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With the development of the electricity market, various stakeholders such as batteries,
multi-microgrid (MMG), and electric vehicle (EV) clusters, can trade with either the
distribution network or each other to meet their power balance needs and to maximize
their profits. This paper proposes a two-level game model based on game theory to study
the operation strategy of stakeholders in the distribution network. First, each stakeholder
predicts its electricity demand profile. A Markov Decision Process (MDP) model of random
variables is established to predict the charging and discharging power of the battery. Then,
the two-level game is presented to let multi-stakeholder participate, in which different kinds
of stakeholders have different game strategy limits. Additionally, suggestions for battery
operation modes under different compensation coefficients are given to participate in the
subsequent two-level game. An algorithm is proposed to allow stakeholders to merge or
split self-adaptively based on Nondominated Sorting Genetic Algorithm II (NSGA-II) to
optimize operation mode. Finally, the proposed model is applied to the PG and E69-bus
distribution system and a practical 101-bus distribution system in China. The case studies
show that different game strategy limits of the stakeholders will affect the distribution of the
Nash equilibrium (NE) solutions. The multi-stakeholder system can better absorb regional
unbalanced power through electricity transactions, and further increase the benefits of
each stakeholder.

Keywords: Markov decision process, multi-stakeholder, two-level game, three-dimensional Nash equilibrium
solution, Markov desicion processes, prediction power of battery

INTRODUCTION

With MMG (Wu et al., 2011; Li et al., 2013), batteries (Wang et al., 2019a), and EV clusters (Zhang
et al., 2017; Li et al., 2021) connected to the distribution network, the structure and operationmode of
the distribution network are becoming more complex. Meanwhile, with the development of
electricity market transactions, microgrids (MGs) with distributed energy resources can trade
with other stakeholders, such as EVs and batteries (Wang et al., 2017). Through diversified
market competition and cooperation, the operational benefits of various stakeholders (Rui et al.,
2019) and the operation efficiency of the entire system can be improved. When the interaction
among multi-stakeholder involving batteries, MMG, and EV clusters is considered, how to achieve
the optimal operation of the entire system under the electricity market has become a challenging
problem.

In the market-oriented transactions on the load side, game theory is a common tool to solve the
optimization problem of multiple decision-making entities (Lu et al., 2014). Game theory is also used
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widely in MG behavior strategies and pricing. When MMG are
used as dispatched units, through participation in load-side
market transactions and bidding games (Liu et al., 2017), a
model of electricity price bidding decisions is constructed. A
two-stage dynamic game (Jiang et al., 2014) is adopted to achieve
optimal economic dispatch of the distribution network;
meanwhile, the MGs have the best operation profits. However,
the possibility of direct transactions between MMG is ignored
and the enthusiasm of MGs for participating in the electricity
market cannot be given fully utilized. In literature (Jalali et al.,
2017), a one-leader multiple-follower model between the
distribution network operator and the MMG system is
constructed considering transactions between MMG. A
cooperative coalition of photovoltaic MG groups is formulated
in (Liu et al., 2018), which does not consider the impact of the
overall unbalanced power after the coalition is formed on the
external distribution network, yet considered in (Lin et al., 2017).
However, the participants in the game in the above studies are
either MMG or MMG and distribution networks (Lin et al.,
2017).When the distribution network contains multi-stakeholder
such as batteries, MMG, and EV clusters, the situation that each
stakeholder gives different game strategies to participate in the
transaction needs further study.

When multi-stakeholder participate in game transactions,
they need to predict their power curves for the next day. In
existing works of literature, the integration of storage units helps
to balance the system while dealing with various sources of
uncertainty in the power grid (Moazzami et al., 2018).
Considering the energy storage system and distributed energy
resources in the user’s house, literature (Paterakis et al., 2015)
developed a detailed home energy management system structure
and determined the demand response strategies to determine the
optimal day-ahead home appliance dispatching. Energy storage is
collaborated operation with renewable resources to decrease the
vulnerability of the system against plausible fluctuations in
generation or consumption and alleviate the generation cost at
peak hours, then it increases the robustness and resiliency of
the grid (Shen et al., 2015; Bitaraf and Rahman, 2018). However,
the above studies all use traditional methods to model the
uncertainties, which are complex and have poor convergence,
and even difficult to solve due to the large state space. It is more
effective to use Markov Decision Process (MDP) to model the
uncertainty of the system. In (Shi et al., 2020), the operation of
the battery is modeled as an MDP, and a Q deep neural
network is embedded to approximate the optimal decision
of battery, so as to deal with the problem of system voltage
operation level caused by the high intermittent of renewable
energy sources and the fluctuation of load demand. An MDP
model for the real-time operation of the MG is established
under uncertain conditions. Then, the best output of the
battery is determined in the MG (Shuai et al., 2019; Zhu
et al., 2019). The above studies all combine the operation of
batteries with the variability and uncertainty of renewable
energy sources and load in the MG or distribution network.
One main challenge of the battery participating in electricity
transactions is establishing an MDP model based on the
influence of the temperature of the battery and determining

its optimal charging and discharging strategy to participate in
the two-level game to obtain maximum benefits.

Moreover, EVs mainly participate in demand response to
profit (Lin et al., 2020) or charge and discharge intelligently
based on time-of-use (TOU) electricity price (Wang et al., 2019b;
Wang et al., 2019c). The battery is often used for peak shaving and
valley filling as grid-side storage. EV clusters and batteries can be
set as independent agents to trade energy in the market (Fang
et al., 2020), but not always trade with the distribution network.
When EV clusters and batteries are independent stakeholders
after predicting the charging and discharging profile, the main
problem is to develop a new framework that enables a number of
stakeholders to individually and strategically choose the partners
that they wish to trade with (Wang et al., 2014). Yet few papers
have researched in-depth on this issue.

This paper proposes a two-level game model of multi-
stakeholder in the distribution network. The upper-level game
is a non-cooperative game of electricity price between the
distribution network and multi-stakeholder, and the lower-
level game is a cooperative game of transaction loss cost to
find the optimal coalition of multi-stakeholder. An algorithm
is proposed to allow stakeholders to merge or split self-adaptively
based on NSGA-II to optimize operation mode. The
contributions of this paper are listed as follows:

(1) An MDP model of battery is established to predict its
charging and discharging power considering the influence
of temperature randomness. In addition, the profitability of
the battery in different compensation coefficients is analyzed,
and clear guidance on the choice of battery operation mode
is given.

(2) The two-level game is presented to let multi-stakeholder
participate, in which different kinds of stakeholders have
different game strategy limits. the convergence domain of the
game system will be extended from a common two-
dimensional plane to a three-dimensional space. The
proposed two-level game model can be used to solve
higher dimensional Nash equilibrium problems.

(3) MGs, batteries, and EV clusters are independent stakeholders
in this paper. Case studies applied to the PG and E69-bus
distribution system and a real 101-bus system demonstrate
the effectiveness of the two-level game model, with cost
reduction for the multi-stakeholder in the distribution
system.

POWER PREDICTIONOF BATTERY AND EV
CLUSTER

Before participating in the two-level game, all stakeholders need
to predict their power curve of the next day. The MGs contain
renewable energy sources such as wind power and photovoltaic
power generation. The power prediction technology of MGs is
quite mature and will not be introduced in detail here. In this
paper, an MDP model is established to predict battery power
considering the influence of temperature randomness on battery
charging efficiency. Moreover, the charging and discharging
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power of the electric vehicle cluster are obtained based on the
time of use electricity price under the premise of meeting the
travel demand of users.

Power Prediction of Battery
Battery Model
Considering the effect of temperature on the charging efficiency
during the charging process of the battery (Powell and Meisel,
2016), a random variable is introduced into the charging/
discharging process of the battery. The state of charge of the
battery has Markov characteristics, in which C(St , xt) is the
revenue of the battery at stage t as follows:

Ct(St , xt) �
⎧⎨⎩ db,txt − (adepx2t + cdep), xt > 0

−ds,txt − (adepx2t + cdep), xt ≤ 0
, ∀t ∈ T (1)

F � max
xt∈χt

E∑t�T
t�0

Ct(St , xt),∀t ∈ T (2)

where St is the state of the battery; adep and cdep are the
depreciation factors; xt < 0 is the charging power, xt > 0 is the
discharging power; xt � 0 is the float power; χt is the feasible
region of xt , and T is set of dispatch periods.

The objective function is subject to the constraints as follows:

−Pe ≤ xt ≤ Pe (3)

SOCmin < SOCt < SOCmax (4)

SOCt � SOCt−1 − g(xt)ΔT (5)

where Pe is the maximum power of battery; SOCmax and SOCmin

are the maximum and minimum SOC of battery, respectively;
Constraint (5) describes the SOC transfer procedure of battery,
g(x) � (1+η)+(1−η)sgn(x)

2 x, in which η is the charging efficiency of
battery.

Markov Decision Process
MDP is a sequential optimization problem whose goal is to find a
policy to maximise expected profits or minimise expected costs
(Zhu et al., 2019). Let St and xt be the state variables and decision
variables of the battery at stage t, respectively,Wt is the exogenous
information that arrives during the stage interval from t to t + 1;
V(St) is the value function of state St . The evolution of the battery
can be described according to the state transition function:

St+1 � SM(St , xt ,Wt+1) (6)

The problem is to find the strategy from t � 0 to t � T with the
objective function:

maxE
⎧⎨⎩∑t�T

t�0
cC(St , xt)

⎫⎬⎭ (7)

According to the optimality principle proposed by Bellman in
1957, Bellman equation can be used to reformulate and
recursively solve as:

V(St) � max{C(St , xt) + cE[V(St+1)|St]} (8)

In Equation 8, the original multi-stage optimisation problem can
be decomposed into a serial of single-stage sub-problems and

solved in turn. When solving the sub-problem in each stage, the
latest exogenous information can also be considered to deal
with the uncertainty of the system. The discount factor is set
to be 1.

MDP theory is based on the setting of sub-problems according
to temporal decomposition. In the temporal decomposition
framework, there are four classes of elements, namely state
variables, decision variables, exogenous information, and
transition function. They are defined as follows:

i. State variable: The state variable is used to reflect the
relationships among sub-problems in the decision-making
process. The state variables of battery can be expressed as

St� SOCt , ∀t ∈ T (9)

ii. Decision variable: The decision variable is the charge/
discharge power of battery:

xt � Pt , ∀t ∈ T (10)

iii. Exogenous information: The exogenous information is used
to represent the stochastic factor in the decision process of
battery, which is given by

Wt � η̂t , ∀t ∈ T (11)

iv. Transition function: The transition function is used to map
the current state to the next state according to the decision
and the exogenous information. The transition function
between period t and period t − 1 can be described as SOC
transfer function of battery in (5).

Solution of MDP Model
Because the MDP problem in this paper contains the calculation
of expected value, it will often lead to difficulty in solving. Then
the problem of curse of dimensionality is brought about. ADP
uses the method of iteratively updating the approximate value
function to find a strategy to make the value function
approximately optimal. In the existing works, there are several
methods to update the approximate value function. In this paper,
the method proposed in (Zhu et al., 2019) is used to update the
slopes of the value functions.

Power Prediction of EV Cluster
SOC1 is the remaining energy when EV returns to the residential
area. SOC2 is the critical remaining energy of the EV:

SOC2 ��
LW100
100 − TvalPc

P0
(12)

where L denotes the daily mileage, W100 is the power
consumption per 100km, Pc is the charging power of the EV,
and P0 is the rated capacity of residential EVs. Tval is the length of
the valley period.

The charging and discharging strategy of EVs is determined by
the following rules according to the specific time when the EV
finally returns to the residential area:
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For EVs Who Return During Peak Period
i. If SOC1 > SOC2, the current strategy can be summarized as:
first, the EVs connect to the charging pile to discharge to the
grid at the peak period. Then the EVs will charge when the
valley period comes.

ii. If SOC1 ≤ SOC2, the EVs charge in part of the peak period and
the whole valley period to ensure that they have enough
remaining energy for next trip.

For EVs Who Return During Flat Period
i. If SOC1 > SOC2 and the next period is peak period. The EVs
keep discharging during the peak period. The EVs will change
to charge when the valley period comes.

ii. If SOC1 > SOC2 and the next period is valley period. The EVs
keep discharging during the flat period. The EVs will change
to charge when the valley period comes.

iii. If SOC1 ≤ SOC2 and the next period is peak period. first, the
EVs select part of the flat period and the whole valley period
to charge. Then if the remaining energy SOC3 is less than
SOC2 at the end of the flat period, the EVs will select part of
the peak period and the whole valley period to charge.

iv. If SOC1 ≤ SOC2 and the next period is valley period. The EVs
select part of the flat period and the whole valley period to
charge.

For EVs Who Return During Valley Period
For EVs who return during valley period, they will charge
immediately.

TWO-LEVEL GAME MODEL

Upper-Level of the Game Model
Non-cooperative Model of the Upper Game
In this paper, a distribution system with stakeholders such as
MMG, batteries, and EV clusters is considered. Batteries and EV
clusters are energy storage systems (ESS). According to the
unbalanced power, an MG with power surplus is called “the
seller MG” while one with power shortage is called “the buyer
MG”. An ESS is called “the seller ES”’ when discharging while one
is called “the buyer ESS” when charging. An ESS without charging
or discharging is called “the balanced ESS”. The open electricity
market is considered, and power is allowed to be transferred
between the multi-stakeholder as well as between the stakeholder
and the distribution system ({DS}). Then the upper-level non-
cooperative game model G of the seller MGs, the seller ESSs and
the {DS} is defined as follows:

G � 〈Γ; S;U〉 (13)

where G denotes a game; Γ represents the participants; S
represents the strategy and U is the gain of the participants;
NMG
r , NMG

s , and NMG
b denote the number of seller MGs, buyer

MGs, and MGs with balanced power, respectively. NESS
r , NESS

s ,
and NESS

b represent the number of the seller ESSs, the buyer ESSs,
and the balanced ESSs, respectively. If NMG

r + NESS
r � Nr � 0, all

the buyers contain the buyer MGs and the buyer ESSs purchase
power from the {DS} while all the sellers sell redundant power to

the {DS} when NMG
s + NESS

s � Ns � 0. Therefore, in these two
cases, there is no need for sellers to play the game with the {DS}.
In other words, a necessary and sufficient condition of the game is
that:

Nr × Ns ≠ 0 (14)

The Participants.
The participants in the game are the seller MGs, the seller
ESSs and the {DS}. Γ4ΓMG ∪ ΓES∪{DS} in Eq. 13. ΓMG �
{MG1,MG2,/,MGN} denotes the set of all seller MGs; ΓESS �
{ESS1, ESS2,/, ESSK } is the set of all ESSs; the {DS} represents the
distribution system. The number of the participants is (Nr + 1)
in total.

The Strategies
cMG
i is the electricity sale price of the seller MG i; cESSj is the
electricity sale price of the seller ESS j; sDis the service charge of
the {DS}. The sets of the strategies are [0, cMG

imax], [0, c
ESS
jmax] , and

[0, sDmax], respectively.

The Gains
The gains of the seller MGs, the seller ESSs, and the {DS} have
different compositions, described as follows:

a. The gain of the seller MG includes transaction income, service
charge, generation cost, and subsidy income for renewable
energy power generation. The gain of the {DS} is composed of
transaction income (part of the transaction with the MG),
service income, and balance power income (part of the
transaction with the main network) (Lin et al., 2017).

b. The gain of the seller battery is composed of transaction
income, service charge, and depreciation cost.

1. Transaction income: ub tra is the transaction income of the
seller battery, consisting of income from the buyers and the {DS}
as well.

ub tra � cESSj T∑Ns

k�1
Ptra b k + dbTPrD b (15)

where Ptra b k and PrDb are the positive active power transferred
from the seller battery to the buyer k and the {DS}, respectively; db
is the purchase price for the {DS}.

2 Service charge: The services charge ub ser paid by the seller
battery is given as follows:

ub ser � −sDT∑Ns

k�1
Ptra b k (16)

where sD is the unit price charged by the {DS}.
3 depreciation cost: the depreciation loss during battery

operation is considered as follows:

ub dep � −(adepP2
bat + cdep)T (17)

where adep and cdep are depreciation coefficients; Pbat is the
discharging power of the battery.
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In conclusion, the ub of the seller battery is formulated as

ub � ub tra + ub ser + ub dep (18)

c. The gain of the seller EV cluster is also a combination of
transaction income, service charge, and operation and
maintenance cost.

1. Transaction income: uev tra is the transaction income of the
seller EV cluster, consisting of income from the buyers and the
{DS} as well, expressed by

uev tra � cESSj T∑Ns

k�1
Ptra ev k + dbTPrD ev (19)

where Ptra ev k and PrD evare the positive active power transferred
from the seller EV cluster to the buyer k and the {DS},
respectively.

2. Service charge: The services charge uev ser paid by the seller
battery is given as follows:

uev ser � −sDT∑Ns

k�1
Ptra ev k (20)

3. Operation and maintenance cost: the cost of operating and
maintaining EV clusters such as charging piles and other
equipment is considered as follows:

uev OM � −cevTPev (21)

where cev denotes the average unit operation and maintenance
cost; Pev is the discharging power of the EV cluster.

In conclusion, the uev of the seller battery is formulated as

uev � uev tra + uev ser + uev OM (22)

The game structure is shown in Figure 1.

Electricity Trading Rules
According to the power curves predicted by all stakeholders, the
transactions in the system are studied. The transaction rules are
formulated as follows:

a. The seller MGs and the seller ESSs fix the price for selling
electricity sale price, respectively. Additionally, the {DS} fixes
the service charge.

b. With the aim of minimal cost, the buyer decides to trade with
either the seller MGs, the seller ESSs or the {DS} in sequence
until its demand is fulfilled.

c. First, in accordance with the principle of prioritizing the
consumption of renewable energy sources, the buyers will
purchase electricity from MGs, EV clusters, and finally
batteries. Buyers with the largest power shortage are
satisfied first.

d. When several sellers offer the same electricity price, the buyers
trade with first the MGs, then the EV clusters, and finally the
batteries. The seller with more power surpluses has a priority
to trade with buyers.

Lower-Level of the Game Model
In the upper game, most of the NE solutions have their
corresponding operation mode. However, there is a situation
where participants have the same gain when they operate in the
coalition mode and the non-cooperation mode. This is called ‘the
selection mode’, then it turns to the lower level of the game which
is a cooperative game of transaction loss cost. The final operation
mode is determined by comparing the transaction loss of the
stakeholders in different modes (Lin et al., 2017).

Stakeholders Operate in the Non-cooperative Mode
The non-cooperative model is an operation situation in which all
stakeholders trade with the {DS}, but do not trade with
each other.

In the non-cooperation mode, active power Pi is transferred at
a medium voltage U0between the stakeholder i and the {DS}.
Stakeholder i is seller when Pi > 0, and is buyer when Pi < 0.
Accompanied with the transfer of power, power loss incurs due to
transmission lines and transformers expressed as

Ploss
i0 � Ri0I

2
i0 + βf (Pi) � Ri0f 2(Pi)

U2
0

+ βf (Pi) (23)

where Ri0 is the resistance of the line between the stakeholderi and
the {DS}; β is the coefficient of power loss in transformers; f (Pi)is
the power exchanged between the stakeholder i and the {DS},
which is defined as:

f (Pi) �
⎧⎪⎨⎪⎩

Pi, Pi > 0
Wp

i , Pi < 0
0, Pi � 0

(24)

whereWp
i is the power offered by the {DS}. In order to ensure that

the stakeholder i acquire the necessary power Prequired
i � ( − Pi),

Wp
i is given by a solution to Eq. 23

Wi � Ploss
i0 + Prequired

i � Ri0W2
i

U2
0

+ βWi − Pi (25)

FIGURE 1 | Game structure of multi-stakeholder and the {DS}
transaction mode.

Frontiers in Energy Research | www.frontiersin.org September 2021 | Volume 9 | Article 7443915

Deng et al. Two-Level Game With Multi-Stakeholders

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


We define the power loss cost as the Ui of the system model in
the non-cooperative mode

Ui � dxP
loss
i0 (26)

where dx denotes the cost for unit power loss. dx � db if the
stakeholder i is a seller; dx � ds if the stakeholder i is a buyer.

Stakeholders Operate in the Coalition Mode
Multi-stakeholder and the {DS} do not have direct power
transactions. All stakeholders cooperate with each other to
complete power transmission and form a coalition. With the
coalition as a unit to conduct power transactions with the {DS},
the stakeholders within the coalition can exchange energy. At the
same time, power exchange between stakeholders can avoid losses
on the transformer.

In order to study further the possibility of forming a coalition
and the assignment of the coalition’s cost, we define the
cooperative multi-stakeholder coalition game as a pair (N , v).
Ndenotes the set of participants and v is a characteristic function
corresponding with every coalition S, v(S) denotes the cost of the
coalition S achieved by the cooperation of stakeholder in it,
defined as follows:

v(S) � ci ∑
i∈Sr
j∈Ss

Ploss
ij + db ∑

i∈Sr

Ploss
i0 + ds ∑

i∈Ss

Ploss
j0 (27)

s.t.

Sr ∪ Ss � S (28)

Sr`Ss ≠∅ (29)

distij ≤D (30)

where Sr and Ss are the set of sellers and buyers in the coalition S,
respectively. distij is the distance between the seller i and the
buyer j , and D is the distance threshold.

The constraints indicate that there are a seller and a buyer in a
coalition at least, and two stakeholders are possible to cooperate
only if they locate nearer than the distance threshold. The system
should also satisfy the line capacity constraints, voltage
constraints, and power flow equation constraints. The power
loss Ploss

ij is formulated as

Ploss
ij � (Pij

U1
)2

pRijpdistij (31)

where Pij is the power transferred from the seller i to the buyer j,
and Rij is the resistance of transmission line.

The impedance loss of the transmission line and transformer
loss Ploss

i0 will exist when the stakeholder i trades with the {DS}. It is
formulated as follows, where ZT is the impedance of the
transformer, and n is the transformer ratio.

Ploss
i0 � Pline

i0 + PT
i0 � Ri0I

2
i0 + ZT(nIi0)2 (32)

Therefore, we define the objective function of the lower-level
of the model as follows:

min v(S) (33)

The objective function represents the smallest cost of the
coalition S, the least power loss cost yielded in the power
transfer namely. The cost of the stakeholder i in a coalition S
is defined as given by

ψi(S) � αi
⎛⎝v(S) −∑

j∈S
ψ(j) + ψ(i)⎞⎠ (34)

where ∑ αi � 1 and αi/αj � ψ(i)/ψ(j) in the coalition S.

Game Algorithm of Optimal
Multi-Stakeholder Coalition Based on
NSGA-II
After predicting the power curve through MDP, then the battery
participates in the game as an independent stakeholder. In order
not to omit any NE solution, the upper-level game finds the NE
points by traversing the strategy combination method, the lower-
level game model based on the NSGA-II allows stakeholders to
merge or split self-adaptively. The overall flowchart of the
algorithm is shown in Figure 2.

FIGURE 2 | Optimal multi-stakeholder coalition algorithm based on
NSGA-II.
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Existence of the NE Solutions
The NE solutions are the key to the upper-level game. All the
strategy combinations of participants will be enumerated so that
no NE solutions will be omitted. Therefore, the strategies need to
be discretised. The discrete steps are ΔcMG

i , ΔcESSj , and ΔsD,
respectively. All the discrete steps are constant. The strategies
are expressed as follows:

⎧⎪⎪⎨⎪⎪⎩
cMG
i � kcMG

i
· ΔcMG

i

cESSj � kcESSj
· ΔcESSj

sD � ks · ΔsD
(35)

The upper and lower limits of the strategy set have been
defined above. Therefore, the discrete strategy combinations are
finite. Moreover, the number of participants is also finite in this
game. According to Theorem 1, the NE’s existence is ensured.

Theorem 1: (Nash 1950): In the n-player normal-form game
G � (S1, S2, ..., Sn;U1,U2, ...Un), if n is finite and Si is finite for
every i then there exists at least one NE, possibly involving mixed
strategies.

Optimal Coalition Algorithm Based on NSGA-II
NSGA-II is a representative multi-objective optimization
algorithm and similar to the basic genetic algorithm. Its core
idea is: to sort the population non-dominantly, and then
obtain the virtual crowded distance of each individual in each
level. On this basis, the operations of selection, crossover,
mutation, and elite retention are completed. NSGA-II uses
Pareto sorting to find the minimum electricity loss value of
each stakeholder without increasing the power consumption of
other stakeholders, such a coalition is called the optimal
stakeholder coalition.

Assume that (Nr + Ns) stakeholders disjoint two coalitions C �
{C1, . . . ,Cc} and K � {K1, . . . ,Kk}, and the elements in the
coalition do not intersect each other. For the coalition
C � {C1, . . . ,Cc}, the Ujof the stakeholder j in the coalition
Ciis ψj(Ci) � ψj(C), where ψj(C)is the cost of stakeholder j
which is expressed in (Lin et al., 2017). The coalition C is
better than the coalition K when the following formula is
fulfilled in C<K5{ψj(C)≤ψj(K), ∀j ∈ C,K}, and at least one
of the participants jmeets ψj(C)<ψj(K). In other words, from the
coalition C to coalition K, at least one stakeholder can obtain
more gain from the coalition C without harming the gain of other
stakeholders. In the optimal coalition, no stakeholder can
increase its own profits without harming other stakeholders.

Merge rule: Merge any collections of {S1, . . . , Si} into a
coalition {Ui

j�1Kj} , when {Ui
j�1Kj}< {K1, . . . ,Ki}.

Split rule: Split any coalition of {Ui
j�1Kj} into {K1, . . . ,Ki},

when {K1, . . . ,KS}< {Ui
j�1Kj}.

CASE STUDIES

TheMDPmodel of power prediction of the battery is a non-linear
programming (NLP) problem, which is solved by BARON solver
in GAMS. Several case studies of two-level game model for multi-
stakeholder transactions are carried out by using MATLAB.

Simulation Parameters
In this section, simulations are performed to validate the
proposed model. We test the proposed model on the PG and
E69-bus distribution system as illustrated in Figure 3. There are
6 MGs connected randomly to nodes 30, 41, 15, 21, 53, and 69,
respectively. There is an EV cluster (EV1) and a battery (battery1)
at nodes 65 and 58, respectively. The EV1 has 100 EVs with a
capacity of 30 kWh and rated power of 5 kW. The battery1 has a
capacity of 1,000 kWh and a rated power of 200 kW. All
stakeholders are interconnected through Interconnect Static
Switch (ISS). The ISS is disconnected when two stakeholders
are in the non-cooperative mode, and the ISS is closed when they
operate in the coalition mode. The TOU electricity price of the
{DS} is shown in Table 1. The values of the other parameters are
shown in Table 2. The predicted power curves of the MGs and
EV1 are demonstrated in Figure 4.

Analysis of the Profits of the Battery in
Different Modes
The battery is connected to the {DS} as an independent
stakeholder. Figure 5A shows two operation strategies of
battery. One is “grid-side energy storage mode” that the
battery operates to minimize the standard deviation of the
load profile in the {DS}. The other is “arbitrage mode” that
the battery operates to maximize its own profits according to
the TOU electricity price. The battery predicts the power curves
of the two operation modes to participate in the subsequent two-
level game. Ultimately, the operation mode of the battery depends
on its corresponding benefit.

In order to explore the influence of compensation coefficient on
the benefit of the operation modes, the benefits of grid-side energy
storage mode and arbitrage mode are compared in Figure 5B
under different compensation coefficients. As the compensation
coefficient csub increases, the benefits of the battery operated in the
grid-side energy storage mode changes from negative to positive
and continues to increase, when the battery is operated in the grid-
side energy storage mode, where the maximum value of csubmax �
(dpeaks − dvalleyb )/2 is 0.36. When csub ∈ [0, 0.21 ], the battery
operates in arbitrage mode as the benefit of the grid-side energy
storage mode is less than the benefit of the arbitrage mode. When
csub ∈ [0.22, 0.36 ], the battery operates in the grid-side energy
storage mode as the benefit of the grid-side energy storage mode is
more than the benefit of the arbitrage mode. If the peak-to-valley
difference exceeds the threshold, the {DS} would like to smooth the
load curve, so the battery will operate in the grid-side energy
storage mode by giving compensation. Otherwise, the battery will
always operate in the arbitrage mode.

Results of battery predicted power.
The problem of maximizing the revenue of the battery is an NLP
problem. The charging efficiency is a random variable affected by
temperature and distributed in [0.9,0.95], and the discharge
efficiency is assumed to be 1.

In the deterministic case, as shown in Figure 6A, the battery’s
benefit and power curve obtained by the ADP algorithm are
exactly the same as those obtained by the centralized algorithm
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(Wang et al., 2019b). The benefits are both 213.495 CNY. The
results show that it is feasible to solve the MDP model in this
paper by using the ADP algorithm.

In the random case, the influence of temperature on charging
efficiency is considered. The proposed algorithm is used to solve
random problems in multiple scenarios. The power prediction
curve of the battery is shown in Figure 6B. The result shows that
the MDP model and the ADP algorithm can effectively predict
the charging and discharging power of the battery as an
independent stakeholder in the random scenario. The result
will provide strong guidance for the battery to participate in
subsequent game electricity transactions.

Results Analysis of Upper-Level Game
In this paper, the two-level game works when the unbalanced
power of each stakeholder is different in each time period. The

subsequent game results are analyzed based on the results of
t � 21, as the analysis of other periods is the same.

The three-dimensional distribution of NE solutions is shown
in Figure 7. Most NE solutions are corresponding to non-
cooperative models. There is no transaction between
stakeholders, that is, the sellers sell power to the {DS} while
the buyers buy power from the {DS}. The game strategies and
gains will not be influenced. However, the NE point M0

corresponds to the uncertain operation mode. The gain of the
seller is the same, no matter who the stakeholder chooses to trade
with. The seller MG gains cMG

i � (db + ds)/2 or the seller ESS gains
cESSj � (db + ds)/2 from selling a unit of power to the buyers. The
{DS} gains sD � (dS − db)/2 for per unit of electricity power of
each transaction entity. The value ofM0 is only related db and ds.
Then,M0 will be given to the lower-level game to decide the final
operation mode of each stakeholder.

FIGURE 3 | Distribution of the multi-stakeholder in PG&E69-bus distribution system.

TABLE 1 | TOU electricity price of the {DS}.

Period Time ds(CNY/kWh) db(CNY/kWh)

Peak period 11:00–16:00 19:00–22:00 0.92 0.70
Flat period 8:00–11:00,16:00–19:00,22:00–24:00 0.51 0.39
Valley period 00:00–8:00 0.24 0.20

TABLE 2 | value of some corresponding parameters.

Item Value (unit) Item Value (unit) Item Value (unit) Item Value (unit)

sDmax 0.15 CNY/kWh gsub 0.335 CNY/kWh ΔcESSj 0.01 CNY/kWh r 1.2 Ω/km
cMG
imax 1.2 CNY/kWh adep 0.0006 CNY/kW2h ΔsD 0.01 CNY/kWh x 0.33 Ω/km

cESSjmax 1.0 CNY/kWh cdep 0.55 CNY/kWh U1 6.3kV D 10 km
gMG 0.75 CNY/kWh cev 0.02 CNY/kWh U0 10kV — —

gD 0.357 CNY/kWh ΔcMG
i 0.01 CNY/kWh β 0.02 — —
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FIGURE 4 | Power prediction curves of the MGs.and EV1.

FIGURE 5 | Battery operates in different modes.

FIGURE 6 | Battery operates in different modes.

FIGURE 7 | Three-dimensional distribution of NE solutions.
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Service charge sDdescribes the price that needs to be paid for
transactions between stakeholders. Figure 8 shows that the three-
dimensional distribution of the NE solution of the multi-
stakeholder game when the {DS} service charge upper limit
sDmax continues to increase but other conditions remain
unchanged. It can be seen that when sDmax > (dS − db)/2,
except for M0 corresponding to the selection mode, other NE
points correspond to the situation that all stakeholders will trade

directly with the {DS}; when sDmax ≤ (dS − db)/2, the only NE
pointM0 is corresponding to the selection mode. In other words,
when the service charge is high, the stakeholders tend to directly
trade with the {DS}; on the contrary, when the service charge is
low, the stakeholders tend to form coalitions to obtain more
benefits.

The impact of cev on the system operation mode is analyzed.
The three-dimensional distribution of NE solutions will not

FIGURE 8 | Three-dimensional distribution of the NE solutions as sDmaxincreases.

FIGURE 9 | Three-dimensional distribution of the NE solutions as cev increases.
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change as cev varies as shown in Figure 9. All the projections of
the NE solutions where the operation mode is uncertain are
remained to be M0. The change of cev does not affect anything
except the gain of the seller EV clusters, thus will not influence the
operation mode of the system. Furthermore, the operation mode
of the multi-stakeholder system will not be changed when the
subsidy unit price gsub, the average wind/solar power generation
cost of the MG gMG, the unit price of the {DS} from the main grid
gD, the battery depreciation coefficients adep, cdep, or other
parameters changes. The reasons are the same, so we will not
repeat them here.

Results Analysis of Lower-Level Game
In case 1, there are only MGs in the {DS}. As shown in
Figure 10A, simulation results demonstrate the effectiveness
of reducing the cost of power loss for any MGs joining in a
coalition. Meanwhile, MG1 and MG6 form a coalition while the
other MGs trade with the {DS} in the non-cooperative mode.

Based on case 1, the independent stakeholders EV1 and
battery1 connect to the {DS} and participate in power
transactions in case 2. The costs of power loss of the
stakeholders are shown in Figure 10B. In this case, MG2 and
MG5 both trade with the {DS}; MG3 and MG6 form coalition 1
(S1 � {MG3,MG6}); MG4 and EV1 form coalition 2
(S2 � {MG4, EV1}); MG1 and battery1 form coalition 3
(S3 � {MG1, battery1}). No matter in case 1 or case 2, the
costs of power loss of stakeholders forming coalition is always

less than that in the non-cooperative mode. Therefore, the
stakeholders choose adaptively to cooperate with others or
trade directly with the {DS} when the electricity price and the
service charge conform with
M0((ds + db)/2, (ds + db)/2, (ds + db)/2).

The comparison of the total daily operation gains of each
stakeholder in different modes is shown in Table 3. In case 1, the
results show that the MGs operating in the coalition mode have
greatly reduced power loss cost compared with the non-
cooperative mode. Thus, the total daily operation costs of the
buyers will be reduced while the total daily operation gains of the
sellers will be increased. In case 2, after EV1 and battery1
connecting to the {DS}, in the non-cooperative mode, the total
daily operation gains of EV1 and battery1 are 460.1946 CNY and
208.9388 CNY, respectively. In the coalition mode, the total daily
operation gains of EV1 and battery1 are 465.0688 CNY and 210.3351
CNY, respectively. The results indicate that the EV cluster and battery
as independent stakeholders participate in power transactions to
choose their own trading partners adaptively, then their gains will be
increased. At the same time, due to the increase in the types and
number of stakeholders, the composition of coalitions has also
changed. In the meanwhile, the daily operation gains of MGs
have also increased in case 2 compared with case 1.

In order to investigate the efficiency of the proposed two-level
game in the real system, a real 101-bus system located in the southeast
of China is employed. The distribution ofmulti-stakeholder in the real
101-bus system is shown in Figure 11. The results of the cost

FIGURE 10 | Cost comparison between non-cooperation mode and coalition mode.

TABLE 3 | total daily operation gains of every stakeholder (unit: CNY).

Stakeholder 6 MG
in non-cooperative mode

6 MG
in coalition mode

6MG1EV1battery in non-cooperative
mode

6MG1EV1battery in non-cooperative
mode

MG1 −424.276 −420.886 −424.276 −420.444

MG2 −191.192 −188.276 −191.163 −184.994

MG3 −428.377 −427.099 −428.365 −426.070

MG4 −295.871 −295.168 −295.774 −284.858

MG5 −750.148 −748.500 −750.144 −747.797

MG6 613.115 614.790 613.123 614.845

EV1 \ \ 460.195 465.069

battery1 \ \ 208.939 210.335
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comparison of stakeholders between non-cooperation mode and
coalition mode in the real 101-bus system are shown in Figure 12.
The results of coalition and cost reduction percentage are shown in
Table 4. Coalition 1 is composed of MG4 and MG7. Coalition 2 is
composed ofMG5 and EV4. There is only EV3 in coalition 3 and EV3
trades directly with the {DS} in the non-cooperativemode. Coalition 4
is composed of MG3, MG6, battery2, and battery4. Coalition 5 is
composed of MG2, MG9, MG10, and battery3. Coalition 6 is
composed of MG1, MG8, and battery1. Coalition 7 is composed
of EV1 and EV2. In addition to EV3 directly trading with the
distribution network, other stakeholders form coalitions to trade
with each other, then the cost of the transaction loss is greatly
reduced. This indicates that the proposed two-level game model is
suitable for multi-stakeholder transactions in a real system, and can
well reduce transaction loss costs.

CONCLUSION

In this paper, a two-level game operation model of the multi-
stakeholder distribution system including batteries, EV clusters,
and MMGs is established. An effective algorithm is proposed to
allow stakeholders to merge or split self-adaptively based on
NSGA-II to solve the game model to optimize operation mode.
Then, the transaction objects of each stakeholder will be
decided. In the meantime, the best operation of the entire
system will be achieved. The simulation results which are
studied in the PG and E69-bus distribution system and a real
system verify the accuracy of the proposed model. A useful
reference for multi-stakeholder participating in the electricity
market is provided in this paper.

(1) An MDP model established by considering the influence of
temperature on the charging efficiency can effectively predict
the power curve of the battery to participate in the two-
level game.

FIGURE 11 | The distribution of multi-stakeholder in the real 101-bus
system.

FIGURE 12 | The cost comparison of stakeholders between non-cooperation mode and coalition mode.
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(2) The gain of the battery highly depends on the choice of
operation mode. The profitability of the battery in different
compensation coefficients is analyzed and clear guidance on
the choice of battery operation mode are given.

(3) Multi-stakeholders are considered simultaneously in the
game relationships, so the distribution of NE points of the
upper-level game is extended from the two-dimensional
plane to the three-dimensional space. Meanwhile, the
lower-level game can also find the optimal operation
mode of multi-stakeholder. The proposed two-level game
model can solve the multi-dimensional Nash equilibrium
problem.

(4) The two-level game is verified to be effective in the PG&E69-
bus distribution system and a real 101-bus system. Through
batteries and EV clusters participating in the two-level game

model as independent stakeholders, then all stakeholders will
operate in the optimal modes to reduce the costs of
transaction loss.
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