trend characteristics of the output power and
having a stronger fitting power. Relative to the original
version, the improved version of the RF model reduces
error by 4.65% and improves prediction accuracy by 5.23%.
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