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Power transformer is an essential component for the stable and reliable operation of
electrical power grid. The traditional transformer fault diagnostic methods based on
dissolved gas analysis are limited due to the low accuracy of fault identification. In this
study, an effective transformer fault diagnosis system is proposed to improve identification
accuracy. The proposed approach combines an improved genetic algorithm (IGA) with the
XGBoost to form a hybrid diagnosis network. The combination of the improved genetic
algorithm and the XGBoost (IGA-XGBoost) forms the basic unit of the proposed method,
which decomposes and reconstructs the transformer fault recognition problem into
several minor problems IGA-XGBoosts can solve. The results of simulation
experiments show that the IGA performs excellently in the combined optimization of
input feature selection and the XGBoost parameter, and the proposed method can
accurately identify the transformer fault types with an average accuracy of 99.2%.
Compared to IEC ratios, dual triangle, support vector machine and common vector
approach the diagnostic accuracy of the proposed method is improved by 30.2, 47.2,
11.2, and 3.6%, respectively. The proposed method can be a potential solution to identify
the transformer fault types.
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1 INTRODUCTION

Power transformers are one of the most expensive, complex, and momentous equipment in electrical
power systems. The faults of any power transformer online could cause considerable damage to the
power system and lead to the interruption of the power supply. Therefore, the early detection of faults
in transformers is vital to improving the reliability of the power system. Suffered the electrical and
thermal stress during the operation, the transformer oil and organic insulating inside the transformer
will be decomposed and generate different gases. Commonly, these dissolved gases include hydrogen
(H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6) and can provide abundant
information about the internal states of the transformer. Based on the gas chromatography methods,
the composition of the dissolved gases can be qualitatively and quantitatively measured and then
used for the identification of the latent fault. There are three main kinds of chromatographic analysis
method (Cheng and Yu, 2018) of dissolved gases namely the characteristic gas method (Fu et al.,
2012), the gas production rate method (Nogami et al., 1995; Xi Chen et al., 2010; Zeng et al., 2011),
and the three-ratio method (Jiang et al., 2014; Dhote and Helonde, 2012; Liu et al., 2020). The above
methods generally utilize the concentration of a specific gaseous molecule or the ratios of several
different molecules indicate the state of a power transformer (Shang et al., 2019). In addition, several
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improved methods have been proposed and applied for
transformer fault diagnosis, including the Roger method
(Ghoneim et al., 2016), the basic triangular diagram (Singh
and Bandyopadhyay, 2010), the dual triangle method (Shang
et al., 2019), etc. However, these methods have their inherent
shortcomings. For example, most of these traditional
diagnosis methods only make a limited contribution to a
transformer’s fault diagnosis due to low diagnostic accuracy
(Yadaiah and Ravi, 2011). Meanwhile, the three-ratio and
improved three-ratio methods have disadvantages of
incomplete coding and excessively absolute coding boundary
(Cheng and Yu, 2018). Therefore, due to these defects of
traditional methods, it is necessary to investigate new
transformer fault diagnosis methods.

With the rapid development of computer science and
artificial intelligence algorithms, many models are
conducted by combining intelligence techniques with DGA
methods to accurately detect fault types. The utilization of
artificial neural network (ANN) (Colorado et al., 2011; Bhalla
et al., 2012; Yi et al., 2016; Meng et al., 2010; Castro and
Miranda, 2005; Miranda and Castro, 2005; Souahlia et al.,
2012), expert system (Lin et al., 1993; Wang et al., 2000; Saha
and Purkait, 2004; Mani and Jerome, 2014; Li et al., 2009),
fuzzy theory (Huang et al., 1997; Mofizul Islam et al., 2000;
Zhou et al., 1997; Fan et al., 2017; Naresh et al., 2008), grey
system (Dong et al., 2003; Cheng et al., 2018), support vector
machine (SVM) (Fei and Zhang, 2009; Fei et al., 2009; Liu et al.,
2016; Niu Wu et al., 2010; Yin et al., 2011) and other theories
have significantly improved the accuracy of fault
identification. However, deficiencies occur together with
these intelligent diagnostic approaches. Based on the ANN
method, the intelligent fault diagnostic method is susceptible
to be overfitting and may get a local optimum (Yuan et al.,
2019). As for the expert system, the accuracy of this diagnostic
method depends on the completeness of the expert knowledge,
and this method cannot learn from new data samples
automatically (Weigen Chen et al., 2009). In addition, fuzzy
theory depends exceedingly on the experience of the researcher
and is difficult to acquire an appropriate relationship between
the input and output variables (Žarković and Stojković, 2017).
SVM is originally a binary classification algorithm which
makes it difficult to determine the parameters for multi-
classification problem (Zhu et al., 2018). A single intelligent
approach for transformer fault diagnosis has various
shortcomings and can not reflect all the operation status of
the transformer. Various intelligent algorithms can be
combined to form a hybrid network for mutual
complementation to solve complex problems, which has
been applied in electricity. Researchers in (Xi et al., 2020)
proposed a deep-reinforcement-learning-based three-network
double-delay actor-critic (TDAC) control strategy for the
automatic generation control (AGC) to deal with the strong
random disturbance issues caused by renewable energy.
Researchers in (Zhang et al., 2020) proposed a predictive
control (MPC) based model combined with real-time
optimal mileage based dispatch (OMD) for generating
company responding to AGC dispatch signals in real-time.

The above hybrid networks perform excellently in dealing with
complex problems. As for the transformer fault diagnosis, a
diagnostic method can be conducted with a hybrid network
that combines different algorithms.

To achieve the objective of improving the accuracy of
transformer fault diagnosis, a machine learning algorithm
named XGBoost was employed as the classifier for the
transformer fault identification in this paper, which is a
scalable end-to-end tree boosting system (Chen and Guestrin,
2016). An improved genetic algorithm (IGA) is used for input
feature selection and the XGBoost’s optimization. Then an
intelligent diagnostic method based on the combination of the
IGA and the XGBoost classifier (IGA-XGBoost) is built. The
remainder of this paper is organized as follows. Section 2 presents
the details of the proposed method, and section 3 shows the
experimental results and performance analysis. Section 4 is the
conclusion of this paper.

2 PROPOSED METHODS

In this section, the proposed method for power transformer faults
detection and recognition is explained in detail. Different
methods based on the artificial intelligence algorithms and
DGA methods have been proposed to classify transformer
faults, and the most significant issue which impacts the
accuracy of fault classification is the appropriate selection of
input features and classifiers (Tightiz et al., 2020). Consideration
has been given to these two aspects in the proposed method.

2.1 Candidate Input Features
Intelligent transformer faults diagnosis methods proposed by
other researchers commonly combine DGA methods with
artificial intelligence algorithms in the last decades. The gas
ratios or gas concentrations used in DGA methods are
adopted as the inputs of these intelligent fault diagnosis
methods. Nonetheless, not all the gas ratios or gas
concentrations have the same significance for fault
identification. Using uninformative features as inputs leads
to artificial noise and poor performance in transformer faults
diagnosis. Hence, effective features should be selected as the
input, and uninformative features must be removed. In this
study, following the traditional DGA methods, the
concentrations of the dissolved gases or the ratios of
several different gases are collected as candidate feature set
for the input feature selection, as shown in Table 1. In Table 1,
TH � CH4 + C2H4 + C2H2 and TH1 � CH4 + C2H4 +
C2H2 + C2H6.

TABLE 1 | The candidate feature set for intelligent fault diagnosis methods. Gas
concentrations (ppm) and ratio of gas concentrations in the table.

Feature set

H2 CH4 C2H6 C2H4 C2H2 CH4/H2

C2H4/C2H6 C2H2/C2H4 C2H2/C2H6 TH CH4/TH C2H4/TH
C2H2/TH TH1 CH4/TH1 C2H6/TH1 C2H4/TH1 C2H2/TH1
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2.2 Genetic Algorithm
2.2.1 Tradtional Genetic Algorithm and Improved
Genetic Algorithm
It is common practice to separate the process of input feature
selection from the classifier optimization process, which neglects
interaction between the feature selection and the classifier
optimization may lead to unreliable results (Daelemans et al.,
2003). Combined optimization of the feature selection and the
classifier’ parameters can be achieved by genetic algorithm within
a single approach. Since the traditional genetic algorithm (TGA) is
prone to get trapped in the local optimal and fails to find the optimal
global solution. In this paper, some improvements have beenmade to
the TGA to enhance its global search capability, and an IGA is
obtained. The IGA is utilized to combine the feature selection process
with the classifier optimization process and assess which combination
of input features and classifier’s parameters substantially impact the
accuracy of fault diagnosis to gain the optimal input features and the
classifier’s parameters. The difference between the TGA and the IGA
is shown in Figure 1. Figure 1A shows the structure of the TGA, and
Figure 1B shows the structure of the IGA. From 1A, it can be found

that the main processes of the TGA include the population selection
process and the population reproduction process. Twomodifications
make the IGAdiffer from the TGA: the highmutation rate of 0.3, and
the other is the addition of elitist selection in the population selection
process.

In the population selection process of the TGA, the generation
of candidate solutions after initialization is called the population.
Each individual of the generated population has its chromosome
coding to represent the parameters of the classifier and the input
features extracted from DGA data, as shown in Figure 2. Each
chromosome coding contains n bit strings, of which L1 to Ln-1
represent the classifier’s parameters, and the Ln bit string is used
for the input feature selection. For feature selection, the bit with
the value “1” in the Ln bit string represents the corresponding
DGA feature is selected, and “0” means no selection. For the
parameters setting of the classifier, the bit strings of parameters
would be converted from the binary value to decimal value with a
specific range by Eq. 1.

p � minp + maxp −minp
2l − 1

× d (1)

Here p represents chromosome coding of parameter, minp
represents minimum value of the parameter, maxp represents
maximum value of the parameter, d represents decimal value of
bit string, and l represents length of bit string.

The individuals of the population will then be selected for
propagation by weighing their fitness values. The fitness values
measure the population’s performance. The fitness function
described in Eq. 2 uses the average accuracy of cross-
validation for evaluation, and the higher the fitness value
represents a better individual.

FIGURE 1 | The structures of the TGA and the IGA, (A) is TGA’s structure, (B) is IGA’s structure. The IGA differs from GA with two modifications: the high mutation
rate of 0.3, and the other is the addition of elitist selection in the population selection process.

FIGURE 2 | Structure of chromosome coding. Chromosome coding
contains n bit strings, of which L1 to Ln-1 represent the classifier’s
parameters, and the Ln bit string represents the DGA data used for the input
feature.
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fitness � 1
k
∑
k

i�1
accuracy(i) (2)

Here, k is the fold number of the cross-validation.
The probability of each individual of the population being

selected is calculated in Eq. 3 by the roulette wheel selection
method.

probability(i) � fitness(i)
∑n

i�1 fitness(i)
(3)

Here, n is the total number of individuals in each generation.
Then in the population reproduction process, crossover and

mutation are employed to generate a new generation by the
selected individuals of the population with a randommechanism.
Crossover exchanges chromosome’s segments between two
selected individuals stochastically, and the bit value in the
chromosome will be converted from “0” to “1” or vice versa
occasionally in the mutation process. New individuals are formed
through crossover and mutation, which are different from the
original. A new generation is created in this way. Population
reproduction and selection processes can be repeated under the
“survival of the fittest” to achieve an optimal result.

In the roulette wheel selection method, the greater the
individual’s fitness is, the higher the possibility of such an
individual would survive, but the optimal individual of each
iteration still has a certain probability of being eliminated.
Also, the process of crossover and mutation may lead to the
disappearance of the optimal individual. Compared with TGA,
the optimal individual of each iteration is added directly into the
new generation in the IGA to avoid the disappearance of each
iteration’s optimal individual as shown in Figure 1B, which is
called elitist selection. Besides, the mutation rate is set at 0.3
instead of the conventional low value to make the IGA jump out
of the local optimum. These two modifications can effectively
improve the global search capability of the IGA and the accuracy
of transformer fault identification, as will be discussed in the
Simulation Result.

2.2.2 Performance Measures
The main objective of the IGA is to enhance search capability for
the optimization problem and gain better solutions. To analyze
the enhancement of search capability, the following performance
measures are defined (Sugihara, 1997).

1) Average fitness value f(k): the average of the value obtained
within k generations in n runs.

f(k) � ∑fb(k)
n

(4)

Here, fb(k) is the best fitness values obtained within k generations;
n is the number of independent runs.

2) Likelihood of evolution leap Lel(k): the probability of average
leaps within k generations among n independent runs. When
a solution of one generation is better than the best solution
obtained before the generation, the generation is said to be
a leap.

Lel(k) � l

n
(5)

Here, l is the average number of leaps within k generations; n is
the number of independent runs.

3) Likelihood of optimality Lopt(k): the probability of obtaining
optimal solutions within k generation in n independent runs.

FIGURE 3 | Structure of the IGA-XGBoost. The IGA is used for the
combined optimization of the input features and the XGBoost parameters,
and the trained XGBoost is used to identify the fault types.

FIGURE 4 | Structure of the transformer fault diagnosis system based on
the IGA-XGBoost. Transformer states are classified into six categories, and
four IGA-XGBoost classifiers are used to diagnose the fault type step by step
in the transformer fault diagnosis system.
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Lopt(k) � m

n
(6)

Here, m is the number of runs which produced an optimal
solution within k generations; n is the number of
independent runs.

2.3 Transformer Fault Diagnosis System
The XGBoost is a scalable tree boosting system that has been
successfully applied in world-class machine learning and data
mining competition because it is robust enough to avoid
overfitting (Zhang and Zhan, 2017). In addition, the
XGBoost algorithm can take advantage of the original data
directly without normalization. Thus, the XGBoost is utilized
as the classifier of the transformer fault diagnosis system in
this study. The DGA data is not fed directly into the classifier
in the proposed method. Since 18 features are collected from
DGA methods, as shown in Table 1, the application of
complete input data is too time-consuming and could
lower the accuracy of faults classification due to the
artificial noise. Figure 3 shows the structure of the IGA-
XGBoost. The IGA selects the input features fed to the
XGBoost to decrease the input volume from 18 to a
smaller number in the IGA-XGBoost. In addition, at the
same time as input feature selection, the parameters of the
XGBoost are decided by the IGA. The parameters of the
XGBoost being decided by the IGA include eta,
max_depth, min_child_weight, n_estimators, and
n_gamma. The transformer fault diagnosis system
described in Figure 4 is developed based on the IGA-
XGBoost. Transformer states are classified into six
categories, which contain normal (N), partial discharge
(PD), high-energy discharge (D1), low-energy discharge
(D2), low and middle-temperature overheat (T1&T2), and
high-temperature overheating (T3). The fault recognition
problem is decomposed and reconstructed into several
more minor problems that can be solved one by one. Four
IGA-XGBoost classifiers are used to detect and identify
transformer faults. The IGA-XGBoost1 is trained to
separate the normal samples from the fault samples. The
selected fault samples by the IGA-XGBoost1 are fed to the
trained IGA-XGBoost2 and classified as PD, D, and T. Then,
the IGA-XGBoost3 and the IGA-XGBoost4 are used to
identify the D1, D2, T1&2, and T3.

3 SIMULATION RESULT

The DGA data set employed in this study is originated from Ref
(Kirkbas et al., 2020). The data is divided into the training data set
(125 samples) and the test data set (25 samples). These samples
correspond to six states of the transformer. For each fault state,
the number of samples used for the training and test process is
shown in Table 2.

3.1 Performance of the Proposed Method
The proposed method is used for transformer fault diagnosis and
compared with another transformer fault diagnosis system based
on the TGA and the XGBoost, which has the same structure as the
proposed method shown in Figure 4. The only difference
between these two methods is that one uses the TGA while
the other uses the IGA. To ensure the validity of the selected
features and classifier parameters by IGA in the training process,
the average accuracy of 8-fold cross-validation is taken as the
fitness value. Therefore, the fitness curve is the average accuracy
curve of cross-validation. The maximum generation number was
200. The initial population scale was set at 200, and the fitness of
each iteration’s best individual was collected to form the best
fitness curve shown in Figure 5. Figure 5 portrays the operation
of the proposed method in five different independent
implementations. Figure 6 compares the proposed method
and the transformer fault diagnosis system based on the TGA
and the XGBoost for the global best fitness value in the training
process.

It can be seen from Figure 5 that the proposed method can
achieve the same fitness value for the normal or fault (N-F)
identification in different independent experiments using the
IGA-XGBoost1. The global best fitness value can reach
99.22%. When detecting PD, D, or T fault (PD-D-T), the
IGA-XGBoost2 also can gain the same high global fitness
value of 99.04%. Besides, the proposed method can even 100%
distinguish D1 and D2 faults (D1-D2) using the IGA-XGBoost3.
Although the global fitness value was not as high as that of other
faults identification when detecting T1&2 or T3 fault (T1&2-T3),
most of them reached 97.92%, with only one fitness value
reaching 95.83%. Compared with the method based on the
traditional GA and the XGBoost, as can be seen from
Figure 6A, the global fitness value of the method based on the
traditional GA and the XGBoost varies with independent
implementations, and its global best fitness value is also
significantly lower than that of the proposed method (see
Figure 6B). For N-F identification, the global best fitness value
of the method based on the TGA ranged from 92.8 to 98.4%. As
for T1&2-T3 identification, the global best fitness value of the
method based on the TGA ranged from 86.5 to 98.1%. It can be
seen from the above results that the IGA can achieve better
solutions.

Performance measures such as average fitness value, likelihood of
evolution leap, and likelihood of optimality have been taken into
consideration to measure the enhancement of the IGA in the
optimization problem. Table 3 shows the average fitness value in
the 100th and 200th generations for both the TGA and the IGA.
Table 4 shows the likelihood of evolution leap in the 100th and

TABLE 2 | Numbers of DGA data used in the training and test process.

Transformer states Number
of training samples

Number
of test samples

NF 21 5
PD 16 3
D1 18 4
D2 23 6
T1&T2 23 3
T3 24 4
Total data sets 125 25
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FIGURE 5 | Performance of the transformer fault diagnosis system in training process, (A) is the best fitness curves of the IGA-XGBoost1 for N-F identification, (B) is
the best fitness curves of the IGA-XGBoost2 for PD-D-T identification, (C) is the best fitness curves of the IGA-XGBoost3 for D1-D2 identification, (D) is the best fitness
curves of the IGA-XGBoost4 for T1&2-T3 identification.
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200th generations for both the TGA and the IGA.Table 5 shows the
likelihood of optimality in the 100th and 200th generations for both
TGA and the IGA. As can be seen from Table 3, compared with
TGA, the average fitness values of IGA after 200 generations have

increased 2.4, 1.7, 6.6%when detecting N-F, PD-D-T, and T1&2-T3,
respectively. Besides, the average fitness values of IGA after 100
generations are higher than that of TGA after 200 generations, which
proves that IGA has better search capability than the TGA. Table 4

FIGURE 6 | The comparison of the global best fitness value amongmethods, (A) is the global best fitness value of the TGA, (B) is the global best fitness value of the
IGA. The higher the global fitness value represents a better solution.

TABLE 3 | Average fitness value f(k).

Fault type Traditional GA mutation rate = 0.01 Improved GA

After 100 generations After 100 generations After 100 generations After 100 generations

N-F 0.968 0.968 0.992 0.992
PD-D-T 0.973 0.973 0.987 0.99
D1-D2 1 1 1 1
T1&2-T3 0.908 0.908 0.967 0.974

TABLE 4 | Likelihood of evolution leap Lel(k).

Fault type Traditional GA mutation rate = 0.01 Improved GA

After 100 generations After 100 generations After 100 generations After 100 generations

N-F 0.44 0.48 0.72 0.72
PD-D-T 0.64 0.64 0.88 1
D1-D2 0.2 0.2 0.2 0.2
T1&2-T3 0.48 0.48 1.12 1.2

TABLE 5 | Likelihood of optimality Lopt(k).

Fault type Traditional GA mutation rate = 0.01 Improved GA

After 100 generations After 100 generations After 100 generations After 100 generations

N-F 0.2 0.2 1 1
PD-D-T 0 0 0.6 1
D1-D2 1 1 1 1
T1&2-T3 0 0 0.4 0.8
Average 0.25 0.3 0.75 0.95
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shows the average number of evolution leaps of the IGA is higher
than the TGA, which indicates that the IGA has a continuous
change in solution from one generation to the next. Table 5
shows the probability of obtaining the optimal solution, the
average likelihood of optimality of the IGA is 95%, compared
to 30% of the TGA, which guarantees a feasible solution. The
above results show that the IGA can get the optimal solution
stably and reliably. For the test, Table 6 shows the recognition
accuracy of different methods for the test samples. The results
in Table 6 show that the proposed method has the best
performance in transformer fault diagnosis with an average
identification accuracy of 99.2%, compared to 94.4% of the
method based on the TGA and XGBoost. Combined with the
results of the test samples and the above results, it is shown
that the proposed method can effectively and reliably identify
transformer faults.

3.2 Comparison With Other Methods
In Table 7, the performance of the proposed method is also
compared with other methods. The compared methods include
DGA methods and intelligent transformer fault diagnosis methods,
including IEC ratios, dual triangle, support vector machine, and
common vector approach. The common vector approach has been
recently introduced for the transformer fault diagnosis, and the
support vector machine is a commonly used algorithm for
transformer fault diagnosis. The result shows that the accuracy of
DGA methods is relatively low, such as IEC ratios with an accuracy
of 60% and the dual triangle method with an accuracy of 52%. In
contrast to the DGAmethods, intelligent transformer fault diagnosis
methods based on intelligence algorithms and DGA methods have
remarkable performance. The accuracy of the transformer fault
identified by the proposed method is the highest, reaching 99.2%.
Compared to 88% for support vector machines and 96% for CVA,
the diagnostic accuracy of the proposed method was improved by
11.2 and 3.6%, respectively. The result proves that the proposed
method can effectively improve the accuracy of transformer fault
identification.

4 CONCLUSION

A novel and effective transformer fault diagnosis system based on
the IGA-XGBoost is conducted to diagnose transformer fault
types and verified in this paper. The modifications improve the
global search capability of the IGA, and the IGA can get the
optimal combined solution of input feature selection and the
XGBoost classifier optimization reliably and stably. Based on the
IGA, the IGA-XGBoost can accurately deal with different
recognition problems, including N-F, PD-D-T, D1-D2, and
T1&2-T3. Due to the excellent performance of the IGA-
XGBoost, the average accuracy of the proposed transformer
fault diagnosis system has been improved to 99.2%. Compared
to IEC ratios, Dual triangle, SVM, and CVA, the simulation
results demonstrate that the proposed method can be a reliable
solution for transformer fault diagnosis.
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TABLE 6 | Accuracy of different methods for the test samples.

Accuracy — — Accuracy

Traditional GA mutation rate � 0.01 Run 1 24/25 Improved GA Run 1 25/25
Run 2 24/25 Run 2 25/25
Run 3 24/25 Run 3 24/25
Run 4 23/25 Run 4 25/25
Run 5 23/25 Run 5 25/25

Average Accuracy 94.4% — — 99.2%

TABLE 7 | Result comparison with other methods.

Method IEC ratios
(%)

Dual triangle
(%)

SVM (%) CVA (%) Proposed method
(%)

Accuracy 60 52 88 96 99.2

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7457448

Wu et al. Power Transformer Fault Diagnosis

https://doi.org/10.1016/j.epsr.2020.106346
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


REFERENCES

Bhalla, D., Bansal, R. K., and Gupta, H. O. (2012). Function Analysis Based Rule
Extraction from Artificial Neural Networks for Transformer Incipient Fault
Diagnosis. Int. J. Electr. Power Energ. Syst. 43, 1196–1203. doi:10.1016/
j.ijepes.2012.06.042

Castro, A. R. G., and Miranda, V. (2005). Knowledge Discovery in Neural
Networks with Application to Transformer Failure Diagnosis. IEEE Trans.
Power Syst. 20, 717–724. doi:10.1109/TPWRS.2005.846074

Chen, T., and Guestrin, C. (2016). XGBoost. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
785–794. doi:10.1145/2939672.2939785

Chen, Xi., Chen, W., and Gan, D. (2010).Properties and Gas Production Law of
Surface Discharge in Transformer Oil-Paper Insulation. In 2010 Annual Report
Conference on Electrical Insulation and Dielectic Phenomena. IEEE, 1–4.
doi:10.1109/CEIDP.2010.5724049

Cheng, L., and Yu, T. (2018). Dissolved Gas Analysis Principle-Based Intelligent
Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed
Power Transformers: A Survey. Energies 11, 913. doi:10.3390/en11040913

Cheng, L., Yu, T., Wang, G., Yang, B., and Zhou, L. (2018). Hot Spot Temperature
and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment
of Transformer Oil-Paper Insulation Systems: A Practical Case Study. Energies
11, 249. doi:10.3390/en11010249

Colorado, D., Hernández, J. A., Rivera, W., Martínez, H., and Juárez, D. (2011).
Optimal Operation Conditions for a Single-Stage Heat Transformer by Means
of an Artificial Neural Network Inverse. Appl. Energ. 88, 1281–1290.
doi:10.1016/j.apenergy.2010.10.006

Daelemans, W., Hoste, V., De Meulder, F., and Naudts, B. (2003). Combined
Optimization of Feature Selection and Algorithm Parameters in Machine
Learning of Language. In European Conference on Machine Learning.
Springer, 84–95. doi:10.1007/978-3-540-39857-8_10

Dhote, N., and Helonde, J. (2012). Diagnosis of Power Transformer Faults Based
on Five Fuzzy Ratio Method. WSEAS Trans. Power Syst. 7, 12.

Dong, M., Yan, Z., and Taniguchi, Y. (2003).Fault Diagnosis of Power Transformer
Based on Model-Diagnosis with Grey Relation. In Proceedings of the 7th
International Conference on Properties and Applications of Dielectric
Materials (Cat. No.03CH37417). IEEE, 1158–1161. doi:10.1109/
ICPADM.2003.1218629

Fan, J., Wang, F., Sun, Q., Bin, F., Liang, F., and Xiao, X. (2017). Hybrid RVM-
ANFIS Algorithm for Transformer Fault Diagnosis. IET Generation, Transm.
Distribution 11, 3637–3643. doi:10.1049/iet-gtd.2017.0547

Fei, S.-w., Wang, M.-J., Miao, Y.-b., Tu, J., and Liu, C.-l. (2009). Particle Swarm
Optimization-Based Support Vector Machine for Forecasting Dissolved Gases
Content in Power Transformer Oil. Energ. Convers. Manag. 50, 1604–1609.
doi:10.1016/j.enconman.2009.02.004

Fei, S.-w., and Zhang, X.-b. (2009). Fault Diagnosis of Power Transformer Based on
Support Vector Machine with Genetic Algorithm. Expert Syst. Appl. 36,
11352–11357. doi:10.1016/j.eswa.2009.03.022

FuWan, W., Weigen Chen, W., Xiaojuan Peng, X., and Jing Shi, J. (2012).Study on
the Gas Pressure Characteristics of Photoacoustic Spectroscopy Detection for
Dissolved Gases in Transformer Oil. In 2012 International Conference on High
Voltage Engineering and Application. IEEE, 286–289. doi:10.1109/
ICHVE.2012.6357108

Ghoneim, S. S. M., Taha, I. B. M., and Elkalashy, N. I. (2016). Integrated ANN-
Based Proactive Fault Diagnostic Scheme for Power Transformers Using
Dissolved Gas Analysis. IEEE Trans. Dielect. Electr. Insul. 23, 1838–1845.
doi:10.1109/TDEI.2016.005301

Jiang, X. Q., Gong, Y., Han, S., and Zhou, K. (2014). Application of the Improved
Three-Ratio Method in Chromatographic Analysis of Locomotive Transformer
Oil. Amr 1030-1032, 29–33. doi:10.4028/www.scientific.net/amr.1030-1032.29

Ke Meng, K., Zhao Yang Dong, Y., Dian Hui Wang, D. H., and Kit Po Wong, K. P.
(2010). A Self-Adaptive RBF Neural Network Classifier for Transformer Fault
Analysis. IEEE Trans. Power Syst. 25, 1350–1360. doi:10.1109/
TPWRS.2010.2040491

Kirkbas, A., Demircali, A., Koroglu, S., and Kizilkaya, A. (2020). Fault Diagnosis of
Oil-Immersed Power Transformers Using Common Vector Approach. Electric
Power Syst. Res. 184, 106346. doi:10.1016/j.epsr.2020.106346

Li, J., Chen, X., andWu, C. (2009).Application of Comprehensive Relational Grade
Theory in Expert System of Transformer Fault Diagnosis. In 2009 International
Workshop on Intelligent Systems and Applications. IEEE, 1–4. doi:10.1109/
iwisa.2009.5072742

Lin, C. E., Ling, J.-M., and Huang, C.-L. (1993). An Expert System for Transformer
Fault Diagnosis Using Dissolved Gas Analysis. IEEE Trans. Power Deliv. 8,
231–238. doi:10.1109/61.180341

Liu, Q., Huang, G., Mao, C., Shang, Y., and Wang, F. (2016).Recognition of
Dissolved Gas in Transformer Oil by Ant colony Optimization Support Vector
Machine. In 2016 IEEE International Conference on High Voltage Engineering
and Application (ICHVE). IEEE, 1–4. doi:10.1109/ICHVE.2016.7800837

Liu, Z.-x., Song, B., Li, E.-w., Mao, Y., and Wang, G.-l. (2015). Study of "code
Absence" in the IEC Three-Ratio Method of Dissolved Gas Analysis. IEEE
Electr. Insul. Mag. 31, 6–12. doi:10.1109/MEI.2015.7303257

Mani, G., and Jerome, J. (2014). Intuitionistic Fuzzy Expert System Based Fault
Diagnosis Using Dissolved Gas Analysis for Power Transformer. J. Electr. Eng.
Tech. 9, 2058–2064. doi:10.5370/JEET.2014.9.6.2058

Miranda, V., and Castro, A. R. G. (2005). Improving the IEC Table for Transformer
Failure Diagnosis with Knowledge Extraction from Neural Networks. IEEE
Trans. Power Deliv. 20, 2509–2516. doi:10.1109/TPWRD.2005.855423

Mofizul Islam, S., Wu, T., and Ledwich, G. (2000). A Novel Fuzzy Logic Approach
to Transformer Fault Diagnosis. IEEE Trans. Dielect. Electr. Insul. 7, 177–186.
doi:10.1109/94.841806

Naresh, R., Sharma, V., and Vashisth, M. (2008). An Integrated Neural Fuzzy
Approach for Fault Diagnosis of Transformers. IEEE Trans. Power Deliv. 23,
2017–2024. doi:10.1109/TPWRD.2008.2002652

Niu Wu, N., Xu Liangfa, L., and Hu Sanguo, S. (2010).Fault Diagnosis Method for
Power Transformer Based on Ant colony -SVM Classifier. In 2010 The 2nd
International Conference on Computer and Automation Engineering (ICCAE).
IEEE, 629–631. doi:10.1109/ICCAE.2010.5451326

Nogami, T., Yokoi, Y., Ichiba, H., and Atsumi, Y. (1995). Gas Discrimination
Method for Detecting Transformer Faults by Neural Network. Elect. Eng. Jpn.
115, 93–103. doi:10.1002/eej.4391150109

Saha, T. K., and Purkait, P. (2004). Investigation of an Expert System for the
Condition Assessment of Transformer Insulation Based on Dielectric Response
Measurements. IEEE Trans. Power Deliv. 19, 1127–1134. doi:10.1109/
TPWRD.2004.829100

Shang, H., Xu, J., Zheng, Z., Qi, B., and Zhang, L. (2019). A Novel Fault Diagnosis
Method for Power Transformer Based on Dissolved Gas Analysis Using
Hypersphere Multiclass Support Vector Machine and Improved D-S
Evidence Theory. Energies 12, 4017. doi:10.3390/en12204017

Singh, S., and Bandyopadhyay, M. (2010). Dissolved Gas Analysis Technique for
Incipient Fault Diagnosis in Power Transformers: A Bibliographic Survey. IEEE
Electr. Insul. Mag. 26, 41–46. doi:10.1109/MEI.2010.5599978

Souahlia, S., Bacha, K., and Chaari, A. (2012). MLP Neural Network-Based
Decision for Power Transformers Fault Diagnosis Using an Improved
Combination of rogers and Doernenburg Ratios DGA. Int. J. Electr. Power
Energ. Syst. 43, 1346–1353. doi:10.1016/j.ijepes.2012.05.067

Sugihara, K. (1997).Measures for Performance Evaluation of Genetic
Algorithms. In Proc. 3rd. joint Conference on Information Sciences.
State College, Commonwealth of Pennsylvania: Citeseer, 172–175.

Tightiz, L., Nasab, M. A., Yang, H., and Addeh, A. (2020). An Intelligent System
Based on Optimized Anfis and Association Rules for Power Transformer Fault
Diagnosis. ISA Trans. 103, 63–74. doi:10.1016/j.isatra.2020.03.022

Wang, Z., Liu, Y., and Griffin, P. J. (2000). A Combined Ann and Expert
System Tool for Transformer Fault Diagnosis. In 2000 IEEE Power
Engineering Society Winter Meeting. Conf. Proc. 2, 1261–1269. (Cat.
No. 00CH37077) (IEEE).

Weigen Chen, W., Chong Pan, C., Yuxin Yun, Y., and Yilu Liu, Y. (2009). Wavelet
Networks in Power Transformers Diagnosis Using Dissolved Gas Analysis.
IEEE Trans. Power Deliv. 24, 187–194. doi:10.1109/TPWRD.2008.2002974

Xi, L., Wu, J., Xu, Y., and Sun, H. (2020). Automatic Generation Control Based on
Multiple Neural Networks with Actor-Critic Strategy. IEEE Trans. Neural
Netw. Learn. Syst. PP, 2483–2493. doi:10.1109/TNNLS.2020.3006080

Xu, W., Zhou, Z., Chen, H., and Wang, D. (1997). Fault Diagnosis of Power
Transformers: Application of Fuzzy Set Theory, Expert Systems and Artificial
Neural Networks. IEE Proc. - Sci. Meas. Tech. 144, 39–44. doi:10.1049/ip-smt:
19970856

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7457449

Wu et al. Power Transformer Fault Diagnosis

https://doi.org/10.1016/j.ijepes.2012.06.042
https://doi.org/10.1016/j.ijepes.2012.06.042
https://doi.org/10.1109/TPWRS.2005.846074
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/CEIDP.2010.5724049
https://doi.org/10.3390/en11040913
https://doi.org/10.3390/en11010249
https://doi.org/10.1016/j.apenergy.2010.10.006
https://doi.org/10.1007/978-3-540-39857-8_10
https://doi.org/10.1109/ICPADM.2003.1218629
https://doi.org/10.1109/ICPADM.2003.1218629
https://doi.org/10.1049/iet-gtd.2017.0547
https://doi.org/10.1016/j.enconman.2009.02.004
https://doi.org/10.1016/j.eswa.2009.03.022
https://doi.org/10.1109/ICHVE.2012.6357108
https://doi.org/10.1109/ICHVE.2012.6357108
https://doi.org/10.1109/TDEI.2016.005301
https://doi.org/10.4028/www.scientific.net/amr.1030-1032.29
https://doi.org/10.1109/TPWRS.2010.2040491
https://doi.org/10.1109/TPWRS.2010.2040491
https://doi.org/10.1016/j.epsr.2020.106346
https://doi.org/10.1109/iwisa.2009.5072742
https://doi.org/10.1109/iwisa.2009.5072742
https://doi.org/10.1109/61.180341
https://doi.org/10.1109/ICHVE.2016.7800837
https://doi.org/10.1109/MEI.2015.7303257
https://doi.org/10.5370/JEET.2014.9.6.2058
https://doi.org/10.1109/TPWRD.2005.855423
https://doi.org/10.1109/94.841806
https://doi.org/10.1109/TPWRD.2008.2002652
https://doi.org/10.1109/ICCAE.2010.5451326
https://doi.org/10.1002/eej.4391150109
https://doi.org/10.1109/TPWRD.2004.829100
https://doi.org/10.1109/TPWRD.2004.829100
https://doi.org/10.3390/en12204017
https://doi.org/10.1109/MEI.2010.5599978
https://doi.org/10.1016/j.ijepes.2012.05.067
https://doi.org/10.1016/j.isatra.2020.03.022
https://doi.org/10.1109/TPWRD.2008.2002974
https://doi.org/10.1109/TNNLS.2020.3006080
https://doi.org/10.1049/ip-smt:19970856
https://doi.org/10.1049/ip-smt:19970856
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Yadaiah, N., and Ravi, N. (2011). Internal Fault Detection Techniques for Power
Transformers. Appl. Soft Comput. 11, 5259–5269. doi:10.1016/j.asoc.2011.05.034

Yann-Chang Huang, Y-C., Hong-Tzer Yang, H-T., and Ching-Lien Huang, C-L.
(1997). Developing a New Transformer Fault Diagnosis System through
Evolutionary Fuzzy Logic. IEEE Trans. Power Deliv. 12, 761–767.
doi:10.1109/61.584363

Yi, J.-H., Wang, J., and Wang, G.-G. (2016). Improved Probabilistic Neural
Networks with Self-Adaptive Strategies for Transformer Fault Diagnosis
Problem. Adv. Mech. Eng. 8, 168781401562483. doi:10.1177/
1687814015624832

Yin, J., Zhu, Y., and Yu, G. (2011).Power Transformer Fault Diagnosis Based on
Support Vector Machine with Cross Validation and Genetic Algorithm. In 2011
International Conference on Advanced Power System Automation and
Protection. IEEE, 309–313. doi:10.1109/APAP.2011.6180419

Yuan, F., Guo, J., Xiao, Z., Zeng, B., Zhu, W., and Huang, S. (2019). A
Transformer Fault Diagnosis Model Based on Chemical Reaction
Optimization and Twin Support Vector Machine. Energies 12, 960.
doi:10.3390/en12050960

Žarković, M., and Stojković, Z. (2017). Analysis of Artificial Intelligence Expert
Systems for Power Transformer Condition Monitoring and Diagnostics.
Electric Power Syst. Res. 149, 125–136. doi:10.1016/j.epsr.2017.04.025

Zeng, W., Yang, Y., Gan, C., Li, H., and Liu, G. (2011).Study on Intelligent
Development of Power Transformer On-Line Monitoring Based on the Data of
DGA. In 2011 Asia-Pacific Power and Energy Engineering Conference. IEEE,
1–4. doi:10.1109/appeec.2011.5749107

Zhang, L., and Zhan, C. (2017).Machine Learning in Rock Facies Classification: An
Application of XGBoost. In International Geophysical Conference, Qingdao,

China, 17-20 April 2017. Tulsa: Society of Exploration Geophysicists and
Chinese Petroleum Society, 1371–1374. doi:10.1190/IGC2017-351

Zhang, X., Xu, Z., Yu, T., Yang, B., and Wang, H. (2020). Optimal Mileage Based
Agc Dispatch of a Genco. IEEE Trans. Power Syst. 35, 2516–2526. doi:10.1109/
tpwrs.2020.2966509

Zhu, X., Xiong, J., and Liang, Q. (2018). Fault Diagnosis of Rotation
Machinery Based on Support Vector Machine Optimized by Quantum
Genetic Algorithm. IEEE Access 6, 33583–33588. doi:10.1109/
ACCESS.2018.2789933

Conflict of Interest: The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Wu, Zhou, Lin, Chen and Huang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 74574410

Wu et al. Power Transformer Fault Diagnosis

https://doi.org/10.1016/j.asoc.2011.05.034
https://doi.org/10.1109/61.584363
https://doi.org/10.1177/1687814015624832
https://doi.org/10.1177/1687814015624832
https://doi.org/10.1109/APAP.2011.6180419
https://doi.org/10.3390/en12050960
https://doi.org/10.1016/j.epsr.2017.04.025
https://doi.org/10.1109/appeec.2011.5749107
https://doi.org/10.1190/IGC2017-351
https://doi.org/10.1109/tpwrs.2020.2966509
https://doi.org/10.1109/tpwrs.2020.2966509
https://doi.org/10.1109/ACCESS.2018.2789933
https://doi.org/10.1109/ACCESS.2018.2789933
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Improved Genetic Algorithm and XGBoost Classifier for Power Transformer Fault Diagnosis
	1 Introduction
	2 Proposed Methods
	2.1 Candidate Input Features
	2.2 Genetic Algorithm
	2.2.1 Tradtional Genetic Algorithm and Improved Genetic Algorithm
	2.2.2 Performance Measures

	2.3 Transformer Fault Diagnosis System

	3 Simulation Result
	3.1 Performance of the Proposed Method
	3.2 Comparison With Other Methods

	4 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


