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Due to the powerful capability of feature extraction, convolutional neural network (CNN) is
increasingly applied to the fault diagnosis of key components of rotating machineries. Due
to the shortcomings of traditional CNN-based fault diagnosis methods, the continuous
convolution and pooling operations result in the constant decrease of feature resolution,
which may cause the loss of some subtle fault information in the samples. This paper
proposes a CNN-based model with improved structure multi-scale dense fusion network
(MSDFN) to realize the fault diagnosis of wind turbines planetary gearboxes under
complicated working conditions. First, the continuous wavelet transform is applied to
preprocess the vibration signals, and the two-dimensional wavelet time-frequency
diagrams are used as the network input. Then, the multi-scale feature fusion (MSFF)
module and a feature of maximum (FoM) module are used in the extraction and
classification stages of fault features, respectively. Next, the multi-scale features of
each network layer are fused to enhance the fault features. Finally, the high fault
diagnosis accuracy is achieved by extracting the separable fusion result of fault
features. The proposed method achieves more than 99% fault diagnosis average
accuracy on a planetary gearbox dataset. The comparative experimental results verify
the effectiveness of the proposed method and its superiority to some mainstream
approaches. The ablation study further confirms that MSFF module and FoM module
play the positive role in fault diagnosis.

Keywords: wind turbines planetary gearbox, fault diagnosis, convolutional neural network, feature fusion, wavelet
transform

1 INTRODUCTION

Planetary gearbox is a key component in the transmission system of wind turbines (WT) (Feng and
Liang, 2014; Wang et al., 2019). Due to the harsh working environment and complex structure, the
key gear components in the wind turbine planetary gearboxes are prone to damage, which adversely
affect the entire transmission system. Since wind turbines are often installed in places with
inconvenient transportation (Lu et al., 2020; Sun et al., 2021), any gear fault of planetary
gearboxes may cause the long downtime of the corresponding wind turbine and the high cost of
the related operation, maintenance, and reparation (Cao et al., 2019; Sun et al., 2019). During the
service life of a wind turbine, the cost of the related maintenance and operation account for about
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75% of the total investment (Lin et al., 2018; Zhu et al., 2021). The
monitoring of the health status of each planetary gearbox plays an
important role in the normal operation of a wind turbine. The
gear fault types of wind turbine planetary gearboxes mainly
include chipped tooth, missing tooth, crack tooth, and surface
wear (Wang et al., 2018; Liang et al., 2020). At present, most of the
fault diagnosis research on the gears of planetary gearboxes are
based on vibration signals (Lei et al., 2020).

Due to no-stationary working condition and complex
structure, it is extremely difficult to establish a general
mathematical model for the vibration signals of planetary
gearboxes (Feng and Zuo, 2012). Since the vibration signals of
planetary gearboxes have three main features, composite signals,
pass-through effect, and nonlinearity, it is difficult to directly
extract fault features by observing vibration responses (LI et al.,
2017). In addition, traditional signal processing methods are
difficult to process the monitoring data with massive states in
time in modern industry (Pan et al., 2019). Therefore, deep
learning-based methods with powerful feature extraction
capabilities are increasingly applied to the fault diagnosis of
key components of rotating machinery. They usually have
three main steps, data preprocessing, fault feature extraction,
and fault classification (Liu et al., 2018; Ma et al., 2019; Liang
et al., 2020).

Deep learning-based fault diagnosis methods often preprocess
the original vibration signals first. Wavelet transform, which has
excellent time-frequency analysis ability for non-stationary
vibration signals, is often applied to fault diagnosis of rotating
machinery. The optimized Morlet wavelet transform is used to
process the vibration signals to obtain better time- and frequency-
domain statistical feature sets (Wang et al., 2018). Fault diagnosis
can also be well achieved by wavelet packet coefficient matrix of
vibration signals (Zhao et al., 2017) or time-frequency images
(Liang et al., 2020; Zhao et al., 2020c; Cheng et al., 2021).

Since deep learning can automatically extract abstract features
from the original data (Wen et al., 2017), various deep learning-
based models are often applied to extract and classify fault
features. These methods can effectively avoid using complex
signal processing methods to calculate feature parameters for
the expression of fault information. According to vibration
signals or statistical feature sets, frequency spectrum, and
time-frequency spectrum of vibration signals, DBN (Wang
et al., 2018; Kang et al., 2020), LSTM (Cao et al., 2019), SAE
(Jiang et al., 2017), RNN (Miao et al., 2020), and CNN (Jiang et al.,
2018;Wang et al., 2020a) can obtain relatively high fault diagnosis
accuracy.

Considering the powerful feature extraction capabilities of
deep learning, this paper proposes a CNN-based fault
diagnosis model for wind turbine planetary gearboxes. The
proposed model aims to use CNN to extract fault features
from the time-frequency images of vibration signals and
achieve fault classification. However, in actual wind turbine
applications, due to noise interference and difficulty in
determining the impact of faults, etc., the fault information of
the vibration signals of wind turbine planetary gearboxes mapped
on time-frequency images may be extremely subtle, especially in
the early-stage faults (Wei et al., 2019). Following the continual

decrease of feature resolution, some important fault information
may be lost to cause adverse impact (Wang et al., 2020b), when
CNN is used to extract fault features. In the traditional CNN
methods, the learning of each network layer is always only based
on the features learned in the previous layer. If partial
information of the learned features is lost, the features learned
later is adversely affected. To solve the above issue, this paper
proposes an intelligent fault diagnosis method based on multi-
scale dense fusion network (MSDFN).

MSDFN consists of two parts, feature extraction network and
classifier. A dense feature fusion structure Huang et al. (2017)
based on projection and back-projection operators Irani and
Peleg (1991). Dai et al. (2007) is used to optimize the
traditional CNN network, and the output of each layer of the
feature extraction network is fused as the input of the classifier.
Through the dense fusion of multi-scale features to supplement
the fault information, the fault diagnosis of wind turbine
planetary gearboxes under complicated working conditions is
realized. The main contributions of this paper can be summarized
as follows.

1) A CNN-variant MSDFN is proposed for fault diagnosis of
wind turbine planetary gearboxes under complex working
conditions. It could extract enhanced fusion results of fault
features from the time-frequency images of vibration signal to
improve diagnosis accuracy.

2) The MSFF module designed by projection and back-
projection operators are embedded in each network layer.
And the fault feature enhancement algorithm based on multi-
scale feature fusion is used to supplement the missing
information of every layer in time. The fused features can
express fault information more effectively and have stronger
separability.

3) A FoM module is designed to fuse the output fault features of
each feature extraction layer. Specifically, this module uses
adaptive maximum pooling to convert the features of each
layer to the same resolution and concatenate them. It makes
the input features of the classifier have more complete fault
information, and the corresponding diagnosis accuracy is
improved.

The rest of this paper is organized as follows. Section 2 reviews
the CNN-based fault diagnosis research of key components of
rotating machinery in recent years; Section 3 describes the
proposed fault diagnosis method based on MSDFN; Section 4
compares the proposed method with several existing fault
diagnosis networks to verify its effectiveness and also conducts
the corresponding ablation study to test the performance of each
module; and Section 5 concludes this paper.

2 RELATED WORK

In existing deep learning-based fault diagnosis research of
rotating machinery, CNN is one of the most commonly used
deep learning models for fault diagnosis. Compared with SAE,
DBN, and other models, CNN and its variants such as Deep
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residual network (DRN), deep convolutional neural network
(DCN), etc. are more convenient for training (Wen et al.,
2017; Zhao et al., 2017), when vibration signals or their time-
frequency features are used as input. Because their local receptive
fields and weight sharing strategy usually only needs a smaller
amount of parameters. In recent years, many CNN-based fault
diagnosis solutions of rotating machinery have been published.

CNN was applied to the fault diagnosis of rotating machinery
and fault features were extracted from the spectrum of vibration
signals, which achieved better performance than classical
classifiers such as random forest and SVM (Janssens et al.,
2016). Two-dimensional DCN was used to extract fault
features from the wavelet packet energy images of vibration
signals, and the corresponding method achieved high fault
diagnosis accuracy (Ding and He, 2017). As the input time-
frequency information composed of the original vibration signals
and its frequency spectrum, a one-dimensional CNN was applied
to the fault diagnosis of planetary gearboxes (Jing et al., 2017).
Fault features were extracted from multi-sensor data by a CNN
with the multi-input branch structure to realize the fault
diagnosis of rotating machinery (Xia et al., 2017). A one-
dimensional CNN-based method realized the end-to-end fault
diagnosis of rotating machinery (Wu et al., 2019). Discrete
wavelet transform was used to obtain the time-frequency
matrix of the vibration signals, and CNN was applied to
extract the fault features of planetary gearboxes (Chen et al.,
2019). Vibration signals were first analyzed by recursive graphs,
and then CNN was used to achieve the fault diagnosis of rotating
machinery according to the obtained recursive matrix (Wang
et al., 2020a). Since the second-order cyclostationary behavior of
vibration signals can reveal valuable health information, cyclic
spectral coherence (CSCoh) analysis of vibration signals was used
to preprocess the original data, which reduced the difficulty of
feature learning in deep diagnosis model and improved diagnosis
accuracy (Chen et al., 2020).

The above work focuses on the preprocessing methods of raw
data, and studies the effects of various data processing methods
on fault diagnosis. However, the related research not only relies
on rich knowledge of vibration signal processing, but also
increases the workload of data processing. The following
research proves that the improvement of network structure is
conducive to extracting detailed fault features and achieving high
diagnostic accuracy. Zhao proved that deep residual network
(DRN) can efficiently extract the high-level fault features
contained in the wavelet packet coefficients (Zhao et al., 2017;
Zhao et al., 2020b). On the basis of DRN, the dynamic weight
module was introduced to weight the fault features of different
frequency bands in the time-frequency images, which improved
the diagnosis accuracy (Zhao et al., 2017). A multi-branch CNN
network structure was used to extract features from different
scales and improve the diagnostic ability of the model (Pan et al.,
2019; Peng et al., 2020). MSCNN used multiple CNN branches to
process vibration signals from multiple scales and the fault
diagnosis accuracy of wind turbine planetary gearboxes was
improved (Jiang et al., 2018). An SE-Res module (Hu et al.,
2018) was added to the ordinary CNN network to reduce the
interference of redundant information and enhance fault features

(Cao et al., 2020). A CNN model using hollow convolutions was
applied to increase the receptive fields to improve the gear fault
diagnosis accuracy of planetary gearboxes (Han et al., 2019). To
accurately and automatically identify the health status of rotating
machinery, a normalized convolutional neural network was
proposed for the fault type diagnosis of rotating machinery
under variable operating conditions (Zhao et al., 2020a). A
multi-core cascade structure of CNN was used to substitute a
single core for fault diagnosis (Wang et al., 2020b). Xu developed
a new method VMD-DCNNs that integrated convolutional
neural networks with variational mode decomposition (VMD)
algorithms (Xu et al., 2020). This method used CNN to extract
features from each intrinsic mode function (IMF) and directly
processed the original vibration signals in an end-to-end manner
without any manual experiences and intervention to realize the
fault diagnosis of the key components of wind turbines.

All the above methods use the CNN model as the fault feature
extractor and classifier, and achieve good performance in fault
diagnosis of the key components of rotatingmachinery. However,
these methods ignore that when CNN performs feature
extraction, the reduction of feature resolution may cause the
loss of partial fault information and even the decrease of fault
diagnosis accuracy (Wang et al., 2020b). The dense feature fusion
structure makes the input passed to the next network layer come
from all the extracted features, which can effectively supplement
the fault information. Therefore, according to the inspiration and
guidance of the above-mentioned work, this paper focuses on
improving the network by using the feature fusion structure, and
develops a multi-scale dense fusion network (MSDFN). The
proposed model can extract the enhanced fusion results of
fault features from the time-frequency images of vibration
signals of wind turbine planetary gearboxes under complicated
working conditions, so the relatively complete fault information
can be obtained, and the fault diagnosis accuracy can be
improved. Section 3 specifies the overall structure and
working principle of MSDFN.

3 MSDFN-BASED FAULT DIAGNOSIS
METHOD

The fault diagnosis of wind turbine planetary gearbox is really
important. However, the traditional CNN-based fault diagnosis
methods may cause the loss of fault information. So, this paper
proposes a MSDFN-based intelligent fault diagnosis method for
wind turbine planetary gearboxes. Figure 1 shows the diagnosis
process. The proposed method uses continuous wavelet
transform to preprocess the original vibration signal data. A
multi-scale feature fusion (MSFF) module is embedded into
each feature extraction network layer. An FoM module is used
to fuse the output of each feature extraction network layer to
obtain the classifier input. So, the information loss is reduced
during the fault extraction, and the corresponding fault diagnosis
accuracy is improved. The feature extraction network contains
five layers, which can fuse features of five scales at most. A
structure that is too shallow will result in poor accuracy, and a
structure that is too deep will result in a significant increase in the
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amount of calculation and cannot improve the accuracy. This is
verified in the Section 4.

3.1 Data Preprocessing
3.1.1 The Generation of Time-Frequency Images
Wavelet transform is widely used in vibration signal processing of
rotating machinery due to its excellent time-frequency analysis
ability for unsteady signals. The commonly used expression of
wavelet transform is shown in Eq. 1.

WT(a, τ) � 1��
a

√ ∫∞

−∞
f(t)ψ t − τ

a
( )dt (1)

whereWT(a, τ) is the wavelet coefficient, f(t) is the input signal,
ψ(t) is the wavelet basis function, a is the scale factor that controls
the expansion and contraction of the wavelet basis function, and τ
is the translation amount that controls the translation of the
wavelet basis function. The scale corresponds to frequency, and
the amount of translation corresponds to time. When the wavelet
function is translated on the time axis at each scale, it is multiplied
by the input signals respectively. So, the frequency components of
the signals in each time period can be obtained.

The selection of wavelet basis function is an important step in
using wavelet transform. Similarity coefficients (Mao et al., 2019;
Liang et al., 2020) are applied to select the wavelet basis function
for quantitative analysis. The expression of similarity coefficients
is shown in Eq. 2.

δ � ∑k
i�1

αi
m2

i

si
(2)

where δ is the dimensionless similarity coefficient, k and si, mi, αi
is the number of peaks, area of each peak, maximum of each peak,
weighted coefficient of each peak after making absolute value for
wavelet basis function.

Table 1 lists the similarity coefficients of several commonly
used wavelets for fault diagnosis. When the similarity coefficient

of a wavelet increases, the wavelet gets close to the original signals,
which means the wavelet contains more fault information to
facilitate diagnosis. Therefore, the cmor wavelet defined in Eq. 3
is used. The complex Morlet wavelet is a complex sinusoid
modulated by a Gaussian envelope defined by:

cmor(x) � (πFb)−1
2 exp(2iπFcx) exp −x2

Fb
( ) (3)

where Fb is the bandwidth of the wavelet, Fc is the central
frequency of the wavelet function, and i is the imaginary unit.
This paper takes Fc � Fb � 3.

3.1.2 Time-Frequency Image Preprocessing
Time-frequency images need to be preprocessed to improve the
training performance before inputting into the network. For
image datasets, the commonly used data enhancement
methods include rotation, flipping, and random cropping. As
the purpose of data enhancement, diverse training samples enable
the network to extract key features from the samples undergoing
various changes for improving the generalization ability of the
network. However, since the vibration signal sequence is time-
dependent, it can be regarded as a discrete time function.
Flipping, rotation, and random cropping disrupt the
relationship between time and frequency features, resulting in
poor training performance. Therefore, the proposed image
processing method first transforms the size of input images,
and then normalizes them to improve the training speed.

Bilinear interpolation is used to convert the resolution of time-
frequency images. Bilinear interpolation is the expansion of two-
variable linear interpolation, which performs linear interpolation
in two directions to obtain the value of the unknown function f (x,
y) at the point P � (x, y). The transformation expression of
bilinear interpolation is shown in Eq. 4.

f(x, y) � ∑2
i�1

∑2
j�1

f(Qij)(xi − x)(yj − y)
(x2 − x1)(y2 − y1)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (4)

whereQ11 (x1, y1),Q21 (x2, y1),Q12 (x1, y2), andQ22 (x2, y2) are the
four points closest to the target point f (x, y), and f (Qij) represents
the value of the point Qij, xi,j, and yij represent the abscissa and
ordinate of the point Qij, respectively.

Image normalization is used to scale the value of each image
pixel to a small specific interval, remove the data unit limit, and

FIGURE 1 | The process of MSDFN-based fault diagnosis.

TABLE 1 | The similarity of five commonly used wavelet basis functions.

Wavelet basis
function

Coif5 Meyr Morlet Db10 Cmor3-3

similarity 6.3298 6.6082 7.2953 7.4970 40.0507
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convert it into a dimensionless pure value, which facilitates the
comparison, and weighting of the indicators of different units or
magnitudes. The normalization formula used in this paper is
shown in Eq. 5.

�x � x − xmin

xmax − xmin
(5)

where the pixel value of a point is converted from x to �x, xmax and
xmin are the maximum and minimum values of the sample image
pixel values, respectively. The values of all points can be converted
to the interval of 0–1 by normalization, which improves the
convergence speed and accuracy of the model.

3.2 MSDFN
As shown in Figure 1, the MSDFN consists of two parts: a feature
extraction network and a classifier. Table 2 shows the specific
composition of MSDFN. In Table 2, “Conv” refers to
convolutional layer; “RG” refers to residual group; “AMP”
refers to adaptive maximum pooling; “AGAP” refers to
adaptive global average pooling; “Fc” refers to fully connected

layer; “numclass” refers to the number of fault categories. The
convolutional layer of the feature extraction network layer is used
to transform the channel and reduce the feature resolution, the
Residual Group (RG) is used for fault feature extraction, and the
MSFF module is used for multi-scale feature fusion. FoM merges
the output features of each layer of the feature extraction network
again, and inputs it into the classifier constructed by a fully
connected layer to obtain a prediction vector. The residual group
as shown in Figure 2A is composed of three residual blocks as
shown in Figure 2B. ReLU function is be used as the activation
function. Althoughmulti-scale feature fusion creates redundancy,
it supplements more complete fault information, so that the
subsequent network layer can extract more comprehensive
fault information, which enhancing the extracted fault features
and improving diagnosis accuracy.

3.2.1 MSFF Module
According to the feature fusion method proposed in (Dong et al.,
2020), theMSFFmodule is proposed to apply projection and back
projection operators to the fault diagnosis of planetary gearboxes.
As shown in Figure 1, the MSFF module fuses the features of all
layers to supplement important time-frequency and fault
information. Figure 3 shows the structure of the MSFF
module. The MSFF module of the n-th network layer is
defined as Eq. 6.

~j
n � Dn(jn, {~j1, ~j2, . . . , ~jn−1}) (6)

where jn is the latent feature of the n-th feature extraction
network layer, ~j

n
is the enhanced features obtained through

dense fusion, and {~j1, ~j2, . . . , ~jn−1} are the enhanced fusion
features from n MSFF modules before this layer in the
network. This paper uses the enhanced features
~j
n−t

, t ∈ {1, 2, . . . , n − 1}, t times to gradually improve the
enhanced features jn. The specific update and improvement
process is shown as follows.

1) As shown in Eq. 7, the difference ent between the enhanced
feature jnt of the t-th iteration and the t-th enhanced feature ~j

t

is calculated.

ent � qnt (jnt ) − ~j
t

(7)

TABLE 2 | Detailed structure of MSDFN. “Conv”, convolutional layer; “RG”,
residual group; “AMP”, adaptive maximum pooling; “AGAP”, adaptive global
average pooling; “Fc”, fully connected layer; “numclass”, the number of fault
categories.

Layer name Structure Input channels, output
channels

Output size (Input
size = 256)

Layer1 Conv1 3, 16 256 × 256
RG1 16, 16 256 × 256

Layer2 Conv2 16, 32 128 × 128
MSFF1 (16,32), 32 128 × 128
RG2 32, 32 128 × 128

Layer3 Conv3 32, 64 64 × 64
MSFF2 (16,32,64), 64 64 × 64
RG3 64, 64 64 × 64

Layer4 Conv4 64, 128 32 × 32
MSFF3 (16,32,64,128), 128 32 × 32
RG4 128, 128 32 × 32

Layer5 Conv5 128, 256 16 × 16
MSFF4 (16,32,64,128,256), 256 16 × 16

FoM AMP (16,32,64,128,256), 496 16 × 16
GAP AGAP 496, 496 1 × 1
Classifier Fc – 1 × numclass

FIGURE 2 | Structure of residual group. (A) Residual group (B) Residual block.
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where qnt represents the back projection operator, which
upsamples the promoted feature jnt to the same dimension
as ~j

t
.

2) The enhanced feature jnt is updated through back projection
for the difference calculated by Eq. 7, as shown in Eq. 8.

jnt+1 � pn
t (ent ) + jnt (8)

where pn
t is the projection operator, which downsamples the

difference ent in the t-th iteration to the same dimension of jnt .

3) After the iteration of all previous enhanced features, the
enhanced feature ~j

n
is finally obtained.

Unlike the traditional back projection techniques, the
sampling operators qnt and pn

t in the network are unknown.
The proposed method uses strided convolution (deconvolution
layer) to learn the downsampling (upsampling) operator in an
end-to-end manner. In order to avoid introducing too many
parameters, this paper uses 2 as the stride size and stacks the
convolutional and deconvolutional layers of n − t-th layer
together to achieve downsampling and upsampling learning in
qnt and pn

t .
In summary, the multi-scale feature fusion (MSFF) algorithm

used to enhance fault features is described in Algorithm 1.

Algorithm 1. Fault feature enhancement algorithm based on
multi-scale feature fusion

3.2.2 FoM
The MSFF module achieves feature fusion in the feature
extraction process, but the issue of incomplete information
still exists when the network uses the extracted features to
classify faults. Therefore, the FoM module is designed before
the classifier part, and its definition fom is shown in Eq. 9. As
shown in Figure 4A, the FoM module is used to convert the
output features of each network layer to a uniform size and
concatenate on the channel dimensions to achieve the fusion of
predicted features.

fom(y1,y2 . . .yL) � cat(v1,v2 . . . vL) (9)

vi � ampW×H(yi) (10)

where cat represents the concatenation of each input feature on
the channel dimensions, and ampW×H represents the adaptive
maximum pooling operation with an output size of W × H. As
shown in Figure 4B, the features of each scale are converted into
feature vectors with the same resolution and different channel
numbers to represent the diagnosis result obtained by each layer.
y1,y2 . . .yL{ } are the output features of the first to L-th (L � 5 in
this paper) network layers. The FoM module performs the
second-time fusion of fault features to prevent the feature
vectors used for classification from affecting the diagnosis
result due to insufficient or missing information.

4 EXPERIMENT

In order to verify the effectiveness of the proposedMSDFN-based
wind turbine planetary gearbox fault diagnosis method and the
performance of the feature fusion module MSFF and FoM
modules, based on the planetary gearbox dataset of the State
Key Transmission Laboratory of Chongqing University (Wang
et al., 2018) and gearbox dataset of the University of Connecticut
(Cao et al., 2018), comparative experiments and ablation
experiments were carried out. The aim is to use the multi-
stage gearbox of the experimental platform to simulate the
gearbox of the wind turbine for fault diagnosis research.

FIGURE 3 | The MSFF module.
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4.1 An Introduction of the Dataset
The vibration signals datasets of the planetary gearboxes used in
this research come from the University of Connecticut gearbox
data (Cao et al., 2018) and actual experimental data of the State
Key Laboratory of Mechanical Transmission of Chongqing
University (Wang et al., 2018). The following describes the
basic situation of the two data sets respectively.

1) Chongqing University gearbox dataset. As shown in
Figure 5A, the fault diagnosis experiment platform of
planetary gearboxes is mainly composed of a motor, a
planetary gearbox, a parallel shaft gearbox, and an
electromagnetic brake. The multi-axis accelerometer sensor is
installed at the housing directly above the second-stage Sun gear
of planetary gearboxes to collect the original vibration signals;
and the rotation frequency of the second-stage Sun gear is set to
4.17 Hz. As shown in Figure 6, the types of gear faults in the
experiments contain 1) surface wear of gear teeth, 2) cracked gear
teeth, 3) chipped gear teeth, and 4) missing gear teeth. For the

collection of vibration signals, the sampling frequency is set to
5,120Hz, and each group of sampling time lasts for 200 s. So, each
type of fault includes 1,024,000 sampling points under each load
condition. The working conditions are often unmeasured and
easy to fluctuate under actual engineering conditions. To discuss
the fault diagnosis performance of network models on planetary
gearboxes under different load conditions, four load conditions
are set to 0 N.m, 1.4 N.m, 2.8 N.m, and 25.2 N.m for each type of
Sun gear fault, respectively. The collected data is processed by
high-pass filtering to remove some low-frequency noise

FIGURE 4 | The FoM module and Adaptive Maxpool. (A) the FoM Module (B) the Process of Adaptive Maxpooling.

FIGURE 5 | Fault diagnosis experiment platform of planetary gearboxes. (A) Chongqing University gearbox (Wang et al., 2018) (B) University of Connecticut
gearbox (Cao et al., 2018).

FIGURE 6 | Types of gear faults (Wang et al., 2018). (A) Surface wear of gear teeth (B) Crack gear teeth (C) Chipped gear teeth (D) Missing gear teeth.

TABLE 3 | Accuracy under different ratio of training and testing sets.

Train set: Test set 5: 5 6: 4 7: 3 8: 2

Train set 2,000 2,400 2,800 3,200
Test set 2,000 1,600 1,200 800
Accuracy 99.73% 99.72% 99.75% 99.74%
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interference in the vibration signals. All the experimental data
used in this paper are the time sequence of filtered vibration
signals (Wang et al., 2018).

2) University of Connecticut gearbox data, the experimental
data are collected from a benchmark two-stage gearbox with
replaceable gears as shown in Figure 5B. The gear speed is
controlled by a motor. The torque is supplied by a magnetic
brake which can be adjusted by changing its input voltage. A 32-
tooth pinion and an 80-tooth gear are installed on the first stage
input shaft. The second stage consists of a 48-tooth pinion and
64-tooth gear. The input shaft speed is measured by a
tachometer, and gear vibration signals are measured by an
accelerometer. The signals are recorded through a dSPACE
system (DS1006 processor board, dSPACE Inc.) with sampling
frequency of 20 KHz. Nine different gear conditions are
introduced to the pinion on the input shaft, including
healthy condition, missing tooth, root crack, spalling, and
chipping tip with five different levels of severity (Cao et al.,
2018). This dataset contains 104 samples every class and every
sample contain 3,600 points.

The gearbox data set of Chongqing University contains usual
types of gear failures, including data on a wide range of working
conditions, which can better simulate the variable characteristics
of wind turbine gearbox load conditions Cao et al. (2019). At the
same time, the gearbox data shared by the team of Professor Jiong
Tang from the University of Connecticut was selected to further
verify the effectiveness of the proposed method. This data set
contains nine types of failures, which can better test the model’s
ability to distinguish samples of the same type but with different
failure levels. The experimental platform configuration of these
two datasets and the structure of the gearbox are relatively
reasonable, which has been proved in the related wind turbine
gearbox fault diagnosis researches (Jiang et al., 2018; Lu et al.,
2020).

4.2 Data Preprocessing
According to the method proposed in Section 3, the original
vibration signals are preprocessed to obtain the dataset of time-
frequency images. 1) Chongqing University gearbox dataset, since

the rotation frequency of faulty gears is 4.17 Hz, the data collected
per second can contain the vibration information of multiple
rotation periods. So, a sample is composed of the data per
second. 200 time-frequency images are obtained for each fault
type. Four load conditions are marked as L1, L2, L3, and L4. Each
of them has 1,000 image samples. 2) University of Connecticut
gearbox data, according to the data set structure and sampling
frequency, 104 samples of each class are obtained.

Table 3 shows the average accuracy of MSDFN with different
ratio of training and testing sets from the Chongqing University
gearboxes dataset. It can be found that the accuracy has not
changed significantly, nor has it shown an obvious monotonic
trend, but fluctuates slightly as the ratio changes. Considering the
number of samples, in order to obtain a higher diagnostic
accuracy, all image samples are randomly divided into the
training and testing sets at a ratio of 7:3. The data collected
from different load conditions is combined to obtain a mixed
dataset. The sample size of the obtained time-frequency images is
256 × 256. Tables 4, 5 shows the details of the obtained datasets.

4.3 Model Training
4.3.1 Hyperparameter Setting
In the training process of deep learning networks, the
hyperparameter settings have considerable impact on the
training performance. In the experiments, the batch size of the
network input (the number of samples input to the network each
time) affects the testing accuracy of the model. If the batch size is
too large, the model is difficult to fit or the fitting performance is
poor. If the batch size is too small, the model is difficult to

TABLE 4 | time-frequency images datasets of Chongqing University gearboxes.

Dataset Chipped Crack Missing Normal Surfacewear Loadcondition Train
set

Test
set

Label 0 1 2 3 4
DatasetA 200 200 200 200 200 L1 700 300
DatasetB 200 200 200 200 200 L2 700 300
DatasetC 200 200 200 200 200 L3 700 300
DatasetD 200 200 200 200 200 L4 700 300
DatasetE 200 200 200 200 200 L1,L2,L3,L4 700 300

TABLE 5 | Time-frequency images dataset of University of Connecticut gearbox.

Dataset Chipping1a Chipping2a Chipping3a Chipping4a Chipping5a Crack Healthy Missing Spall

Label 0 1 2 3 4 5 6 7 8
Dataset F 104 104 104 104 104 104 104 104 104

TABLE 6 | Diagnostic accuracy of MSDFN of different depth feature extraction
networks.

Depth of the
feature extraction network L

3 4 5 6

Accuracy 96.53% 98.12% 99.75% 99.72%
Parameters 1.53M 6.15M 24.66M 98.68M
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converge, and the accuracy rate oscillates unevenly. Considering
the number of samples and the testing results, 16 is chosen.

The learning rate is another important hyperparameter. The
learning rate represents the updated stride size of network
parameters. If the learning rate is too small, it causes too low
training efficiency and too much time is spent on training. If the
learning rate is too large, it leads to local optimization, loss of
oscillation, and model failure to converge. The dynamic
adjustment mechanism of learning rate is adopted. The initial
learning rate is 0.001, the learning rate transformation coefficient
is 0.9. For instance, the learning rate is multiplied by 0.9 for every
10 training cycles. It ensures a fast training speed in the initial
stage of training. When the convergence speed of the model slows
down, the learning rate is reduced to gradually approach the
optimal network parameter values.

4.3.2 Other Training Details
All experiments are implemented on a computer with a RTX3090
GPU, 16 GB RAM, and an Intel i710700 CPU. The
implementation, training and testing of the network model are
executed on the Pytorch1.7.0 deep learning framework. Matlab
2018a is used to divide the original vibration signals into sample
sequences and generate time-frequency image samples.

This paper uses the softmax cross-entropy loss function. The
corresponding loss calculation formula for a single sample is
shown in Eq. 11.

lo(x, c) � −log exp(xc)∑
j
exp(xj)

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ � −xc + log ∑
j

exp(xj)⎛⎝ ⎞⎠ (11)

where c is the label (the category index), the vector x is the
prediction result of each category (the network output), and xc
represents the c-th element of x. As the network trains, xc
approaches 1, so the loss approaches 0. The loss of each batch
is shown in Eq. 12.

loss � ∑N
i�1 lo(xi, Ci)

N
(12)

The vectors xi andCi are the network output and label category
of each sample respectively, and N is the batch size. The loss of
each batch is the average loss of each sample.

In order to speed up the convergence speed and avoid falling
into the local optimization, the momentum-driven stochastic
gradient descent (Momentum-SGD) algorithm is used to
optimize the network model, and the momentum parameter is
set to 0.9.

4.4 Experimental Results and Analysis
The depth of the feature extraction network in MSDFN will affect
feature fusion and the accuracy of fault diagnosis. Therefore, the
best depth is selected through experiments. Table 6 shows the
diagnostic accuracy of MSDFN of different depth feature
extraction networks on Dataset E. It can be seen that if the
structure is shallow, the diagnostic accuracy will decrease, and if

TABLE 7 | Accuracy of different methods on different dataset.

Network Dataset A
(%)

Dataset B
(%)

Dataset C
(%)

Dataset D
(%)

Dataset E
(%)

Dataset F
(%)

DenseNet121, Huang et al. (2017) Train 99.80 100.00 99.80 100.00 100.00 100.00
Test 98.40 98.60 98.60 98.60 98.35 99.65

VGG11, Simonyan and Zisserman (2017) Train 96.80 98.80 98.60 95.40 99.70 100.00
Test 96.60 97.60 97.00 93.60 97.05 99.54

ResNet18, He et al. (2016) Train 99.80 99.80 100.00 100.00 100.00 100.00
Test 99.20 98.82 99.20 99.60 99.50 100.00

DBN, Wang et al. (2018) Train 99.92 99.94 99.33 98.28 98.22 100.00
Test 99.52 98.82 98.65 95.82 95.72 98.92

WT-CNN, Liang et al. (2020) Train 100.00 100.00 100.00 99.90 99.90 100.00
Test 99.40 98.20 98.40 98.80 97.60 99.23

DWWC + DRN, Zhao et al. (2017) Train 99.40 100.00 100.00 99.90 99.90 100.00
Test 98.80 98.20 98.60 99.20 98.90 99.85

MSDFN Train 100.00 100.00 100.00 100.00 100.00 100.00
Test 98.62 99.27 99.03 99.35 99.75 100.00

FIGURE 7 | Boxplots of the accuracies of different networks.
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the structure is too deep, it does not improve the accuracy.
Adding one layer will increase the amount of model
parameters several times. Therefore, we set the feature
extraction network to five layers.

4.4.1 Performance Comparison of Different Network
Models
In order to verify the effectiveness of the proposed method, the
proposed MSDFN is compared with DWWC + DRN (Zhao et al.,
2017), WT-CNN (Liang et al., 2020), and three traditional image
classification networks: ResNet18, DenseNet201, VGG11. There
are the following explanations about the comparative experiment.

Since the innovations of the proposed method focus on the
fault diagnosis network, the networks proposed by existing
methods are used in the comparative experiments. In
comparative experiments, the data preprocessing methods of
the original literature are not included, but the same dataset of
time-frequency images is used. Therefore, this paper selects the
networks proposed in Zhao et al. (2017) (the original literature
uses wavelet packet coefficient matrix) and Liang et al. (2020) (the
original literature uses time-frequency images) for comparison.

In addition, several traditional image classification networks
are applied to the performance comparison of network models.
DBN (Wang et al., 2018) is the source of the dataset used in this
article. The listed results are from the original literature. Since the
original network structure is not convenient to process time-
frequency images and its training method is quite different from
others, this paper does not test DBN. All the related comparative
results are from the original literature (Wang et al., 2018).
Comparative experimental results. Table 7 shows the accuracy
of fault diagnosis on each dataset. Compared with DBN and CNN
using the traditional structures, the residual network andMSDFN
have obvious advantages in accuracy. Compared with the residual
network, the proposed network uses fewer network layers to
achieve a certain improvement in fault diagnosis accuracy. The
accuracy of each network on Dataset F, the University of
Connecticut dataset proves the effectiveness of the proposed
gearbox fault diagnosis method. In addition, all networks
perform better on Dataset F, which also reflects the different
complexity of the dataset distribution. Figure 7 shows the
accuracies of several CNN-based networks obtained in
10 times repeated experiments. MSDFN has a stabler and

higher accuracy rate on randomly allocated datasets, which
means that the proposed network has stronger robustness.
Figures 8A,B respectively compare the accuracy and loss
curves of the Dataset E during the training process of each
network. The convergence speed of MSDFN is close to
ResNet, and its accuracy fluctuation is small.

4.4.2 The Role of Dense Feature Fusion
In this paper, the feature fusion module first is removed and then
ablation study is performed on the complete model to verify the
impact of the proposed multi-scale dense fusion mechanism on
diagnosis performance. The different degrees of ablation models are
shown in Table 8. After removing all the remaining parts of the
feature fusion structure, the diagnosis network shown in Figure 1 is
used as backbone, which is mainly composed of a convolutional
layer, a residual block, and a fully connected layer. The complete
network D is MSDFN. The diagnostic accuracy of different degrees
of ablationmodels on each dataset is shown inTable 9. It can be seen
that the feature fusion module has a positive effect on improving the
accuracy of fault diagnosis. The diagnostic accuracy of different
degrees of ablation models does not fluctuate greatly under different
working conditions, but they are still affected by the working
conditions. Different models show different diagnostic

FIGURE 8 | learning results of different networks. (A) Accuracy curves of test dataset E (B) Loss curves of training dataset E.

TABLE 8 | The ablation networks.

Network A B C D

Backbone ✓ ✓ ✓ ✓
MSFF ✓ ✓
FoM ✓ ✓

TABLE 9 | Ablation experiment results.

Network A (%) B (%) C (%) D (%)

Dataset A 92.67 95.00 94.00 98.62
Dataset B 92.67 95.30 95.00 99.27
Dataset C 92.33 97.33 95.00 99.03
Dataset D 92.00 97.00 95.33 99.35
Dataset E 92.58 97.08 96.00 99.75
Dataset F 96.88 99.65 98.96 100.00
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performance on different datasets. As the load increases, the
diagnostic accuracy of models B, C, and D is also improving, but
model A does not have this rule, which reflects that the feature fusion
module increases themodel sensitivity to changes in load conditions.

Figure 9 shows the confusion matrices of the diagnosis results
obtained by each ablated network model on the testing set of
Dataset E containing 1,200 images. After adding the feature fusion

structure to the network, the accuracy rate is significantly improved.
Additionally, due to the dense feature fusion at each network layer,
the MSFF module plays a more important role than the FoM
module. Although the projection and back projection operations
of each layer increase the amount of calculation, the fault diagnosis
accuracy is effectively improved. Three images incorrectly diagnosed
by the complete network D belong to different categories and are

FIGURE 9 | Confusion matrix of the diagnosis accuracy obtained by different networks.
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predicted to be three different categories, which indicates that
MSDFN has no obvious deviation in the diagnosis ability of
different fault types. However, the obvious deviation in the
diagnosis ability exists in networks A, B, and C. The integration
of the two feature fusion modules, MSFF and FoM, effectively
improves the unstable recognition ability of the network for
various fault types. 240 images are randomly selected from the
testing set of Dataset E to compose a dataset. According to the
network with various degrees of ablation, Figure 10 shows the
distribution of output features after t-sne dimensionality reduction.
The distribution of output features intuitively shows the separability
of output features. The fault feature extraction performance of each
ablated network can be evaluated.

The output features of the first two feature extraction network
layers of each network model show two parts, a large part and a
small part, because the separability of features is low at this time.
Since testing is carried out on a mixed dataset, there are obvious
data distribution differences between the data of the mixed
working conditions. This mainly reflects the load among L1
(0 N.m), L2 (1.4 N.m), L3 (2.8 N.m), and L4 (25.2 N.m), so the

two parts in the scatter diagram show an approximate ratio of 3:1.
The performance of the two feature fusion modules on fault
diagnosis can be analyzed by comparing the feature distribution
of networks A, B, C, and D. As the network depth increases, the
differences caused by working conditions gradually decrease, so
the features of the same type of faults gradually become
concentrated. Different ablated networks show different
recognition capabilities. Compare with the third-layer output
of different networks, the introduction of the MSFF module
enhances the ability to distinguish features. According to the
output comparison of each layer of each model, the network D
achieves the best performance.

The fault recognition capability of each network can be
determined by observing the output of FoM module in each
model. Compared with other models, the output features of FoM
module in model A (backbone network) have many errors, and
the features of each fault category are relatively close. As the
complete network, the output features of FoMmodule inmodel D
show high separability, and 100% accuracy is achieved on the set
of 240 random samples.

FIGURE 10 | The visual results by t-sne of different layers from networks.
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5 CONCLUSION

Monitoring the health status of each wind turbine planetary
gearbox is of great significance for reducing the operation and
maintenance cost of wind turbines. In order to solve the loss of
fault information in the diagnosis process and improve the
model diagnosis ability, this paper proposes an intelligent fault
diagnosis method for wind turbine planetary gearboxes based
on MSDFN. Both MSFF and FoM modules are used to perform
feature fusion in the feature extraction and fault classification,
respectively. The loss of fault information caused by
continuous convolution and pooling in CNN is effectively
mitigated. The proposed method is compared with two
mainstream methods and three traditional image
classification networks to verify its effectiveness. Compared
with traditional CNN-based networks, MSDFN uses feature
fusion twice to improve the accuracy of fault diagnosis under
both single and mixed loads. In repeated experiments, the
proposed method achieves more than 99.5% accuracy rate.
The ablation study verifies that feature fusion is conducive to
the gear fault diagnosis of planetary gearboxes. On the mixed
dataset, MSFF and FoM modules increase the accuracy rate by
4.5% and 3.42%, respectively. To enable the proposed model to
maintain high fault diagnosis accuracy in the case of large
changes in working conditions, future work will focus on how
to use transfer learning to improve the model’s adaptability to
working conditions.
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