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Renewable energy sources have been used for desalination by employing different
technologies and mediums due to the limitations of fossil fuels and the environmental
issues related to their consumption. Solar energy is one of the most applicable types of
renewable sources for desalination in both direct and indirect ways. The performance of
solar desalination is under effects of different factors which makes their performance
prediction difficult in some cases. In this regard, data-driven methods such as artificial
neural networks (ANNs) would be proper tools for their modeling and output forecasting. In
the present article, a comprehensive review is provided on the applications of different
data-driven approaches in performance modeling of solar-based desalination units. It can
be concluded that by employing these methods with proper inputs and structures, the
outputs of the solar desalination units can be reliably and accurately forecasted. In addition,
several recommendations are produced for the upcoming work in the relevant areas of
the study.
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INTRODUCTION

Fresh water is absolutely essential for human societies since they rely on it for development and
survival (Zheng, 2017). Around 71% of the earth is covered with water; however, about 96.5% of this
water is in the brackish form or saline, which means that it cannot be directly used for irrigation and
drinking, and just less than 1% of fresh water resources are within human reach (Tiwari et al., 2003;
Chauhan et al., 2021). Regarding the uneven distribution of fresh water in different regions of the
world, the increase in demand due to population growth, and the essence of water for human survival
and activities, desalination has gained more importance in recent years. Desalination is known as a
treatment process of water that includes salt removal from saline water to make it appropriate for
drinking (Mito et al., 2019). Desalination of water with the salinity more than normal levels is one of
the ways (Tzen andMorris, 2003), and probably the most applicable one, to overcome the mentioned
problems related to the unavailability of fresh water. The nature of the desalination process is energy-

Edited by:
Mamdouh El Haj Assad,

University of Sharjah, United Arab
Emirates

Reviewed by:
Willy Villasmil,

Lucerne University of Applied
Sciences and Arts, Switzerland

Muhammad Ahmad Jamil,
Northumbria University,

United Kingdom

*Correspondence:
Mohamed Salem
salemm@usm.my

Specialty section:
This article was submitted to
Process and Energy Systems

Engineering,
a section of the journal

Frontiers in Energy Research

Received: 21 July 2021
Accepted: 02 September 2021

Published: 07 October 2021

Citation:
Alhuyi Nazari M, Salem M, Mahariq I,
Younes K and Maqableh BB (2021)
Utilization of Data-Driven Methods in

Solar Desalination Systems: A
Comprehensive Review.

Front. Energy Res. 9:742615.
doi: 10.3389/fenrg.2021.742615

Abbreviations: ANFIS, adaptive neuro-fuzzy inference system; ANN, artificial neural network; BP, backpropagation; FF, feed
forward; GA, genetic algorithm; ICM, imperialist competition method; MLP, multilayer perceptron; MLR, multiple linear
regression; PSO, particle swarm optimization; PV, photovoltaic; RBF, radial basis function; RF, random forest; RO, reverse
osmosis; SVM, support vector machine.

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7426151

REVIEW
published: 07 October 2021

doi: 10.3389/fenrg.2021.742615

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.742615&domain=pdf&date_stamp=2021-10-07
https://www.frontiersin.org/articles/10.3389/fenrg.2021.742615/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.742615/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.742615/full
http://creativecommons.org/licenses/by/4.0/
mailto:salemm@usm.my
https://doi.org/10.3389/fenrg.2021.742615
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.742615


consuming, and it is crucial to properly supply the required
energy. Improving the efficiency of the systems and utilizing the
renewable energy sources are recommended to solve the
problems related to the energy demand of desalination
systems. Renewable energy sources can be used for
desalination in direct and indirect ways. In direct approaches,
thermal energy is mainly used for water evaporation and reducing
the salinity of water, while renewable energies can be used for
indirect desalination by producing electricity and applying the
power in reverse osmosis (RO) technologies (Caldera et al., 2016).
Among the renewable energy sources, solar energy is attractive
for the desalination purpose since it can be used in different ways
such as thermal technologies or photovoltaic/RO systems.

Numerous studies have been performed on the various kinds
of solar-based desalination systems to find the influential factors
and improve their performance (Mostafa et al., 2020). Depending
on the type of solar desalination, the factors affecting the
performance can be differed. Solar radiation is one of the
most important factors on the output of the systems. For
instance, Joseph et al. (2005) found that by increasing the
solar radiation from 400W/m2 to 900W/m2, the efficiency of
a single-stage solar desalination system increased from 15 to 26%.
In addition to solar radiation, the components of the system and
their configuration affect the performance of these systems. As an
example, Altarawneh et al. (2020) investigated the performance of
a solar still composed of two parabolic troughs and two
rectangular absorbers under different working conditions.
They found that the rim angle of the troughs can influence
the productivity of the desalination. Moreover, it was observed
that reducing the pressure could remarkably improve the
productivity of the desalination system. In another work, Geng
et al. (2021) investigated the performance of an RO system
powered by a solar dish Stirling engine. They found that by an
increment in the temperature of the absorber, productivity of
water increased, while there was an optimum temperature at
which the exergy efficiency of the system reached its maximum
value. In addition to the technical aspects, solar desalinations
have been investigated from the economic point of view. For
instance, Kettani and Bandelier (2020) carried out techno-
economic assessment on large-scale solar powered desalination
systems in Morocco by considering photovoltaics (PVs) and
concentrated solar power (CSP) for supplying energy. They
found that using the PV/RO system without a storage unit is
the cheapest configuration today and by 2030. In another work
(Zheng and Hatzell, 2020), solar thermal desalination was
thermo-economically analyzed, and it was found that
construction costs of solar collectors were the largest total
investments of the system. Other types of desalination systems
have been modeled by using data-driven methods. For instance,
Faegh et al. (Faegh et al., 2021) applied different artificial neural
network (ANN)-based methods to model the gain output ratio
and heat transfer rate of the evaporator and evaporative
condenser of a heat pump-assisted desalination system and
found that the R-squared of the models were more than 0.91
for all the outputs.

As mentioned in the previous paragraph, the performance of
desalination units is affected by several elements such as the

applied technology, operating conditions, and the properties of
the saline or brackish water. Since the experimental works are
costly and time-consuming, it would be useful to propose models
for performance prediction and assessment of the desalination
systems. Data-driven methods, with outstanding ability in
modeling of complex systems, would be attractive options for
performance forecasting of desalination systems (Gao et al., 2007;
Chauhan et al., 2020; Adda et al., 2021). These methods have
shown their outstanding performance in a wide variety of
applications such as predicting the properties of materials
(Ramezanizadeh et al., 2019a; Ramezanizadeh et al., 2019b),
fault diagnosis (Venkatasubramanian and Chan, 1989), etc.
(Rezaei et al., 2018). Current works focus on providing a
comprehensive review on the applications of data-driven
methods in modeling the performance of various solar
desalination systems, which is performed for the first time. In
addition, a table is prepared that summarizes the main findings of
the reviewed works, inputs of the proposed models, applied
approaches, and algorithms, which will be useful for the
scholars working on the similar fields of study. Finally,
according to the knowledge of the authors and the
investigation of the previous studies, some suggestions are
recommended for future works in the relevant subjects. The
findings and information represented in this study will
facilitate upcoming works to concentrate on the modeling of
desalinations systems, especially the ones using solar energy.

MOSTLY USED DATA-DRIVEN METHODS

There are different data-driven methods used in modeling of energy
systems. Themostly used approaches in energy systemmodeling are
multilayer perceptron (MLP) ANN, adaptive neuro-fuzzy inference
system (ANFIS), radial basis function (RBF), and support vector
machines (SVMs). In this regard, these approaches are briefly
described in the following subsections.

Multilayer Perceptron Artificial Neural
Network
The structure of MLP is shown in Figure 1. As shown in this
figure, there are three main layers in the simplest form of this
network including input, hidden, and output. However, the
hidden layer may be composed of more layers. In each node of
this network, a weight vector is used to make connection
between the current node and the ones in the upcoming
layer. In the primary layer of the network, the summation of
the values is sent to the next layer, which plays a role as inputs of
that layer. Assuming that the vector of X is the model input and
nj is applied as the jth node, the input in the upcoming layer is
written as Eq. 1

nj � ∑n
i�1

ωjixi + θj j � 1, 2, . . . ., K (1)

where θj , ωji , and K are the threshold of the jth node, the weight
value of the node, and the number of nodes, respectively.
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Subsequently, f as a transfer function is applied to provide the
overall inputs in the upcoming layer as represented in Eq. 2

yj � f(nj) � f⎛⎝∑n
i�1

ωjixi + θj⎞⎠ j � 1, 2, . . . , K (2)

Different functions can be used in this step with its own
features and characteristics. By multiplying the linking weight
and the output of the hidden layer, the output of the nodes will
be determined. It should be noted that the architecture of the
network including the number of hidden layers and neurons is
dependent on the problem complexity, the noise of data, and the
shares of data used for the test and validation of the model (Du
and Swamy, 2006). By applying an iterative process, neurons are
added in the procedure of training till it reaches the optimum
state. The training process plays a key role in modeling by using
this approach. Predicting the process by using this method is
conducted by adjusting weight and bias values.
Backpropagation (BP) is one of the mostly used training
algorithm for adjusting these values (Goh, 1995). The main
advantages of ANNs are their ability in synthesizing algorithms
through the process of learning, providing solution for
nonlinear problems, and robustness of the models; however,
the main disadvantages are the necessity of training for each

problem, requirement for multiple tests to find the most
appropriate architecture, and large data requirement for
training the network (Navarro, 2013).

Adaptive Neuro-Fuzzy Inference System
The schematic of ANFIS in a simple form with two inputs and
one output is illustrated in Figure 2. In this architecture, five
layers are considered. The first layer of this model is applied in
order to change the inputs to fuzzy sets and projects the variables
on fuzzy membership in the range between 0 and 1. In the second
layer, the signals of the input are generated; furthermore, values of
membership function weight will be checked. In the next layer of
this network, normalized firing strength of each node is obtained.
Subsequently, the outputs are changed to crisp sets in the fourth
layer. Finally, the outputs are determined in the last layer of the
proposed network. This layer of the network contains one node
which is used to sum up the input signals provided by the
prior layer.

There are some advantages in the ANFIS method such as its
ability in capturing the nonlinear structure of a procedure and
fast learning capacity. In addition, this approach has both
linguistic and numerical knowledge. In comparison with MLP
ANN, ANFIS is more transparent for the users and results in less
memorization error (Şahin and Erol, 2017); however, ANNs can

FIGURE 1 | Structure of MLP-ANN (Ramezanizadeh et al., 2019c).

FIGURE 2 | Structure of the ANFIS model (Ramezanizadeh et al., 2019c).
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have superior performance in accuracy of model outputs for test
data compared with ANFIS (Atmaca et al., 2001).

Radial Basis Function
The RBF network has some advantages such as fast performance,
a simple structure, and high estimation. The structure of this
network is shown in Figure 3. Similar to MLP, there are three
main layers in this network. The nodes are connected to the
previous one in each layer of the network. In the first layer, input
variables are assigned to the nodes. Subsequently, they are
transferred to the next layer. At the final stage, the weighted
links are used to transfer the data to the third layer. In the hidden
layer of these networks, RBF plays the role of activation functions
to produce the vector distance multiplied by the
corresponding bias.

In the second layer of the mentioned network, the input vector
will be projected to a new space (Zendehboudi and Tatar, 2017).
To determine the output of the jth neurons, Eq. 3 is applied as
follows:

Zj � Z(				X − Δj

				) � exp⎛⎝ −
					X − Δ2

j

					
2ξ2j

⎞⎠ (3)

In Eq. 3, Δj is the weight factor, X is the input vector, Z is the
RBF, and ξj refrs to standard deviation. To calculate the standard
deviation, the following equation is used:

ξ � θm


Λ

√ (4)

In Eq. 4, θm is the maximum distance between the centers and
Λ refers to number of centers. In the last layer of the network,
weights of the signals are obtained by using the previous layer
data

c � ∑A
j�1

ωjZj (5)

In Eq. 5, ωj refers to the value of the weight vector determined in
the training process. Despite some advantages of RBF networks
compared with MLP ANN such as a faster training process, their
accuracy in modeling the test data may be lower compared with
MLP ANN (Markopoulos et al., 2016).

Support Vector Machine
SVM can be applied for regression and prediction in different
systems (Sreedhara et al., 2019). By considering that Ns is the
number of data set samples and the inputs of xk ∈ Rn and K �
1,2,. . .,N and the outputs are yk ∈ R, the SVM formulation is as
follows (Ramezanizadeh et al., 2019a; Essa et al., 2020):

y � wtφ(x) + b (6)

In Eq. 6, b and w are the bias and weight, respectively
(Ahmadi and Mahmoudi, 2016; Ramezanizadeh et al., 2019c).
φ(x) denotes a nonlinear function which is applied to
transfer xk to a high-dimension space. Generally, this
changes to an optimization problem which can be expressed
as follows:

F(w) � 1
2
wTw + c∑Ns

k�1e
2
k (7)

subject to

yk � wTφ(xk) + b + ek k � 1, 2, ..., Ns (8)

In Eq. 7, γ and ek are the regularization parameter and error
value, respectively (Ahmadi and Mahmoudi, 2016;
Ramezanizadeh et al., 2019c). Eqs. 7 and 8 can be rewritten as
follows:

y � ∑Ns

k�1αkK(x, xk) + b (9)

where αk is the Lagrange multiplier and K(x, xk) is the kernel
function. In some studies (Essa et al., 2020), the RBF kernel
function is used, which is defined as follows:

FIGURE 3 | Structure of the RBF model (Ramezanizadeh et al., 2019c).
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K(x, xk) � exp( − ‖ xk − x2 ‖/σ2) (10)

In this equation, two parameters including σ and Lagrange
multipliers must be determined. One of the main advantages of
SVMmethods for modeling is their ability in providing nonlinear
solutions, while the main problem associated with this approach
is the requirement for knowledge about the kernel that must
be used.

Generally, mean square error (MSE) and R-squared are used
in evaluation of regression and predictive models, which are as
follows:

MSE � ∑n
i�1 (predicted value − actual value)2

ns
(11)

R2 � 1 − ∑i�n
i�1 (yactual value

i − ypredicted value
i )2

∑i�n
i�1 (yactual value

i − yactual value)2 (12)

where ns is the number of samples used in regression.

APPLICATIONS OF DATA-DRIVEN
METHODS IN SOLAR DESALINATIONS

There are three main principle approaches used for desalination,
which are thermal, pressure, and electrical. Thermal distillation
can be considered as the oldest approach in which water with high
salinity is boiled and the generated steam is collected. The
condensed form of the collected steam can now be used as
fresh water. In the electrical approach, electrical current is
applied to separate the salt and water. In these types of
desalination units, a permeable membrane is used, in which
ions move across it by use of electric current as a driving
force. In the RO type of desalination, pressure acts as a driver
for moving water through a selectively permeable membrane,
leaving the salt behind (Parise, 2011). The majority of the
desalination market belongs to thermal and RO types.
Although the majority of the installed capacity of desalination
systems is of the RO type, there are some benefits in thermal
desalinations. For instance, the waste heat of plants can be used
for the thermal desalination units, which leads to a high overall
efficiency of the system. The majority of the studies performed on
the applications of data-driven methods in solar desalination
systems have focused on thermal types (Elsheikh et al., 2021). For
instance, Zarei and Behyad. (2019) employed ANN to model the
output of a humidification–dehumidification-type solar
desalination used for humidifying the interior space of the
greenhouse and supplying fresh water. The inputs of the
model were width and length of the seawater greenhouse,
front evaporator height, and the roof transparency, and the
output was water yield of the system. Their different structures
with one and two hidden layers were examined. They observed
that applying one hidden layer with nine neurons led to the
highest exactness with R2 of 0.997. In addition to the architecture
of the model, the applied functions and optimization methods

could affect the outputs of the models proposed for solar
desalinations. For instance, Nazari et al. (2020) compared the
performance of ANN with and without the imperialist
competition algorithm (ICA) optimization method in
forecasting energy and exergy efficiencies and productivity of
single-slope solar stills. They noticed that using the optimization
method led to significant reduction in mean absolute errors of the
model in predicting the mentioned outputs by up to 54.3% for
water productivity. In another work (Mashaly and Alazba,
2017a), the output of an inclined passive solar still fed by
agricultural drainage water was modeled by applying ANN
with different architectures and multiple linear regression
(MLR). The inputs for the modeling of the instantaneous
thermal efficiency were relative humidity, ambient
temperature, solar radiation, wind speed, feed temperature and
its total dissolved solids, and feed mass flow rate. They found that
ANN outperforms MLR and the best structure was in the case of
using six neurons in the hidden layer. In addition to differing
numbers of neurons in the hidden layer, it would be useful in
terms of exactness enhancement by changing the number of
hidden layers (Ramezanizadeh et al., 2019b); however, it must be
considered that an increase in the number of hidden layers may
lead to overfitting.

The applied method and algorithm are among the most
important factors that influence the exactness of the data-
driven methods in forecasting the outputs of solar stills
(Mashaly and Alazba, 2015; Mashaly and Alazba, 2017b;
Mashaly and Alazba, 2018a; Mashaly and Alazba, 2018b;
Mashaly and Alazba, 2019a). For instance, Wang et al. (2021)
used random forest (RF), ANN, and multilinear regression to
forecast the productivity of the system based on time, solar
radiation intensity, wind speed, temperatures of feed water,
basin plates, salt water, cover, and ambient temperature. They
found that using RF led to the prediction with the least error
compared with others. In order to reach further exactness, the
Bayesian optimization algorithm was applied to search the most
appropriate hyperparameters which led to significant
enhancement in the accuracy of the ANN-based model by
increasing the determination coefficient from 0.7098 to 0.9614.
In another study (Essa et al., 2020), the performance of ANNwith
the Harris Hawk optimizer was compared with the traditional
ANN and SVM in predicting the productivity of an active solar
still. In their models, ambient temperature, time, speed of wind,
solar irradiance, and velocity of vapor were considered as inputs.
They found that ANN outperformed SVM and could be further
enhanced by using the optimizer. In their work, the R-squared
values of the model for ANN and SVM were 0.9703 and 0.9701,
respectively, while this value for the ANN-based model coupled
with the optimizer reached 0.9834. Improved accuracy of the
models through the coupling optimizer can be attributed to better
adjustment of the parameters affecting the performance of the
modeling approach. In another work, performance of ANFIS,
ANN, and Multiple Regression (MR) in forecasting the
performance of an inclined passive solar still was compared.
In all the proposedmodels, solar radiation, relative humidity, feed
flow rate, and total dissolved solids of brine and feed were used as
inputs. The utilized function in the structure of data-driven
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methods is another influential factor. As an example, Mashaly
and Alazba (2017c) tested different membership functions
including triangle, trapezoid, Pi curve, and difference between
two sigmoidal functions in ANFIS-based models to propose a
model with the highest exactness. In their models, inputs were
dissolved solids of the feed and brine, feed flow rate, relative
humidity, and solar radiation. They found that the Pi curve and
triangle membership functions can provide outputs with higher
accuracy compared with the others. In cases of using these
methods, the correlation coefficient of the regression for
training data sets was around 0.999. The most proper function
in the structure of networks for modeling can be dependent on
the physics of the problem which can be obtained by testing
different types of functions.

In modeling the system with data-driven methods, it is
essential to consider all the effective elements as inputs. In this
regard, some models have included more inputs to reach better
accuracy or improved the comprehensiveness. As an example,
Abujazar et al. (2018) used wider variables such as cloud cover,
day and month numbers, number of hours per day, difference
between the temperatures of inner and outer surfaces of glass in
addition to the factors used in the majority of the studies such as
ambient temperature, solar radiation, humidity, wind speed, and
temperatures of water, basins, and vapor to forecast productivity
of an inclined stepper solar still. In their work, cascaded forward
ANN with different numbers of neurons and a linear model and

regression were used. They found that the ANN model was more
reliable in predicting the productivity of the system. The values of
root-mean-squared error (RMSE) for regression, the linear
model, and the ANN-based model were 50.21, 80.36, and
41.01, respectively. Despite more comprehensiveness of this
model compared with previously mentioned ones, it can be
further improved by considering other factors such as the
specifications of the system such as the dimensions of different
parts and properties of the materials affecting the performance of
the systems.

Solar desalination can be integrated with other components to
reach higher productivity. Data-driven methods are applicable
for performance forecasting of these systems (Bagheri et al.,
2020). As an example, Bagheri et al. (2021) used ANN to
model a solar desalination system composed of PVs, a heater,
a battery, a cylindrical parabolic collector, etc. The panel was
applied to supply the power of the heater used in the tank that was
employed for preheating the saline water prior to its entrance to
the collector. In the collector, saline water was further heated
before entering the still. The schematic of the system is shown in
Figure 4. By testing different architectures of the network and by
varying the number of neurons in the hidden layer, they found
that the highest accuracy of the model was obtained in the case of
using 24 neurons with an R2 of 0.993. These methods can be
developed for other hybrid systems such as solar/wind RO
desalination technologies in the near future; however, more

FIGURE 4 | Solar desalination system with a collector, heater, and PV (Bagheri et al., 2021).
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inputs such as wind speed and other factors affecting the systems
must be considered. Since the inputs of the systems are increased
for hybrid technologies, the modeling process would be more
complicated.

Data-driven methods are employable for modeling the
dynamic performance of solar desalination systems. In a study
carried out by Sohani et al. (2021), different ANNs including
backpropagation (BP), feedforward (FF), and RBF were used to
estimate water temperature and hourly water production of a
solar still with enhanced design. The inputs of their models were
wind speed, ambient temperature, received radiation from the
Sun, and water depth in the basin. Comparison of the estimated
data and the corresponding actual vales revealed that RBF and FF
were the most powerful approaches in predicting water
temperature and hourly water production, respectively. Despite
its novel idea in dynamic modeling of a solar desalination, the
comprehensiveness of their model was limited and could be
further enhanced by considering other inputs such as wind
speed and feed temperature.

Utilizing nanofluids in solar stills can improve their
performance. Intelligent methods can be applied for accurate
evaluation of these solar stills. Kandeal et al. (2021) tested various
data-driven methods including ANN, Support Vector Regression
(SVR), linear SVR, and RF to model the performance of a double-
slope solar still utilizing the carbon black nanofluid in 1.5% wt
concentration. The inputs of the proposed model were air
ambient temperature, solar radiation, wind speed, vapor
temperature, basin temperature, and temperatures at the glass
inlet and outlet. The models were coupled with the Bayesian
optimization algorithm to tune the approaches and obtain the
outputs with the highest accuracy. They found that all the
proposed models were able to predict the performance of the
system with relatively high exactness; however, utilizing RF led to
the highest accuracy. The performance of the nanofluidic solar
desalination system integrated with other modules can be
modeled by data-driven methods. For instance, Bahiraei et al.
(2020) used ANN coupled with the genetic algorithm (GA) and
Imperialist Competition Method (ICM) to model the
performance of a nanofluidic solar still integrated with a
thermoelectric module. The inputs of their model were time,
solar radiation, ambient temperature, power of the applied fan,
concentration of the nanofluid, and temperatures of water, glass,
and basins, while the output of the proposed models was water
productivity. They observed that the exactness of the model
through coupling the mentioned optimization approaches
significantly improved, while using ICM was more influential
in terms of accuracy enhancement. In addition to the
optimization method, the algorithm used for modeling affects
the exactness of the predicted values of nanofluidic solar
desalinations. For instance, Bahiraei et al. (2021) used Particle
Swarm Optimization (PSO)-ANFIS and PSO-ANN for modeling
the performance of a solar still with Cu2O nanoparticles. The
inputs of the models were similar to those of the previous work,
while the output of the designed model was efficiency of the
system. They found that in both types of models, coupling the
optimization methods led to exactness enhancement; however,
the maximum accuracy in modeling was observed in the case of

using PSO-ANFIS with an R2 of 0.9884. In another work
(Mashaly and Alazba, 2016), the performance of MLR and
MLP ANN was compared in predicting the instantaneous
thermal efficiency of a solar still. They found that using MLP
ANN provided a model with higher exactness compared with
MLR. Higher exactness of MLP ANN can be attributed to its
more complex structure, which enables it to model the
complicated systems with better performance.

The outputs of the ANN-based model can be used for
designing an optimal condition for the performance of the
desalination systems (Azad et al., 2021). As an example, in a
study carried out by Porrazzo et al. (2013), an ANN-based
optimizing control system was utilized for a solar-powered
membrane desalination module. ANN was used for
performance prediction of the system under different
operating conditions by considering radiation and the rate of
feed flow inlet temperature of cold channel as the inputs.
Afterward, a control system was implemented to optimize the
distillate production of the system. The proposed system
allowed to set the feed flow rate at the optimal values in
order to reach continuous maximum production of the
distillate. As another example, Maleki et al. (2016) applied
ANN to forecast the weather condition and optimize a
hybrid system, solar-wind-powered RO desalination. By using
the outputs of the network and performing optimization, the
optimum design of the system was obtained.

To sum up the findings of the study, it can be declared that the
accuracy of the models is under the influence of the applied
method, optimization algorithm, etc. Generally, intelligent
methods such as ANNs are preferred in terms of accuracy due
to their more complex structures which enable them to model
complicated systems with higher accuracy. In addition, it is found
that applying optimization algorithms and coupling them with
the intelligent methods improve the accuracy since the
parameters affecting the exactness are used in their optimum
values. In addition to the abovementioned factors, the considered
inputs influence the exactness. Considering more influential
factors as the inputs will provide more accurate models
(Ahmadi et al., 2018). The other factors that may cause the
differences in the model can be attributed to the noise of data,
which is inevitable in experimental data used for modeling. In
Table 1, the important outcomes of the studies in the topic of this
article are provided.

SUGGESTIONS FOR UPCOMING STUDIES

Despite the fact that there are several works on utilization of data-
driven methods in performance prediction of solar desalination
systems, there are some limitations in modeling the outputs of
solar desalination systems. For instance, it is difficult to propose
comprehensive models with applicability for different types of
solar-assisted desalination systems. For this purpose, the type of
desalination must be defined as a meaningful variable. In
addition, different working conditions may affect the
performance of the systems, which must be distinguished and
considered in inputs of the models. Furthermore, since the
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TABLE 1 | Important findings of the studies on applications of data-driven methods in solar desalination systems.

Reference System Method Inputs Findings

Elsheikh et al.
(2021)

Stepped solar still Long short-term
memory
(LSTM) ANN

– R2 of the provided model was 0.9752.

Zarei and
Behyad (2019)

Solar greenhouse desalination
(humidification–dehumidification)

ANN Width and length of the seawater
greenhouse, front evaporator height,
and the roof transparency

Using one hidden layer with nine neurons
led to the model with the maximum
exactness with R2 of 0.997.

Nazari et al.
(2020)

Single-slope solar still ANN Time, solar radiation, temperatures of
ambience, glass, water, and basins

Using the ICA optimization approach led to
significant reduction in the error of the
predicted values (up to a 54.30% reduction
in mean absolute error of the model used
for water productivity estimation). The
maximum R2 value of the model for water
productivity was 0.9924

Mashaly and
Alazba (2017a)

Inclined passive solar still ANN and MLR Relative humidity, ambient temperature,
solar radiation, wind speed, feed
temperature and its total dissolved
solids, and feed mass flow rate

ANN outperformed the MLR in
performance prediction of the system. The
maximum absolute errors of the ANN and
MLR were 8% and 35%, respectively. The
R2 value of the model with ANN was 0.949,
while it was 0.739 for MLR.

Mashaly and
Alazba (2019a)

Solar still ANFIS and multiple
nonlinear regression

Relative humidity, solar radiation, flow
rate of the feed, total dissolved solids of
the feed and brine.

The applied function in ANFIS affects the
outputs of the model. The maximum value
of R2 for training data sets was 0.999 for
the ANFIS-based model.

Mashaly and
Alazba (2017b)

Solar still ANN and stepwise
regression

Relative humidity, ambient temperature,
total dissolved solids in feed water, rate
of feed flow, solar radiation, and wind
speed

The model based on ANN had higher
accuracy compared with stepwise
regression. The mean absolute relative
error of the stepwise regression was
around 2.5 times higher than that of the
ANN-based model. R2 for ANN was 0.960,
while it was 0.902 under optimal conditions
of the SWR model.

Mashaly and
Alazba (2015)

Solar still ANN Julian day, relative humidity, ambient
temperature, total dissolved solids in the
feed and brine water, rate of feed flow,
solar radiation, wind speed, and
temperature of brine water

Using Levenberg–
Marquardt as a learning function led to
higher accuracy (R � 0.99437) compared
with resilient backpropagation (R � 0.9853)
and conjugate gradient backpropagation
with Fletcher–Reeves restarts (R- �
0.98941).

Mashaly and
Alazba (2018a)

Solar still ANFIS Total dissolved solids in the feed and
brine water, solar radiation, relative
humidity, and feed flow rate

The membership function affects the
accuracy of the forecasted data. The
coefficient of correlation was 0.99 under
the most accurate conditions.

Mashaly and
Alazba (2018b)

Solar still ANFIS Total dissolved solids in the feed and
brine water, solar radiation, relative
humidity, and feed flow rate

The membership function of the model
influences the exactness of the predicted
values. The R2 value in the most accurate
case was 0.999.

Wang et al.
(2021)

Tubular solar still ANN, RF, and
multilinear
regression

Time, solar radiation intensity, wind
speed, temperatures of feed water,
basin plates, salt water, cover, and
ambient temperature

The proposed model based on RF had the
highest exactness with a mean absolute
error of 5.21%. The R2 value in the most
accurate case was 0.9758, while it was
0.9745 for RF and 0.9614 for ANN.

Essa et al.
(2020)

Active solar still ANN, ANN/Harris
Hawks, and SVM

Ambient temperature, time, speed of
wind, solar irradiance, and velocity of
vapor

Using the optimizer in the ANN increased
R2 of the model from about 0.970 to
around 0.983.

Mashaly and
Alazba (2017c)

Solar still ANFIS with different
membership
functions

Dissolved solids of the feed and brine,
feed flow rate, relative humidity, and
solar radiation

The membership function affects the
exactness of the proposed models based
on ANFIS. The value of R2 under optimal
conditions was 0.9999.

Abujazar et al.
(2018)

Inclined stepped solar still ANN, linear model,
and regression

Cloud cover, day and month numbers,
number of hours per day, difference
between the temperatures of inner and
outer surfaces of glass, ambient
temperature, solar radiation, humidity,
wind speed, and temperatures of water,
basins, and vapor

Using ANN provided a model with the
highest accuracy (RMSE � 22.48). R2 for
ANN and the regression were
approximately 0.98 and 0.905,
respectively.

(Continued on following page)
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experimental data are used for modeling, it may cause some
problems due to different accuracies of measuring systems.
Despite the mentioned problems and limitations, there are
some recommendations that can improve the upcoming
studies. First of all, the majority of the works are on thermal
desalination modules, while these methods can be developed for
the solar-powered RO systems and other desalination systems
powered by solar-based hybrid systems such as solar/
geothermal or solar/wind. In addition, most of the proposed
models are applicable for just one type of solar desalination,
while their comprehensiveness can be improved by
considering more inputs. For instance, using the dimensions
of desalination systems is one of the ways that can be used to
extend the application of the models. Furthermore, in the
case of nanofluidic solar desalination, using the properties
of nanofluids such as their concentration and properties of
particles can lead to proposing a model with a higher level of
applicability. Another point that must be considered in the
future works is utilizing more recent optimization approaches to

reach higher exactness. In this regard, hybrid optimization
algorithms would be attractive options. Furthermore, it
would be useful to use data-driven methods for other
purposes such as modeling systems from economic and
environmental points of view. In addition, the majority of
the studies have focused on water productivity as the output
of the model, while it would be useful and beneficial to model
other technical criteria such as energy and exergy efficiency of
the systems. Finally, it is suggested to compare different
approaches in terms of the required time for the training
process.

CONCLUSION

In the provided article, applications of data-driven methods in
solar desalination system modeling are provided. Different
variables have been used as the inputs in the models proposed
for solar desalination systems including solar radiation, ambient

TABLE 1 | (Continued) Important findings of the studies on applications of data-driven methods in solar desalination systems.

Reference System Method Inputs Findings

Bagheri et al.
(2020)

Solar still with a battery, heater, PV, and
collector

ANN and first
principle models

Temperatures of water, basins,
insulation, ambience, and glass, solar
intensity, and speed of wind

Using ANN provided more accurate
prediction. In the case of modeling water
mass, R2 of ANN and first principle models
were 0.9998 and 0.9978, respectively.

Bagheri et al.
(2021)

– ANN Temperatures of water, basins, and
glass

R2 of the provided model was 0.993.

Sohani et al.
(2021)

Solar still with improved design FF, BP, and RBF
ANNs

wind speed, ambient temperature,
received radiation from the Sun, and
water depth in the basin

RBF and FF showed the highest accuracy
in forecasting water temperature and
hourly water production, respectively. The
R2 values for FF, BP, and RBF networks
were 0.9631, 0.9425, and 0.9567,
respectively.

Kandeal et al.
(2021)

Double-slope solar still with nanofluids SVR, Linear SVR,
ANN, and FR

Air ambient temperature, solar radiation,
wind speed, vapor temperature, basin
temperature, and temperatures at the
glass inlet and outlet

Using RF led to the highest accuracy. The
R2 values for train data sets of SVR, linear
SVR, ANN, and RF were 0.9905, 0.9569,
0.9867, and 0.9971, respectively.

Bahiraei et al.
(2020)

Nanofluidic solar stills coupled with a
thermoelectric

ANN with ICM
and GA

Time, solar radiation, ambient
temperature, power of the applied fan,
concentration of the nanofluid, and
temperatures of water, glass, and basins

Using ICM led to more enhancement in the
accuracy of the ANN-based model
compared with GA. The R2 values of
training data sets for MLP, GA-MLP, and
ICM-MLP were 0.9458, 0.9495, and
0.9865, respectively.

Bahiraei et al.
(2021)

Nanofluidic solar stills coupled with a
thermoelectric

PSO-ANFIS and
PSO-ANN

Time, solar radiation, ambient
temperature, power of the applied fan,
concentration of the nanofluid, and
temperatures of water, glass, and basins

Using PSO-ANFIS provided the predictions
with the highest accuracy with an
R-squared of 0.9884 for training data sets.

Mashaly and
Alazba (2016)

Solar still MLR and ANN Julian day, ambient temperature, relative
humidity, solar radiation, wind speed,
ambient temperature, feed water
temperature, and total dissolved solids
of brine and feed water

ANN provided a model with higher
exactness compared with MLR. The mean
value of coefficient of correlation for ANN
was 11.23% higher than the
corresponding value of MLR. The values of
R2 for training data sets of MLR and ANN
were 0.856 and 0.996, respectively.

Porrazzo et al.
(2013)

Solar-powered membrane distillation
unit

ANN Radiation, rate of feed flow inlet
temperature of the cold channel

A control system was proposed based on
the ANN model to reach maximum
productivity. The R value of the network for
training data sets was 0.975.

Mashaly and
Alazba (2019b)

Inclined passive solar still ANN, ANFIS,
and MR

Solar radiation, relative humidity, feed
flow rate, and total dissolved solids of
brine and the feed

ANN showed superior performance
compared with the other approaches with
a coefficient of correlation equal to 0.98.
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conditions, etc. The main findings of this review article are as
follows:

• Compared with the correlation, intelligent methods can
model the solar desalination systems more accurately.

• Different parameters such as productivity, energy, and
exergy efficiency can be modeled by using the intelligent
methods.

• The accuracy of the suggested models is influenced by
different elements such as the applied method and
algorithm and the considered inputs.

• Coupling optimization methods with the models will
improve the accuracy due to adjusting the
hyperparameters to their optimum values.

• In addition to the applied method for modeling, the type of
the optimization algorithm influences the exactness of the
models.

• Operating conditions such as solar radiation and relative
humidity in addition to the properties of the feed and saline
water are among the most important factors that must be
used as inputs.

• The outputs of the models, obtained by intelligent methods,
can be used to optimize the systems.

• Most of the studies have considered water productivity as
the output of the model, while it would be beneficial to

consider other technical criteria such as energy and exergy
efficiency of the system.

• In addition to technical criteria, considering other factors
such as environmental and economical parameters as
outputs of the models would be useful.

• It is suggested to compare the intelligent models in terms of
required time and calculations for the training process with
different algorithms and approaches.

• Applying hybrid optimization algorithms, with more proper
ability in finding optimal solutions, can lead to more precise
models.
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