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The Advanced Multilevel Predictor-Corrector Quasi-static Method (AML-PCQM) is
proposed in this work. The four computational levels, including transport, Multi-Group
(MG) Coarse Mesh Finite Difference (CMFD), One-Group (1G) CMFD, and Exact Point-
Kinetics Equation (EPKE), are coupled with a new dynamic iteration strategy. In each
coupling algorithm, the original Transient Fixed Source Problem (TFSP) is solved in the
predictor process using coarse time step, and then the flux distribution is factorized to the
functions of amplitude and shape in the next corrector process. Finally, multiple fine time
steps are used to adjust the predicted solution. Two heterogeneous single assembly
problems with the prompt control rod withdrawal event are used to verify the AML-PCQM
scheme’s accuracy and efficiency. The numerical results obtained by different cases are
compared and analyzed. The final results indicate that the AML-PCQM performs the
remarkable advantages of efficiency and accuracy with the reference cases.
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INTRODUCTION

Since the high-performance computing clusters have significant advances recently, the state-of-the-
art computer simulation for nuclear reactors is three-dimensional (3D) whole-core time-dependent
modeling with high-fidelity pin-resolved features. The nuclear industry relied on the simulation
technique to understand many complicated processes and possibly decrease safety conservatism for
design accidents, thus increasing nuclear power’s overall costs (Shen et al., 2019). Meanwhile, a
significant challenge of the dramatically computational cost has happened to the direct simulation
utilizing conventional 3D neutron transport techniques, the 3D complete nuclear reactor core. The
real total number of numerical unknowns for a typical reactor core is much too large, approaching
1015 for steady-state simulation but significantly more for time-dependent simulation (Collins et al.,
2016). As a replacement for the direct 3D reactor simulation, a viable solution uses the two-
dimensional (2D)/one-dimensional (1D) method. The 2D/1D approach, which is commonly used in
high-fidelity codes to solve the forward transport equation, employs two-dimensional heterogeneous
transport computations in the radial direction and a lower-order transport calculation in the 1D axial
direction, such as the CRX code (Cho et al., 2002), DeCART (Joo et al., 2004), nTRACER (Jung et al.,
2013), MPACT (Collins et al., 2016; Kochunas et al., 2017; Shen et al., 2019), NECP-X (Liu et al.,
2018), Tiger-3D (Wu, 2014), PANX (Zhang, et al., 2017a; Zhang, et al., 2017b) and PROTEUS-MOC
(Zhang et al., 2019). The 2D/1D scheme has been successful in actual reactor applications in those
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high-fidelity codes, where the Method of Characteristics (MOC)
wasmost often used for solving the 2D radial problem, and for the
1D axial computation, a variety of techniques are employed.

When utilizing huge time steps to reduce the number of
transport options, it is challenging to maintain accuracy (Zhu
et al., 2016), considering the time-dependent transient analysis’s
high computational intensiveness. Among the most frequently
utilized and preferred techniques to efficiently solve the time-
dependent Boltzmann equation is the quasi-static method
(Henry, 1958; Henry and Curlee, 1958), which was then
modified as the Improved Quasi-Static (IQS) method (Ott and
Meneley, 1969). The basic idea of the quasi-static method is to
assume that the neutron flux can be factorized into the amplitude
and shape function because the flux amplitude varies
considerably faster than the flux shape. Thus, the shape
function in the IQS technique may be solved using a modified
time-dependent Boltzmann equation with a specified amplitude
function. And for the amplitude function, the Exact Point-
Kinetics Equations (EPKEs) are usually used, which are
obtained by combining the time-dependent Boltzmann
equation and the known shape function. The shape and
amplitude functions would then be solved using a shape
constraint function until the iteration converged (Zhu et al.,
2016).

A fine-mesh/coarse-mesh based IQS method was provided
to extend the nodal/EPKE based IQS method by introducing a
coarse-mesh-wise amplitude function to replace the whole-
core amplitude function, which was named Multigrid
Amplitude Function (MAF) and was later implemented in a
transport-based transient solver (Ban et al., 2012; Shaner et al.,
2013; Tsujita et al., 2013; Tsujita et al., 2020). In addition, a
factorization technique known as the Predictor-Corrector
Quasi-static Method (PCQM) has lately gained popularity
in addition to the IQS/MAF method (Kao and Henry,
1989). Rather than solving the shape and amplitude
functions iteratively, the PCQM directly calculates the
neutron flux in the predictor step and corrects the flux
using the amplitude function evaluated in the corrector
step, resulting in improved accuracy and computational
efficiency the traditional IQS method (Caron et al., 2015).
To overcome the unacceptable computing burden of the Multi-
Group (MG) Coarse Mesh Finite Difference (CMFD)
calculation with the fine time steps in PCQM, the MPACT
team at the University of Michigan proposed a new multilevel
transient solver named the Transient MultiLevel (TML)
method, where the first level couples the transient solver
and the MG CMFD solver, and the second level involves
the coupling between the MG CMFD solver and the EPKE
solver to capture the flux variation in the fine time range (Zhu
et al., 2016).

Even so, the computational burden of the MG CMFD is still
large and achieves almost 70% of the transient transport burden
even with the TMLmethod in the MPACT code (Zhu, 2016). To
decrease the cost of the MG CMFD, a two-level generalized
equivalence theory-based CMFD (gCMFD) acceleration system
was developed, in which an analogous One-Group (1G) CMFD
is created to efficiently accelerate the MG CMFD solutions and

the 3D whole-core transport computation (Hao et al., 2018;
Kang et al., 2020). Then, Shen et al. from the University of
Michigan implemented the 1G CMFD method in the MPACT
code as a new scheme of TML named TML-4. The TML-4
scheme reduced the total run time of the original TML scheme
by at least 16%, even 47% for certain large-scale, full-core
problems (Shen et al., 2021). However, the TML-4 remains
the original TML’s time step structure, in which the transport
level still has a significant computational expense.

The Advanced Multilevel Predictor-Corrector Quasi-
static Method (AML-PCQM) scheme is proposed in this
work to achieve further efficiency performance with the
same accuracy.

The AML-PCQM scheme involves the coupling among four
TFSP solvers, including the transient transport solver, the MG
CMFD solver, the 1G CMFD solver, and the EPKE solver. For the
time step structure, the AML-PCQM scheme makes 1G CMFD
level replace the MG CMFD level totally at the second finest time
step and expands the time steps of both transport andMGCMFD
levels. With the new time step structure, the computational
burdens of transport and MG CMFD can be effectively
reduced, while the 1G CMFD can help maintain the overall
accuracy. The TML and AML-PCQM schemes are
implemented in the high-fidelity neutron transport code
HNET to verify the functional performance. The HNET code
is developed in C language with Message Passing Interface (MPI)
parallel strategy, whose transient solver is based on a 2D/1D
transport solver accelerated by the two-level time-dependent
gCMFD (generalized equivalence theory-based coarse mesh
finite difference) technique (Kang et al., 2020). Comparison
and analysis of TML and AML-PCQM are provided using two
heterogeneous single assembly problems with control rod
withdrawal events.

The paper is structured as follows. Transient Methodology
provides a comprehensive description of the transient solver at all
four levels, i.e., the transport, the MG CMFD, the 1G CMFD, and
EPKE transient formulations. The implementation of the AML-
PCQM for all levels in HNET is described in Iteration Strategy of
the AML-PCQM Scheme. Numerical Results demonstrates the
comparison and the evaluation of the numerical results for the
heterogeneous single assembly problems with control rod
withdrawal events. Finally, Conclusion covers current
performance and problems and a work plan for the future.

TRANSIENT METHODOLOGY

This section shows the specifics of the equations for the four levels
of the transient solution. The 3D transient transport equations are
presented first, followed by the 3D MG CMFD transient
equations, the 3D 1G CMFD transient equations, and the EPKEs.

3D Transport Transient Fixed Source
Equation
The 3D transient transport solution begins with the 3D time-
dependent multi-group neutron transport equation with
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isotropic scattering approximation in the Cartesian coordinate
system, as shown below.

1

]g( r→)
zφg( r→, Ω→, t)

zt
� Rg( r→, Ω→, t), (1A)

Rg( r→, Ω→, t) � −Ω · ∇φg( r→, Ω→, t)
−Σt,g( r→, t)φg( r→, Ω→, t) + Ss,g( r→, Ω→, t)
+ 1
4π

SF( r→, t)[χp,g +Σk βk(χd,k,g − χp,g)]
+ 1
4π
Σkχd,k,g[λkCk( r→, t) − βkSF( r→, t)] .

(1B)

As well as the delayed neutron precursors are determined as
follows,

zCk( r→, t)
zt

� βkSF( r→, t) − λkCk( r→, t), k � 1, 2, ..., (2)

where φ is the angular flux and Ck is the delayed neutron
precursor density for the delayed group k. SF is the total
fission neutron source, and its value is modified by the
calculated eigenvalue in the steady-state calculation, and Ss,g is
the scatter neutron source for the angle Ω→ and the group g. χp and
χd are the prompt and delayed neutron spectrums, respectively. βk
is the delayed neutron fraction and λk is decay constant of the k
group delayed neutron precursor.

The time-dependent angular flow may be represented using
the exponential transformation as,

φg( r→, Ω→, t) � φ̃g( r→, Ω→, t)eαng( r→, Ω
→)(t−tn−1), t ∈ [tn−1, tn], (3A)

where the αn can be obtained by the power p of time tn-1 and tn-2 as,

αn
g( r→, Ω→) � 1

Δtn−1
ln
pn−1

pn−2
. (3B)

Then the left term of Eq. 1A can be transformed into the
following form,

1

]g( r→)
zφg( r→, Ω→, t)

zt
� 1

]g( r→) (eα
n
g (t−tn−1)

zφ̃g( r→, Ω→, t)
zt

+ αn
g e

αng (t−tn−1)φ̃g( r→, Ω→, t))
� Rg( r→, Ω→, t) (3C)

Then,

1

]g( r→)
zφ̃g( r→, Ω→, t)

zt
� e−α

n
g (t−tn−1)(Rg( r→, Ω→, t)

− αn
g

vg
φg( r→, Ω→, t)). (3D)

For a given Δtn at time step n, Eq. 3D may be further
discretized for time using the first order Backward Euler
technique (implicit method), as shown below,

Ω · ∇φn
g( r→, Ω→) + ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣Σn

t,g( r→) + αn

]g( r→)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦φn

g( r→, Ω→)

� −
φn
g( r→, Ω→)

Δtn]g( r→) +
φn−1
g ( r→, Ω→)

En
g( r→, Ω→)Δtn]g( r→) + Sns,g( r→, Ω→)

+ 1
4π

{SnF( r→)[χp,g +Σk βk(χd,k,g − χp,g)]
+Σkχd,k,g[λkCn

k( r→) − βkS
n
F( r→)]}, (4A)

where

En
g( r→, Ω→) � e−α

n
g (tn−tn−1), (4b)

Regarding the precursor equation,

d
dt

(Ck( r→, t)eλkt) � eλkt
dCk( r→, t)

dt
+ eλktλkCk( r→, t)

� βkSF( r→, t)eλkt . (5)

Assuming that the fission source is linear over a time step,

G( r→, t) � SF( r→, t)e−α(t−tn−1) � Gn( r→)w + Gn−1( r→)(1 − w),
(6A)

w � t − tn−1
Δtn

. (6B)

Then, integrating precursor equations over a time step (tn-1, tn),

Cn
k( r→) � e−λ̂

n
k Cn−1

k ( r→) + eα
nΔtnβkΔtn{Gn( r→)κ1(λ̃nk)

+ Gn−1( r→)[κ0(λ̃nk) − κ1(λ̃nk)]} (7A)

where

λ̃
n

k � (λk + αn)Δtn (7B)

λ̂
n

k � λnΔtn (7C)

Gn( r→) � SnF( r→)e−αnΔtn (7D)

κ0(x) � (1 − e−x)/x (7E)

κ1(x) � (1 − κ0(x))/x (7F)

If the precursor equations are plugged into the Boltzmann
transient equation with a first-order approximation of the
fission source in one step, the transient fixed source
equation is obtained,
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Ω · ∇φn
g( r→, Ω→) +⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Σn

t,g( r→) + αn

]g( r→)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠φn

g( r→, Ω→)

� Sns,g( r→, Ω→) +
χ̃g( r→)
4π

SnF( r→) + 1
4π
Σkχd,k,gλkĈ

n−1
k ( r→)

−
φn
g( r→, Ω→)

Δtn]g( r→) +
φn−1
g ( r→, Ω→)

En
g( r→, Ω→)Δtn]g( r→) (8A)

where

χ̃ng( r→) � χp,g +Σkχd,k,gλkβkΔtnκ1[λ̃nk( r→)] − χp,gβk, (8B)

Ĉ
n−1
k ( r→) � e−λ̂

n
k Cn−1

k ( r→) + eα
nΔtnβkΔtnSn−1F ( r→)[κ0(λ̃nk)

− κ1(λ̃nk)]. (8C)

In this case, an isotropic approximation of the time-
dependent angular flux in the source terms is used for
different time steps, which has been shown to be acceptable
by some state-of-the-art time-dependent transport solvers
(Zhu et al., 2016), and then part of the source terms can be
simplified further as,

φn−1
g ( r→, Ω→)

En
g( r→, Ω→)Δtn]g( r→) −

φn
g( r→, Ω→)

Δtn]g( r→) ≈
1
4π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ϕn−1
g ( r→)

En
g( r→)Δtn]g( r→)

− ϕn
g( r→)

Δtn]g( r→)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (9A)

where

En
g( r→) � e−α

nΔtn . (9B)

Substituting Eq. 9A into Eq. 8A,the functional transient fixed
source equation is therefore as follows,

Ω · ∇φn
g( r→, Ω→) + Σ̃n

t,g( r→)φn
g( r→, Ω→)

� 1
4π

[Sns,g( r→) + χ̃g( r→)SnF( r→) + Sntr,g( r→)], (10A)

Σ̃n
t,g( r→) � Σn

t,g( r→) + αn

]g( r→), (10B)

Sntr,g( r→) � Sn−1dc,g( r→) + Sn−1dt,g( r→) − ϕn
g( r→)

Δtn]g( r→), (10C)

Sn−1dc,g( r→) �Σk
χd,k,gλkĈ

n−1
k ( r→), (10D)

Sn−1dt,g( r→) � ϕn−1
g ( r→)

En
g( r→)Δtn]g( r→). (10E)

Eq. 10 may therefore be solved using any conventional
steady-state neutron transport solver. A 2D/1D

methodology is utilized in this study, in which the 2D
radial MOC (method of characteristics) and 1D axial NEM
(nodal expansion method) are linked with transverse leakage
terms. These techniques’ concepts are described in the
referenced article (Kang et al., 2020).

3D MG CMFD Transient Equation
The time-dependent diffusion equation with precursor equations
for the CMFD formulation is provided in Eq. 11.

1

]g( r→)
zϕg( r→, t)

zt
� ∇ · Dg( r→, t)∇ϕg( r→, t)

−Σt,g( r→, t)ϕg( r→, t) + Ss,g( r→, t) + 1
4π

SF( r→, t)[χp,g
+Σk

βk(χd,k,g − χp,g)] + 1
4πΣk

χd,k,g[λkCk( r→, t)
− βkSF( r→, t)] (11A)

zCk( r→, t)
zt

� βkSF( r→, t) − λkCk( r→, t), k � 1, 2,/, (11B)

With similar approximations in the transient transport
equations, the CMFD TFSP equation can be derived by
incorporating the transport TFSP equation (Eq. 10) over 4π in
the coarse mesh as follows,

∑
q∈neighbor

Jn,lg,c,qAc,q + Vc
⎡⎢⎢⎢⎣(Σn

t,g,c +
1

Δtn]g,c
)ϕn,l

g,c −∑
g′
Σn
g ′→ g,c

ϕn,l
g′,c

⎤⎥⎥⎥⎦

� Vc
⎛⎝ χng
ksseff

∑
g′
]Σn

f ,g′,cϕ
n,l−1
g′,c + Sn−1dc,g,c + Sn−1dt,g,c

⎞⎠
(12)

where, c is the index of the center node and the neighbor
node corresponds to the index q. n is the index of time step
and the l indicates the iteration number. The S

n−1
dc and S

n−1
dt are

delay neutron sources from the last time step and will be constant
in a certain time step. The ]Σn

f , Σ
n
g,g′ and χnare the average fission,

scattering cross-sections, and fission spectrum with standard
definitions in nuclear reactor physics, while the Σn

t represents
the average value in a node of the altered total cross-section. The
ksseff is the eigenvalue of the steady-state transport calculation.

According to the CMFD methodology, the interface current
from node c to node q in Eq. 11 can be quantified as follows,

Jg,c,qAc,q � D̃g,c,qϕg,c − D̃g,q,cϕg,q (13)

where the “D-tilde” terms on the interface from node c to node q
and the one from node q to node c are defined respectively as,

D̃g,c,q � Ac,q

2f disg,c,q

f disg,c,qhc,q

f difg,c,qDg,c
+ f disg,q,chq,c

f difg,q,cDg,q

(14A)
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D̃g,q,c � Ac,q

2f disg,q,c

f disg,c,qhc,q

f difg,c,qDg,c
+ f disg,q,chq,c

f difg,q,cDg,q

. (14B)

An albedo boundary condition is utilized for the boundary
node treatment, and the “D-tilde” is provided as,

D̃
boundary
g,c,q �

2f disg,c,q

f disg,c,qhc,q

f difg,c,qDg,c
+ 2

α

, (14C)

where hc,q is the thickness of node c in the direction from node c to
node q. The Dg is the standard diffusion coefficient. The albedo α
has different values for each different boundary condition, e.g.,
0.5 for the vacuum boundary condition and 0 for the reflective
boundary condition. Additionally, f disc,q andf

dif
q,c are referred to the

Nodal Discontinuity Factor (NDF) and Modified Diffusion
coefficient Factor (MDF), respectively, quantified using the
surface current, surface flux, and average flux information
obtained from the radial MOC and axial NEM calculations.
The variables’ specifics may be found in the referenced article
(Xu et al., 2012; Hao et al., 2018).

Because the “D-tilde” is used to compel the interface to be the
same as produced by higher-order techniques in the 2D/1D
solution, the CMFD’s node average fluxes and interface currents
will be equal with the transport solutions after global
convergence is reached. Therefore, an analogous 3D MG
CMFD TFSP linear system is built using the new definition
of “D-tilde” and homogenized XSs given by the radial planer
MOC and the axial two-node NEM in the transport TFSP
solutions, as follows,

Vc
⎡⎢⎢⎢⎣ −∑

g′
Σ n
′g→g,cϕ

n,l

g′,c + (Σ n
t,g,c +

1
Δtn]g,c

)ϕ n,l

g,c
⎤⎥⎥⎥⎦

+⎛⎝ D̃
n
g,c,W + D̃

n
g,c,N + D̃

n
g,c,E

+D̃n
g,c,S + D̃

n
g,c,T + D̃

n
g,c,B

⎞⎠ϕ
n,l

g,c

−⎛⎝ D̃
n
g,W,cϕ

n,l

g,W + D̃
n
g,N,cϕ

n,l

g,N + D̃
n
g,E,cϕ

n,l

g,E

+D̃n
g,S,cϕ

n,l

g,S + D̃
n
g,T ,cϕ

n,l

g,T + D̃
n
g,B,cϕ

n,l

g,B

⎞⎠
� Vc

⎛⎝χ n
g

ksseff
∑
g′
]Σ n

f ,g′,cϕ
n,l−1
g′,c + S

n−1
dc,g,c + S

n−1
dt,g,c

⎞⎠ (15)

where W, E, S, N, T and B represent the node’s west, east, north,
south, top, and bottom surfaces. In this situation, the fixed source
solver in this work may solve the conventional steady-state fixed
source transport equation with an extra transient source
component for each time step. The CMFD TFSP iteration
must continue to use the eigenvalue from the steady-state
computation with no updates.

3D 1G CMFD Transient Equation
Because the original multi-group CMFD has a high condition
number, and the condition number becomes much larger if the
Wielandt shift is applied to speed the inverse power iteration,
the one-level MG CMFD linear system may converge

considerably more slowly (Hao et al., 2018). However, since
the 1G CMFD linear system is considerably less expensive to
solve, it is advantageous to use the fission source from the 1G
CMFD and to update the MG nodal scalar flux to decrease the
computing load of the MG CMFD calculation (Kang et al.,
2020).

The cross-sections, flux, and current information from the
MG CMFD TFSP linear system create the 1G CMFD TFSP
linear system. Except for the unique handling of “D-tilde,” all
other terms in the 1G CMFD TFSP are derived by
compressing the corresponding terms in the MG CMFD
TFSP over all energy groups. After calculating the
coefficients of the 1G CMFD TFSP, the 1G nodal scalar
flux is computed by solving

⎛⎝ D̃
n
c,W + D̃

n
c,N + D̃

n
c,E

+D̃n
c,S + D̃

n
c,T + D̃

n
c,B

⎞⎠ϕ
n,l
c −⎛⎜⎜⎝ D̃

n
W,cϕ

n,l
W + D̃

n
N,cϕ

n,l
N + D̃

n
E,cϕ

n,l
E

+D̃n
S,cϕ

n,l

S + D̃
n
T ,cϕ

n,l

T + D̃
n
B,cϕ

n,l

B

⎞⎟⎟⎠
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where

ϕ
n
c � ∑

g

ϕ
n
g,c, (16B)

Jnc,s � ∑
g

Jng,c,s, (16C)

Σx � 1

ϕ
n ∑

g

Σx,gϕ
n

g , (16D)

D � 1

ϕ
n ∑

g

Dϕ
n

g , (16E)

S
n−1
c � ∑

g

S
n−1
g,c . (16F)

The discontinuity factor and diffusion coefficient correction
factor in 1G CMFD TFSP are calculated using the interface
current from MG CMFD, which varies from the MG CMFD
TFSP. Once the MG current at an interface is known, the 1G
discontinuity factor and diffusion coefficient correction factor
may be calculated, as described in the referenced article (Hao
et al., 2018). The 1G CMFD TFSP linear system may therefore be
built from the MG CMFD TFSP.

In addition, to solve theMG and 1G CMFDTFSP linear systems,
a novel, efficient parallel RSILU preconditioned GMRES (Xu et al.,
2019) solver has been developed. RSILU preconditioned GMRES
may achieve excellent parallelization efficiency without multi-color
ordering and has substantial benefits in reducing iterations and
computational cost in parallel computing to find answers to the
CMFD fixed source issue.

Exact Point Kinetics Equation
The EPKE can be obtained by integrating the 3D time-dependent
diffusion equation with the adjoint MG CMFD fluxes as the
weighting function, which is written as
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dp(t)
dt

� ρ(t) − βeff (t)
Λ(t) p(t) + 1

Λ(0) ∑k λ̃k(t)ζk(t), (17A)

and

dζk(t)
dt

� Λ(0)
Λ(t) β

eff (t)p(t) − λ̃k(t)ζk(t), k � 1, 2, ..., (17B)

where p is the core amplitude function, and ζk is the adjoint flux
weighted precursor concentration for the delayed group k. The
reactivity, delayed neutron fractions, neutron generation time,
and delayed neutron constants all have the regular definition as
follows,

ρ(t) � 1
F(t)< ϕp( r→, E)(F −M)ϕ( r→, E, t)> , (18A)

βeffk (t) � 1
F(t)< ϕp( r→, E)χd,k( r→, E)βk( r→)SF( r→, t)> , (18B)

Λ(t) � 1
F(t)< ϕ

p( r→, E) 1
vg

ϕ( r→, E, t)> , (18C)

λ̃k(t) �
< ϕp( r→, E)λk( r→)χd,k( r→, E)Ck( r→, E)>

< ϕp( r→, E)χd,k( r→, E)Ck( r→, E)> , (18D)

where the cumulative spectrum of all fission neutrons is obtained
by steady-state transport as following

χcum(E)∫∫ ]Σf( r→, E′)ψ( r→, Ω′
%→

, E′)dΩ′%→
dE′

� χp(E)∫∫[1 − β( r→, E′)]]Σf( r→, E′)ψ( r→, Ω′
%→

, E′)dΩ′%→
dE′

+∑
k
χd,k(E)∫∫ βk( r→, E′)]Σf( r→, E′, t)ψ( r→, Ω′

%→
, E′)dΩ′%→

dE′

,

(18E)

the factor F(t) is defined as

F(t) � < ϕp( r→, E)χcum(E)SF( r→, t)> , (18F)

and the total effective delayed neutron fraction is the summation
of all delayed neutron groups as follows,

βeff (t) � ∑
k

βeffk (t). (18G)

Then, Eq. 17 is solved using precisely the exact discretization
for the transient transport equation in 3D Transport Transient
Fixed Source Equation.

ITERATION STRATEGY OF THE
AML-PCQM SCHEME

The AML-PCQM is based on the standard PCQM, while the
essential idea is inspired by the TML method in MPACT. The
time step setting for all levels is illustrated in Figure 1. Through this
transient solver, the combination of three-level spatial grids and two-
level energy grids can maintain a consistent accuracy and minimize
the overall computational burden for the transient simulation.

In the AML-PCQM scheme, there are four solutions with three
coupling levels, in which a new iteration strategy is applied to capture
the neutron fluxes varies on each specific level. The overall flowchart
is given in Figure 2; the four perpendicular blocks present the
iterations strategy of the ATML algorithm. Each vertical block
presents one level of the ATML solution. The most left vertical
blocks represent the transient transport iteration scheme, in which
the predictor angular flux shape on the sub-pin level is assumed to be
accurate. Then, as shown in the second left vertical blocks, the scalar
flux on the pin mesh is obtained by solving MG CMFD steps and
correcting the transport solution’s pin-wise amplitude function.

In the same way, the energy shape function by MG CMFD on
the pin mesh is presumed accurate, and the 1G scalar flux corrects
the whole-energy-space amplitude from 1G CMFD steps. Finally,
the core-wise shape function is predicted by 1G CMFD, and the
core-wise amplitude is corrected by the finest EPKE steps in the
most right vertical blocks. The details of the coupling scheme are
introduced as follows.

FIGURE 1 | Time step illustration of the AML-PCQM scheme in HNET.
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FIGURE 2 | Flowchart of the ATML iteration scheme in HNET.

FIGURE 3 | Geometry configuration for Problem 1.
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The first coupling level is between the transport TFSP solution
and the MG CMFD TFSP solution. According to the PCQM
theory, the angular flux can be factored into an amplitude and
shape function in a coarse mesh i.

φg( r→, Ω→, t) � Pi(t)ψg( r→, Ω→, t), r ∈ i, (19)

where P is the amplitude function, which is flat in the coarse
mesh, and ψ represents the angular flux shape function on the
fine meshes.

Since the amplitude and shape function definition, an artificial
constraint for the shape function is necessary. Here the integral of
the spatial shape function in the single coarse mesh is required to
be unity as,

1
Vi

∫
r→ ∈i

∫
Ω→
ψg( r→, Ω→, t)dΩ→d r→ � 1. (20)

After integrating the Eq. 19 over angle and space in the
\coarse mesh and using the Eq. 20 as the constraint, the spatial
amplitude function in the coarse mesh happens to be identical
to the corresponding CMFD scalar flux. Thus, the angular
flux can be corrected with the MG CMFD TFSP solution as
in Eq. 21.

φCorrected
g ( r→, Ω→, t) � φPredictor

g ( r→, Ω→, t) ϕCorrector

i,g (t)
ϕ
Predictor

i,g (t)
, r ∈ i. (21)

In Eq. 21, the term φPredictor
g ( r→, Ω→, t) is the predictor angular

flux by the transport TFSP solution on the transport step Δtn, the
term ϕ

Predictor
i,g ( r→, t) is the predictor coarse-mesh scalar flux

homogenized from the transport TFSP solution, and the
termϕ

Corrector
i,g ( r→, t)is the corrector coarse-mesh scalar flux by

the MG CMFD TFSP solution. The MG CMFD level is solved
using the finer time step Δt′nwith the linearly interpolated multi-
group coefficients during Δtn.

The second coupling level is for the MGCMFD and 1G CMFD.
The multi-group coarse-mesh scalar flux is factored into an
amplitude and shape function in a certain energy interval, but
for the 1G CMFD the certain energy interval means the whole
energy space. Then the factoring equation becomes as follows,

ϕi,g(t) � P′i (t)ψ′i,g(t), (22)

where ψ′ represents the coarse-mesh flux shape in the
energy space.

The normalization condition is

∫
E

ψ′i,g(t)dE � 1. (23)

Then the energy amplitude function can be found identical to the
corresponding 1G CMFD scalar flux. Similar to Eq. 21, the multi-
group scalar flux can be corrected with the 1GCMFDTFSP solution
as in Eq. 24. The 1G CMFD level is solved using the finer time step
Δt″nwith the linearly interpolated one-group coefficients during Δt′n.

ϕ
Corrected

i,g (t) � ϕ
Predictor

i,g (t) ϕ
Corrector
i (t)

ϕ
Predictor

i (t)
(24)

The last level is the coupling of the 1G CMFD and EPKEs, and
the factorization is still necessary, as shown in Eq. 25.

ϕi(t) � p(t)ψ″i (t), (25)

where ϕ, p and ψ″represent the 1G CMFD scalar flux, the core-
wise amplitude, and the spatially dependent shape function,
respectively.

TABLE 1 | PCQM options for the cases in Problem 1.

Case ID Transport time step (ms) 1G acceleratora NMG N1G NPK

1.1 0.2 No — — —

1.2 0.2 Yes — — —

1.3 5 Yes — — 25
1.4 5 No 5 — 5
1.5 5 Yes 5 — 5
1.6 5 Yes 2 2 6
1.7 5 Yes 3 3 3

a1G Accelerator: 1G CMFD acceleration for iterations of MG CMFD solution.

FIGURE 4 | Fractional core power results for heterogeneous UO2 assembly problem. (A) Power history (B) Relative errors.
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The constraint here is obtained using the multi-group coarse-
mesh scalar flux since the EPKE is integrated from the MG
CMFD, as shown in Eq. 26.

C � < ϕp
i,g(0)

1
vg
ψi,g(0)> � < ϕp

i,g(0)
1
vg
ψi,g(t)> , (26)

where< > is the integration operator overall spatial regions
and energy groups and C is a constant as in standard PCQM.

As a result, the 1G CMFD scalar flux can be corrected by Eq.
27. And the coefficients in the EPKE are linearly interpolated
during the step Δt″n.

ϕ
Corrected

i (t) � ϕ
Predictor

i (t) pCorrectorC
< ϕp

i,g(0) 1
vg
ϕ
Predictor
i,g (t)>

(27)

NUMERICAL RESULTS

Numerical results are presented in this section. Two
heterogeneous single assembly problems are used to verify the
performance of the AML-PCQM: 1) a UO2 assembly problem

based on C5G7-TD to check the ability of 1G CMFD acceleration
for iterations and overall scheme, 2) a 51-group single assembly
problem to analyze the performance of AML-PCQM for the
control rod withdrawal event. The HNET code simulates all cases
with the 2.30 GHz Intel Xeon E5-2699 v3 CPU. The 2D/1D
hybrid scheme is performed for transient transport in which the
radial 2D calculation uses the planer MOC solver, and the axial
1D equation is solved with the NEM.

Problem 1: A UO2 Assembly Problem Based
on C5G7-TD
Problem 1 is based on a UO2 assembly from the C5G7-TD
benchmark’s TD4 exercise (Hou et al., 2017). The macro cross-
sections are shown in a 7-group structure, whereas the kinetics
parameters are presented in an 8-delayed group neutron
representation. A ray spacing of 0.05 cm with 48 azimuthal
angles and a Tabuchi-Yamamoto polar quadrature
(Yamamoto et al., 2007) using 3 polar angles per half-space
are utilized for the planer MOC ray-tracing module. All active
pin cells are divided into 32 flat source regions consisting of 3
fuel rings and 1 moderator rings with 8 azimuthal divisions,
and the reflector cells use the 6 × 6 type grid. For the 3D
configuration, the 2D geometry mesh is extruded with eight
10-cm-thick layers, eight 5-cm-thick layers, and two 20-cm-
thick axial layers for both the top and bottom reflector regions.
The vacuum boundary condition is applied to the core’s axial
boundaries, while the radial boundaries are all reflective. The
configuration is provided in Figure 3.

Six cases of Problem 1 are simulated for the preliminary
verification of the AML-PCQM scheme. The transient event in
Problem 1 is a prompt withdrawal of 24 control rods at the
beginning of the 0.12 s transient. The assembly is partly rodded
for the initial condition, where the control rods stay at 20 cm of
insertion. Cases 1.1 and 1.2 are with the pure transient transport
scheme with the time step of 0.2 ms. All other cases are with a
5 ms time step for the transient transport level. The case 1.3 is
provided as the original PCQM case with transport and EPK
method. Cases 1.4 and 1.5 use the TML method with a
recommended ratio for each PCQM level in MPACT (Zhu
et al., 2016). Cases 1.6 and 1.7 present the AML-PCQM
scheme with four levels of different time steps, where the 5 ms
transport time step and the 0.2 ms EPKE time step are identical to

TABLE 2 | Results of accuracy and efficiency for the cases in Problem 1.

Case ID RMSE Solvers’ run time (s) Iterations

Total MOC MGa 1Gb EPK MOC MGa 1Gb

1.1 — 535.339 443.088 92.251 — — 1,293 66,586 —

1.2 0.0071% 464.442 440.256 7.511 16.675 — 1,293 5,425 55,516
1.3 19.2815% 111.898 99.789 3.175 8.934 0.795 279 1976 26,309
1.4 0.2638% 218.284 86.521 131.772 — 0.715 275 90,726 —

1.5 0.2616% 77.145 61.181 3.656 12.317 0.718 198 2,811 41,746
1.6 0.1630% 81.462 61.439 3.196 16.827 0.730 199 2,242 53,539
1.7 0.2579% 83.746 61.500 3.491 18.755 0.868 199 2,412 58,745

aMG: MG CMFD.
b1G: 1G CMFD.

FIGURE 5 | Reactivity history for heterogeneous UO2 assembly
problem.
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other mentioned cases, but the time step for MG CMFD and 1G
CMFD are different.

Cases 1.1 and 1.4 aim to reference the pure transient transport
and the TML scheme from MPACT. Then, the case 1.2 and 1.5

are intended to present the 1G CMFD acceleration for the MG
CMFD iterations in case 1.1 and 1.4. Further, the case 1.6 and 1.7
are run to show the preliminary performance of the AML-PCQM
scheme. Table 1 provides the details of these cases, where the

FIGURE 7 | The TML cases’s results in Problem 2. (A) Power history (B) Relative errors.

FIGURE 6 | Geometry configuration for Problem 2.
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“NMG”, “N1G”, and “NPK” represent the number of MG CMFD
steps per transport step, the number of 1G CMFD steps per MG
CMFD step, and the number of EPKE steps per MG or 1G CMFD
step, respectively.

The fractional core power history is shown in Figure 4 in
terms of accuracy. The relative errors of the fractional core power
in cases 1.2 to 1.7 are also provided in Figure 4, where case 1.1

results are performed as the reference. Also, the reactivity history
is presented in Figure 5. Finally, the Root Mean Squared Error
(RMSE) of the fractional core power history, the solver run time,
and the iteration numbers for each case are summarized in
Table 2, where the index “MG” and “1G” represent MG
CMFD and 1G CMFD respectively.

For the accuracy of the fractional core power, the relative
errors are all less than 0.2%, except the standard PCQM case
1.3. The reason is that the reactivity insertion caused by the
prompt rod withdrawal does not change as a ramping line
during the first several steps, which makes the linear
interpolation of the EPK parameters lead to higher relative
errors. However, the multilevel quasi-static cases present
better reactivity results because the middle-level CMFD
solvers capture the flux change in the pin meshes during
the middle time steps.

As indicated, reference case 1.1 requires a considerable
computational time of 535 s for all solvers, which is about
6 times larger than other PCQM cases because of the large
number of time steps for pure transport. On the other hand,
in case 1.2, the MG CMFD solver’s iterations and run time
effectively decrease due to the 1G CMFD acceleration for the
MG CMFD solution, which has been discussed in the referenced
paper (Kang et al., 2020). First, the standard PCQM results are
presented as case 1.3 for the comparison to the multilevel quasi-
static cases. Then, cases 1.4 and 1.5 are compared to check the

FIGURE 9 | The AML-PCQM cases’ results in Problem 2. (A) Power history (B) Relative errors.

TABLE 3 | Results of accuracy and efficiency for the TML cases in Problem 2.

Case ID Time step RMSE PCQM solver run time (s)

Transport MGa EPK Total Transport MGa EPK

2.1 0.2 ms — — — 4487.887 4487.887 — —

2.2 5 ms 1 ms 0.2 ms 0.5331% 549.704 466.896 81.926 0.882
2.3 10 ms 1 ms 0.2 ms 0.5506% 428.602 345.682 82.137 0.783
2.4 15 ms 1 ms 0.2 ms 0.5550% 378.676 296.555 81.578 0.543
2.5 20 ms 1 ms 0.2 ms 0.5526% 351.563 268.162 82.957 0.444
2.6 30 ms 1 ms 0.2 ms 0.5478% 343.264 260.615 82.313 0.336

aMG: MG CMFD.

FIGURE 8 | Comparison of total solver run time for different TML cases.
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ability of the 1G CMFD iteration accelerator for the TML scheme,
where the CMFD solvers’ rum time and the total solvers’ time are
reduced by about 87.9 and 64.7%, respectively. Finally, in the case
1.6 and 1.7, several 1G CMFD steps replace specific MG CMFD
steps, which both achieve a partial reduction of the MG CMFD’s
expense.

The multilevel quasi-static cases show the reasonably good
performance of the reference case, which indicates that the
TML and AML-PCQM applied in HNET perform superiorly in
capturing the amplitude and shape functions’ evolution.
Although the AML-PCQM has shown its advantage in
decreasing the MG CMFD run time, it is notable that the
total solver run time seems to be affected reversely between the
TML cases and AML-PCQM cases. The main reason is that the
energy group number of C5G7 cross-sections is not many
enough for the 1G CMFD level to access an obvious advantage
on efficiency. For the same reason, the MG CMFD solver’s run
time becomes less than expected, making the comparison
inconspicuous. Therefore, a 51-group single assembly
control rod withdrawal problem is presented and discussed
in the next sub-section.

Problem 2: A Single Assembly ProblemWith
51-Group Cross-Sections
Problem 2 is present here to further analyze the accuracy and
efficiency performance of the AML-PCQM. Problem 2 is a
typical 17 × 17 type fuel assembly problem. The C5G7-TD
benchmark is used to design the pin cell architecture
(Boyarinov et al., 2016). The macro cross-sections are given
in a 51-group structure, and the kinetics parameters are also
provided in an 8 delayed group neutron representation (Kim,
2016). The MOC ray spacing is fixed to 0.05 cm, and 64
azimuthal angles and a Tabuchi-Yamamoto polar
quadrature (Yamamoto et al., 2007) with 2 polar angles per
half-space are used. The active pin cells are divided into 40 flat
source regions consisting of 3 fuel rings, 1 clad ring, and 1
moderator ring with 8 azimuthal divisions, and the axial
reflector cells also use the 6 × 6 type grid. The axial
configuration includes 24 fuel layers of 5 cm thickness and
2 axial reflector layers of 10 cm thickness both at the top and
bottom of the reflector areas, as shown in Figure 6. The
boundary condition of Problem 2 is the same as Problem 1.
The transient event in Problem 2 is a prompt withdrawal of the
central control rod at the beginning of the 0.12 s transient. The

assembly is partly rodded for the initial condition, where the
central control rod stays at 55 cm of insertion.

Before further verification for the AML-PCQM, one must
explain how the multilevel PCQM scheme works. In the
standard PCQM, the flux distribution is separated into an
amplitude and shape function, solved by transient transport
and EPK, respectively. Then, the EPK replaces the transport
and captures the amplitude varies on the fine time step, while
the transient transport is moved to a coarse time step for the
slower changes of the shape function. Therefore, the overall
transient simulation has a much lower computational
expense with reasonable accuracy. The first coarse time
step in the TML technique becomes the medium time
step, on which the transient transport is replaced again by
MG CMFD. As a result, the transport time step grows
coarser. As a result, the overall computational burden
decreases again.

Although the MPACT team has implemented the 1G
CMFD into the TML system referred to as TML-4 (Shen
et al., 2021), the 1G CMFD was only used to remit the
computing expense the MG CMFD level. As a result, the
transient transport time step in TML-4 was unchanged,
which means the largest computational burden is still not

FIGURE 10 | Acceleration performance of AML-PCQM cases on CMFD
run time.

TABLE 4 | Results of accuracy and efficiency for the AML-PCQM cases in Problem 2

Case ID Time step RMSE (%) PCQM solver run time (s)

Transport MGa 1Gb EPK Total Transport MGa 1Gb EPK

2.5 20 ms 1 ms — 0.2 ms 0.5526 351.563 268.162 82.957 — 0.444
2.7 20 ms 2 ms 1 ms 0.2 ms 0.5661 310.251 265.881 43.937 5.593 0.433
2.8 20 ms 4 ms 1 ms 0.2 ms 0.5935 290.232 264.267 25.571 5.764 0.394
2.9 20 ms 5 ms 1 ms 0.2 ms 0.6079 294.298 269.628 24.286 5.669 0.384
2.10 20 ms 10 ms 1 ms 0.2 ms 0.6728 293.710 272.810 20.534 5.523 0.366

aMG: MG CMFD.
b1G: 1G CMFD.
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improved. However, it is completely reasonable and possible to
extend the transport time step once again through 1G CMFD
level between MG CMFD and EPK, which is exactly the
primitive purpose of the AML-PCQM.

Cases 2.1 to 2.6 are presented to observe the influence of
the transport step in TML cases. The fractional core power
history and relative errors are shown in Figure 7. In Table 3,
the transport time step grows coarser through cases 2.2–2.6,
where the MG CMFD step and the EPK step stay unaltered to
capture the flux varies. Case 2.1 with a transport step of
0.2 ms is used as the reference case for accuracy. The RMSE of
the fractional core power history indicates that the TML
scheme in the HNET code does maintain an excellent
agreement of about 0.55% to the reference case. The
transient transport also requests less execution time when
the time step was growing coarser, and the over
computational burden is reduced, as it represents in
Figure 8. Unfortunately, though, the MG CMFD solution
demands a larger ratio of the transport run time, even nearly
35%, although the MG CMFD level maintains the original
expense on solutions.

In this circumstance, the 1G CMFD level can be applied to
reduce the MG CMFD run time like the cases 1.5 and 1.6 in
Problem 1. Figure 9 provides the fractional core power
history and the relative errors for the AML-PCQM case
2.7 to 2.10. Table 4 and Figure 10 show that the 1G
CMFD substitutes the original 1 ms time step for the MG
CMFD. As a result, the RMSE of the fractional core power
history slightly increases to about 0.6%, but it is still an
excellent agreement to the reference case. This is because
the total burden of CMFD solvers keeps decreasing when the
MG CMFD time is step getting large, and the tendency to be
limited appears after the MG CMFD time step is larger than
5 ms. Even so, approximately 70% of the CMFD solver’s run
time can be depressed again because of the AML-PCQM
scheme.

The results here indicate that the 1G CMFD level makes an
essential contribution to the intermediate time step in
capturing variations in the whole-energy-space amplitude
magnitude in front of EPKE. Also, the 1G CMFD level is
more computationally efficient in predicting changes in the
pin-wise amplitude function on the whole energy space.
Therefore, it can be practical to minimize the MG CMFD
solver’s computational expense, as shown in Table 5, and presents
a considerable potential to handle the circumstances with the larger
geometry modeling.

CONCLUSION

A newmultilevel predictor-corrector quasi-static method for pin-
resolved neutron kinetics simulation named AML-PCQM is
proposed to implement a scheme in the HNET code.

The transient formulation for the multi-group neutron
transport equation is given first, followed by two gCMFD
TFSP solutions and a summary of the EPKE scheme.
Following that, the AML-PCQM algorithm is presented, in
which the PCQM iteration technique is used to couple the
transport/MG CMFD level, the MG CMFD/1G CMFD level,
and the 1G CMFD/EPKE level. In each level, the initial TFSP is
solved using a coarse time step in the predictor process, and the
flux distribution is factorized to the amplitude and shape
functions in the subsequent corrector process, where the
predicted solution is rectified using numerous fine time steps.
For example, in the transport/MGCMFD level coupling, the spatial
shape functions of the angular sub-pin flux are assumed to change
slowly over time, and the MG CMFD pin-wise amplitude function
is calculated using a multi-stepMGCMFD transient equation. The
MG CMFD scalar flux calculated in its time step is then corrected
by the 1G CMFD scalar flux in the second level. For the last level,
the predictor 1G CMFD scalar flux is then corrected by a core-wise
amplitude magnitude generated by the EPKE. Finally, two prompt
rod withdrawal problems are chosen for the primary verification of
the accuracy and efficiency performance of the AML-PCQM
solution and to compare different quasi-static modes. The
numerical results indicate that the speedup results of AML-
PCQM cases reach over 15, and the errors remain less than
0.6% with the reference case of a pure transient transport
solution. Further, the AML-PCQM scheme performs
remarkable overall efficiency advantages compared to the TML
method and shows a considerable potential to handle the larger
geometry modeling circumstances.

In general, the preliminary numerical results for the prompt
rod withdrawal problems show that the AML-PCQM scheme
in HNET has successfully utilized several TFSP solvers in a
multilevel quasi-static calculation framework, the good
agreement of the fractional core power and reactivity to the
reference cases has been achieved, and the balance between the
accuracy and efficiency can be adjusted through different
quasi-static mode or time step set. More verifications are
required in the future, particularly for simulations with
non-smooth reactivity insertion or explicitly modeled rod
movement. Another ongoing research emphasis is the
development of the thermal-hydraulic feedback module.

TABLE 5 | Overall acceleration performance for the AML-PCQM scheme in Problem 2

case ID Time step RMSE Total solver time (s) Speedup

Transport MGa 1Gb EPK

2.1 0.2 ms — — — — 4487.887 —

2.2 5 ms 1 ms — 0.2 ms 0.5331% 549.704 8.16
2.8 20 ms 4 ms 1 ms 0.2 ms 0.5935% 290.232 15.46

aMG: MG CMFD level.
b1G: 1G CMFD level.
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