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A data-driven optimal control method for an air supply system in proton exchange
membrane fuel cells (PEMFCs) is proposed with the aim of improving the PEMFC net
output power and operational efficiency. Moreover, a marginal utility-based double-delay
deep deterministic policy gradient (MU-4DPG) algorithm is proposed as a an offline tuner
for the PID controller. The coefficients of the PID controller are rectified and optimized
during training in order to enhance the controller’s performance. The design of the
algorithm draws on the concept of marginal effects in Economics, in that the algorithm
continuously switches between different forms of exploration noise during training so as to
increase the diversity of samples, improve exploration efficiency and avoid Q-value
overfitting, and ultimately improve the robustness of the algorithm. As detailed below,
the effectiveness of the control method has been experimentally demonstrated.
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INTRODUCTION

Proton exchange membrane fuel cells (PEMFCs) convert hydrogen energy into electrical energy, and
release heat energy directly via an electrochemical reaction (Sun et al., 2019; Yang et al., 2019). The
only by-product of the reaction is water, and the whole reaction process does not involve a heat
engine process (Yang et al., 2019; Yang et al., 2019) and so it is not limited by the Carnot cycle; thus,
the PEMFC is therefore a more environmentally friendly power generation device (Swain and Jena,
2015; Yang et al., 2016; Yang et al., 2017; Yang et al., 2018).

However, PEMFC systems are not entirely compatible with fluctuating load conditions as they
have a time lag factored into the air supply system (Yang et al., 2018), and so the supply of air flow
does not respond quickly to changes in load. If the air flow in the system is less than that required for
the electrochemical reaction, the system cannot be powered properly, leading to severe damage to the
proton membrane and reduced working lifetime of the stack (Yang et al., 2020). If the air flow in the
system is much higher than the required flow for the electrochemical reaction, the output power is
increased, but the power consumption of the compressor increases significantly, which seriously
impairs the electrical efficiency of the system. For high-power PEMFC systems, it is necessary to
control the air flow so that the air supply system can respond quickly when the load changes (Li et al.,
2021; Li and Yu, 2021).

For the regulation of air systems, a large number of control algorithms have been applied in
practice.

To achieve optimum performance, it is necessary to co-ordinate the work of the various systems
and design the appropriate algorithms for PEMFC control. The most widely used controller in the
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industry is the PID controller, which is simple and easy to design,
and which is widely used in the PEMFC field. However, PID
controllers have certain shortcomings in their ability to resist
interference, and researchers of PEMFC systems have explored
the use of complex PID control algorithms as potential
replacements for the traditional PID controller.

Rgab et al. (2010) proposed a neural network PID controller
for controlling the air flow in a PEMFC. Aliasghary (2018) used
an interval type II Fuzzy PID controller to control the air flow in a
PEMFC system in order to improve the controller’s ability to
handle uncertainties within the PEMFC system. Baroud et al.
(2017) designed a fuzzy adaptive controller that outperforms the
fuzzy logic controller and the transcendental PID controller in
terms of key performance indicators such as integration squared
error, integration time, overshoot of the closed-loop system,
stabilization time, and rise time. The fuzzy controller was used
by Beiram et al. (2015) to prevent oxygen starvation and ensure
maximum net PEMFC power, reducing steady-state errors.

The above innovations can improve the adaptive ability and
anti-interference of PID algorithms to a certain extent, but they
also increase the calculation volume and calculation time of the
algorithms, which makes it harder to ensure the timeliness of the
control. In view of these problems, some algorithms that are
optimized for the PID algorithm coefficients are more suitable.

The Deep Deterministic Policy Gradient algorithm (DDPG) in
deep reinforcement learning is a model-free control algorithm
(Zhang et al., 2019; Zhang and Yu, 2019; Zhang et al., 2021) with a
simple structure, small computational effort and high robustness,
properties which make DDPG an ideal candidate for optimizing
the coefficients of PID control algorithms (Zhang et al., 2018).
Since DDPG does not require model identification so as to
accommodate the uncertainty inherent in nonlinear control, it
has been applied in various control fields (Zhang et al., 2016);
nevertheless, the algorithm’s weak exploration capability explains
its low robustness when the algorithm is applied directly as a
controller for the control algorithm.

In order to combine the advantages of the DDPG algorithm
and PID algorithm, a data-driven method for the optimal control
of air flow in a PEMFC is proposed. A marginal utility-based
double-delay deep deterministic policy gradient (MU-4DPG)
algorithm is proposed as a tuner for the PID controller, one
which is trained offline.

The coefficients of the PID controller are rectified and
optimized to obtain a PID controller with better performance.
The algorithm operates on the principle of marginal effects, a
popular analytical concept in the field of Economics, by
continuously switching the form of exploration noise in
training in order to increase the diversity of samples, improve
exploration efficiency and prevent Q-value overfitting, and
ultimately improve the robustness of the algorithm to a better
performing PID controller.

The innovations in this paper are as follows:

1) A data-driven method for the optimal control of air flow in a
PEMFC with proton exchange membrane fuel cells is
presented.

2) For this controller, a MU-4DPG algorithm is proposed as the
tuner for the PID controller. The algorithm can rectify and
optimize the coefficients of the PID controller during offline
training to deliver a PID controller with better performance.
As mentioned, the design of the algorithm reflects the
principle of marginal effects, in that it can enhance the
diversity of samples by continuously switching the form of
exploration noise in training to improve the exploration
efficiency while preventing Q-value overfitting, ultimately
improving the robustness of the algorithm and ensuring a
better-performing PID controller.

The remainder of this paper comprises the following
sections: the PEMFC model is demonstrated in Section
PEMFC Air Supply System Model, and the algorithm is
described in Section Proposed Method; the experimental
results are analysed and discussed in Section Case Studies,
and the findings in this paper are summarised in Section
Conclusion.

PEMFC AIR SUPPLY SYSTEM MODEL

Theoretical Conditions
1) The gas settings accord with the Ideal Gas Law.
2) The air temperature inside the electrodes is equal to the

temperature of the stack.
3) When the relative humidity of the gas exceeds 100%, the water

vapour concentrates into liquid form.

Air Compressor Model
The air compressor compresses the air and transfers it at a certain
pressure to the supply line, where it is cooled and humidified, and
then transferred to the fuel cell cathode. The air compressor is the
core component within the PEMFC system. The dynamic
characteristics of the air compressor drive motor can be
expressed by the following set of equations:

Jcp
dωcp

dt
� τcm − τcp (1)

The motor driving torque of the compressor can be obtained
from the static motor equation：

τcm � ηcm
kt
Rcm

(vcm − kvωcp) (2)

The load torque of the air compressor can be calculated using
the following thermal equation:

τcp � CpTatm

ωcpηcp

⎡⎢⎢⎢⎣( psm
patm

)c−1
c

− 1⎤⎥⎥⎥⎦Fcp (3)

The temperature of the air leaving the compressor is

Tcp,out � Tcp,in + Tcp,in

ηcp

⎡⎢⎢⎢⎢⎣⎛⎝pcp,out
pcp,in

⎞⎠c−1/c

− 1⎤⎥⎥⎥⎥⎦ (4)
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The supply of air is completed by the compressor, which
consumes electric energy when it is working. Taking into account
the power consumed by the compressor and ignoring the power
consumption of other equipment in the system, the effective
power output of the entire PEMFC system can be expressed as:

Pout � Pstack − Pcom (5)

Return Pipe Model
The principle of the return line is similar to that of the inlet line,
but since the temperature of the gas flowing out of the reactor is
much lower than that of the gas flowing into the reactor, the effect
of temperature is ignored and the principle of the return line can
be expressed as follows:

dprm
dt

� RaTrm

Vrm
(Fca,out − Frm,out) (6)

In this paper, according to different pressure ratios, a
nonlinear mouth equation is used to determine that Frm.out is

Frm.out � CD.rmAT ,rmprm����
RTrm

√ (patm
prm

)1/c

�������������������
2c

c − 1
⎡⎣1 − (patm

prm
)c−1/c⎤⎦√√

,

patm
prm1

>( 2
c + 1

)c/c−1
(7)

Cathode Model
This is obtained from the Ideal Gas Law:

Vca

RT
dPO2

dt
� wO2,in − wO2,react − wO2,out (8)

Vca

RT
dPN2

dt
� wN2,in − wN2,out (9)

wO2,react � NI
4F

(10)

wO2,out � PO2

Pca
wca,out (11)

wca,out � kca(Pca − Pb) (12)

The oxygen excess ratio (OER) is a key variable that
significantly influences the fuel cell system’s performance. The
OER is expressed as follows:

λO2 �
WO2 ,in

WO2 ,ret
(13)

Anode Model
The basic principle of proportional valve control can be expressed
as follows:

Van

RT
dPH2

dt
� wH2,in − wH2,react − wH2,out (14)

wH2,react � NI
2F

(15)

wH2,out � PH2

Pan
wan,out (16)

wan,out � kan(Pan − Pb) (17)

Supply Pipeline Model
In a PEMFC system, the term “gas supply piping” refers usually to
the collection of piping for the cathode only, due to the small
size of the anode gas supply piping and return piping. The
cathode gas supply pipeline connects the air compressor to
the fuel cell reactor cathode and, according to the Law of
Conservation of Mass, the settings for gas flowing into the
pipeline and the gas flowing out of the pipeline satisfy the
following equation:

dpsm
dt

� cRa

Vsm
(FcpTcp,out − Fsm,outTsm) (18)

When the high-temperature gas from the compressor enters
the gas supply line, its temperature and pressure change, so,
according to the Law of Energy Conservation and the Ideal Gas
Equation, the change of pressure in the gas supply line can be
expressed as follows:

Fsm,out � ksm,out(psm − pca) (19)

PROPOSED METHOD

Technical Principles
The control model includes the PEMFC reactor, the air
compressor and its PID controller. The controller of the PID
is equated to an agent undergoing training, which in turn enables
the agent to adapt to the non-linear characteristics of the PEMFC
and improve the overall control performance of the OER and
output voltage. For pre-learning, the proposed algorithm is used
to rectify the coefficients kp, ki, and kd of the PID controller.

The tuning methods employ a linear quadratic Gaussian
(LQG) objective function.

In order to maintain the water level while minimizing control
effort u, the controllers employ the following LQG criterion:

J � lim
T0∞

E(1
T

∫T

0
((yref − y)2(t) + 0.01u2(t))dt) (20)

When applied online, the agent issues the optimal voltage of
the air compressor once it has received data on the status of the
PEMFC. The control interval of the agent is 0.01 s.

DDPG
The DDPG algorithm is a policy-based RL method which is based
on an empirical replay approach and which uses deep neural
networks as nonlinear function approximators to construct
Q(s, a; θQ) μ(s; θμ) and μ′(s; θμ)critic network model action and
target Q values.

μ′(st) � μ(s|θμ) + N (21)
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The critic network is updated by minimizing the loss function.
The L(θQ) network parameters are shown as follows:

yt � r(st , at) + cQ′(st+1, μ′(st+1|θμ)θQ) (22)

The gradient of the actor network, which depends on which
the actor network parameters are updated, is expressed as follows:

∇θμ J(θμ) � 1
N

∑
i

∇aQ(s, a|θQ)∣∣∣∣∣∣∣∣∣
s�si ,a�μ(si)

∇θμμ(s|θμ)
∣∣∣∣∣∣∣∣∣∣
si

(23)

DDPG improves the stability of the learning process by slowly
updating the weights of the actor target network and the critic
target network:

{ θμ←τθ + (1 − τ)θ′
θQ′←τθ + (1 − τ)θ′ (24)

MU-4DPG Algorithm
MU-4DPG is an extension of the DDPG algorithm, which in turn
has low robustness due to its single exploration principle. This
problem, similar to the concept of marginal effect in Economics,
is due to the fact that the exploration principle is too
homogeneous, and so the agent receives only a fixed number
of types of actions, and struggles to obtain richer samples.
Marginal effects are defined as those in which a successive
increase in one input, when other inputs are fixed, results in a
gradual decrease in the benefit, that is, the amount of output per
unit of input added decreases when the added input exceeds a
certain level. Therefore, the diversity of samples obtained by using
the same noise model over and over again decreases with an
increase of episodes. In order to solve this problem, the method
proposed in this paper improves the diversity of samples by
continuously switching between different forms of exploration
noise during training, improving the exploration efficiency, and
adopting a number of strategies in order to prevent Q-value
overfitting. The result is an algorithm with higher robustness, and
a better-performing PID controller.

The MU-4DPG algorithm includes two critics and one actor,
and, in order to solve the Q overestimation problem that occurs in
the DDPG algorithm, the proposed algorithm uses three
techniques: clipping multiple Q learning, delayed policy
update, and smooth regularization of the target policy.

1) Clipped multi-Q learning. The “student” agent in MU-4DPG
uses clipped multi-Q learning to calculate the target value:

y1t � r(st , at) + cmini�1,2,3Qθi′ (st+1, πϕ1(st+1)) (25)

2) Policy delayed update. After every d update of the critic
network, an update of the actor network is performed so as
to ensure that the actor network can be updated with a low
Q-value error, in order to improve the update efficiency of the
actor network.

3) Target policy smoothing regularization. The algorithm
introduces a regularization method to reduce the variance

of the target values by smoothing the Q-estimates by
bootstrapping estimates of similar state action pairs:

yt � r(st , at) + Eε[Qθ′(st+1, πϕ′(st+1) + ε)] (26)

Smooth regularization is also achieved by adding a random
noise to the target strategy and averaging over the mini-batch:

yt � r(st , at) + cmini�1,2Qθt(st+1, πϕ′(st+1) + ε) (27)

ε ∼ clip(N(0, σ),−c, c) (28)

4) Marginal effect mechanism. The actor network in the agent
switches between Gaussian noise and OU noise, depending on
the episodes, in order to obtain a more diverse sample.

Episodes are 0–1,000, 2000–3,000, 4,000–5,000, 7,000–8,000,
9,000–10,000 when OU noise is used for exploration:

FIGURE 1 | Results of case.
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ajOU � πj
ϕ(s) + Nj

OU (29)

whereby πθ
j(s) is the actor network policy, and NOU is the

OU noise.
Episodes are 1,001–1999, 3,001–3,999, 5,001–5,999,

6,001–6,999, 8,001–8,999 when explored using Gaussian noise:

amGaussian � πm
θ (s) +N m

Gaussian (30)

whereby πθ
m(s) is the actor network policy, and NGaussian is

Gaussian noise.

CASE STUDIES

In the simulation, the MU-4DPG tuning PID (MU-4DPG-PID)
was compared against the TD3 tuning PID (TD3-PID) controller,
DDPG tuning PID (DDPG-PID) controller, PSO optimized fuzzy
PID controller (PSO-Fuzzy- PID), GA-optimized fuzzy PID
controller (GA-Fuzzy-PID), PSO-optimized PID controller
(PSO-PID), GA-optimized PID controller (GA-PID), and
neural network control (NNC). The results are shown in
Figures 1A,B.

1) Comparison of the proposed algorithm with other
algorithms. According to Figures 1A,B, the OER of the
MU-4DPG algorithm has a better climbing speed
response, a more stable OER, and a smaller overshoot. In
addition, the MU-4DPG algorithm has a more rapid
response time for the stack voltage and a smaller
overshoot, and it does not permit large fluctuations. By
contrast, the other algorithms each have a large overshoot
in both the OER and output voltage, and a slower response
time, resulting in large oscillations in both the OER and the
stack voltage, which can lead to large oscillations in the
output voltage. Therefore, the MU-4DPG algorithm has the
best control performance.

2) The reasons for this phenomenon are: the robustness of the
algorithm is reduced compared to other DRL algorithms
because more techniques are not used in pre-learning,
resulting in a large output voltage overshoot and output
voltage fluctuations that affect the output performance of
the PEMFC. the Fuzzy-based algorithm is too simple in its
rules, resulting in low robustness and adaptive capability of
this class of algorithms. The PSO-PID, and GA-PID
algorithms inside the conventional control algorithm do
not have the adaptive capability to adjust the PID
parameters, and therefore have difficulty in adapting to the
non-linearity of the PEMFC. The NNC algorithm, on the
other hand, relies on the effects of training, resulting in low

robustness and therefore the lowest control performance of
this class of algorithms.

CONCLUSION

1) This paper presents a large-scale deep reinforcement learning
based adaptive optimal PID controller for controlling proton
exchange membrane fuel cell (PEMFC) air flow.

2) A marginal utility-based double-delay deep deterministic
policy gradient (MU-4DPG) algorithm is proposed as a
tuner for the PID controller. The coefficients of the PID
controller are rectified and optimized during off-line
training to obtain a PID controller with better performance
and fixed coefficients. The algorithm operates on the
Economics principle of marginal effects, in that it
continuously switches between different forms of
exploration noise in training in order to increase the
diversity of samples, improve exploration efficiency and
prevent Q-value overfitting, which altogether lead to an
improvement in the robustness of the algorithm and a
better-performing PID controller.

3) The results of the simulation involving both the proposed
controller and two groups of existing controllers (adaptive
PID and conventional control) indicate that the MU-4DPG-
PID controller is able to maintain a stable output voltage while
effectively avoiding oxygen starvation or oxygen
supersaturation in the fuel cell.
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