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In order to improve the stability of proton exchange membrane fuel cell (PEMFC) output
voltage, a data-driven output voltage control strategy based on regulation of the duty cycle
of the DC-DC converter is proposed in this paper. In detail, an imitation-oriented twin delay
deep deterministic (IO-TD3) policy gradient algorithm which offers a more robust voltage
control strategy is demonstrated. This proposed output voltage control method is a
distributed deep reinforcement learning training framework, the design of which is guided
by the pedagogic concept of imitation learning. The effectiveness of the proposed control
strategy is experimentally demonstrated.
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INTRODUCTION

The voltage of a proton exchange membrane fuel cell (PEMFC) is highly dependent on the
temperature, pressure, humidity, and gas flow rate (Yang et al., 2018; Sun et al., 2019). In
addition, the output voltage of PEMFC also fluctuates widely with varying load current (Yang
et al., 2019a; Yang et al., 2021a). In order to improve the stability of the PEMFC output voltage, the
PEMFC DC-DC converters should output a stable bus voltage in the event of fluctuating input
voltage and output load so as to normalize the load (Yang et al., 2021b; Yang et al., 2021c).

There are a number of existing PEMFC output voltage control methods based on control of DC-
DC converters, including the PID control algorithm (Swain and Jena, 2015), fractional order PID
algorithm (Yang et al., 2019a; Yang et al., 2019b; Yang et al., 2020), sliding mode control algorithm
(Bougrine et al., 2013; Jiao and Cui, 2013), model predictive control algorithm (Bemporad et al.,
2002; Ferrari-Trecate et al., 2002), robust control method (Olalla et al., 2010), and optimal control
algorithm (Jaen et al., 2006; Olalla et al., 2009; Montagner et al., 2011; Moreira et al., 2011) methods,
and so on. Among them, the PID algorithms are traditional control algorithms whose advantages
include simple structure and fast calculation speed. However, these are incompatible with non-linear
PEMFC systems. The fractional order PID algorithm is an expanded algorithm based on the PID
algorithm, which offers better robustness, but which cannot be adapted for non-linear PEMFC
systems. Sliding mode control is an excellent candidate for variable structure systems such as DC-DC
converters; however, it is not suitable for PEMFC systems in practice as it is affected by the “jitter”
problem. The model prediction algorithm offers higher accuracy and strong robustness; however, the
algorithm is heavily reliant on mathematical models, making the control results in reality very
different from the theoretical ones. The goal of robust control is to establish feedback control laws
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accounting for system uncertainty in order to increase the
robustness of closed-loop systems. However, the control
performance of a controller employing robust control is
compromised it as cannot operate at the optimal point.

Optimal control is one of the more advanced control
algorithm designs. By expressing the performance of a system
as an objective function of time, state, error, and other
combinations, optimal control selects an appropriate control
law which enables the objective function to include extreme
values in order to obtain the optimal performance of the
system. As described by Jaen et al. (2006), the average model
of the converter is linearised, and the optimal LQR is obtained by
solving the algebraic Riccati equation using the pole
configuration, frequency domain metric or integral metric as
the optimisation objective function; however, this LQR is not
robust enough to cope with large disturbances in the system.
Montagner et al. (2011) designed a discrete LQR and determined
the existence of the Lyapunov function for the closed-loop system
using the LMI method, thus ensuring the stability of the system.
Olalla et al. (2009) organised the LQR optimisation problem in
the form of an LMI, which was then solved using convex
optimisation to obtain a robust linear quadratic regulator. In
the study by Moreira et al. (2011), the application of a digital LQR
with Kalman state observer for controlling a BUCK converter was
tested in a series of simulations. However, the structure of the
above optimal algorithm is complex and computationally
intensive, leading to a reduction in its control real-time
performance in practice (Li and Yu, 2021).

For these reasons, there remains the need for a simple
structured model-free PMEFC optimal control algorithm for
guiding DC-DC converters (Li et al., 2021).

The DDPG algorithm (Lillicrap et al., 2015) is a data-driven
model-free optimal control algorithm, a kind of deep
reinforcement learning, which is characterised by strong self-
adaptive capability and decision-making ability, and which can
arrive at decisions within a few milliseconds. It is used widely in
power system control and robot coordination control, and for
addressing UAV control problems (Zhang et al., 2016; Qi, 2018;
Zhang et al., 2018; Zhang et al., 2019; Zhang and Yu, 2019; Zhang
et al., 2020; Zhang et al., 2021; Zhang et al., 2021). However, the
poor training efficiency of the DDPG algorithm explains the low
robustness of controllers belonging to this class of algorithms, and
their ineligibility for PEMFC systems.

In order to stabilise the output characteristics of the PEMFC
and improve the stability of its output voltage, a data-driven
output voltage control strategy for controlling the duty cycle of
the DC-DC converter is proposed in this paper. To this end, an
imitation-oriented twin delay deep deterministic policy gradient
(IO-TD3) algorithm is proposed, the design of which reflects the
idea of imitation learning. In this paper, we propose a distributed
deep reinforcement learning training framework for improving
the robustness of the PEMFC control policy. The effectiveness of
the proposed control policy is experimentally demonstrated by
comparing the proposed method with a number of existing
algorithms.

This paper makes the following unique contributions to the
research field:

1) A 75 kw ninth order output voltage PEMFC dynamic control
model that takes into account the DC/DC converter is
demonstrated.

2) A PEMFC output voltage control strategy based on an
imitation-oriented twin delay deep deterministic policy
gradient algorithm for the purpose of increasing robustness
is proposed.

The remainder of this paper comprises the following sections:
the PEMFC model is demonstrated in The PEMFC Model, and
the proposed algorithm is described in Proposed Method; the
experimental results are analysed and discussed in Experiment,
and the findings in this paper are summarised in Conclusion.

THE PEMFC MODEL

PEMFC Modelling and Characterization
A PEMFC is a device that converts chemical energy directly into
electrical energy by means of an electrochemical reaction, the
individual output voltage of which can be expressed as follows:

Vcell � E − ηact − ηohm − ηcon (1)

For a fuel cell stack consisting ofN single cells connected in series,
the output voltage V can be expressed as follows:

V � NVcell (2)

Theoretically, the electric potential of the PEMFC varies with
temperature and pressure, as expressed in the following equation:

E � 1.229 − 0.85 × 10−3(T − 298.15) + 4.3085 × 10−5T(ln pH2

+ ln p02/2)
(3)

Thermodynamic Electric Potential
The thermodynamic electric potential of the single cell (i.e., the
Nernst electric potential) can be obtained from the mechanism of
the electrochemical reaction of the gas inside the PEMFC. This is
represented by the following equation:

E � ΔG
2F

+ ΔS
2F

(T − Tref ) + RT
2F

(ln pH2 +
1
2
ln p02) (4)

Activation Overvoltage
The activation overvoltage of the PEMFC is expressed as follows:

ηact � ξ1 + ξ2T + ξ3T ln c(O2) + ξ4T ln I (5)

Whereby c(O2) is the concentration of dissolved oxygen at the
cathode catalyst interface, which can be expressed by Henry’s law
as follows:

c(O2) � PO2/5.08 × 106 exp(−498/T) (6)

Ohmic Voltage Drop
The ohmic overvoltage is represented by the following equation:

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7411012

Li et al. DDRL Method for PEMFC Control

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


ηohm � IRint � I(Rm + Rc) (7)

Empirically, the internal resistance of the PEMFC is expressed as
follows:

Rint � 0.01605 − 3.5 × 10−5T + 8 × 10−5i (8)

Dense Differential Polarization Overvoltage
The differential overvoltage can be expressed as follows:

ηcon � −β ln(J/Jmax) (9)

Dynamic and Capacitive Characteristics of the Double
Layer Charge
The dynamic characteristics of the double layer charge of the
PEMFC are similar to those of the capacitor, and the equivalent
circuit diagram is shown in Figure 1A:

As detailed in the figure, the polarization voltage across Rd is
Vd and the differential equation for the voltage change of a single
cell is expressed as follows:

dVd/dt � I/C − Vd/RdC (10)

PEMFC Stack Voltage
The stack voltage is defined as the value of the voltage at the front
end of the PEMFC as it passes through the DC/DC converter. It is
assumed that hydrogen is supplied from a hydrogen tank, and is
available in sufficient quantities at all times. The air, on the other
hand, is controlled by a proportional valve, which allows the air to
be controlled efficiently and in time to meet the PEMFC
requirements.

Eq. 11 can be obtained fromThe Law of Conservation ofMass,
and the Ideal Gas Law:

Vo

8.314T
× dPH2

dt
� mh2 − K(PH2 − PEH2) − 0.5NI

F
(11)

DC-DC Boost Converter Model
The output voltage of the PEMFC is the tap voltage of the DC/DC
converter. A boost converter is essentially a step-up power
converter, i.e., the voltage is raised and then outputted. An
DC/DC boost converter circuit is shown in Figure 1B:

Whereby the input and output voltage relationship are
controlled output voltage by the switch duty cycle, as
expressed in Equation:

Vou � ( 1
1 − u

) × Vstack (12)

The differential equation for Vout is as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
diL
dt

� 1
L
· Vstack

dVout

dt
� 1
C
· (−iost)

(13)

PROPOSED METHOD

Framework of Control Policy
The control model includes a PEMFC stack, a DC/DC converter
and its controller. The controller of the DC/DC converter is

FIGURE 1 | PEMFC equivalent circuit and DC-DC converter. (A)Equivalent Circuit Diagram of PEMFC. (B)DC/DC converter structure.
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equated to an intelligent agent which is trained to adapt to the
non-linear characteristics of the PEMFC so as to improve the
overall output voltage control performance.When applied online,
the intelligent agent outputs the optimal duty cycle according to
the state of the DC-DC converter and the state of the output
voltage. The control interval of the agent is 0.01 s.

Agent
1) Action space

The action space is set to u/100, as follows:

{ a � [u/100]
0≤ u≤ umax

(14)

2) State space

The state space is expressed as follows:

[e ∫t

0
edt U] (15)

3) Reward function

The reward function is expressed as follows:

r(t) � −[μ1e2(t) + μ2u(t − 1)] + β (16)

α � {−0.3 e2(t)> 0.09
0 e2st(t)≤ 0.09 (17)

DDPG
The Deterministic Policy Gradient (DDPG) policy determines an
action via the policy function µ(s), which is shown in the
following equation:

ai � μ(st |θμ) (18)

This deep reinforcement learning algorithm uses a value network
to fit the function Q(s) and the objective function J(θμ), the latter
which is defined as follows:

J(θμ) � Eθ,x[r1 + cr2 + c2r3 +/] (19)

In this arrangement, the Q function can be expressed as the
expected value of the reward for selecting an action under µ(s).

In each step, a specific policy is randomly selected for the
agent to be executed, and the best policy is selected by
maximizing the fusion objective function. The different
policy will be executed in different steps, so that an
experience replay pool can be obtained for each agent.
Finally, the gradient of the fusion objective function ∇θiJ is
solved for the policy parameters of each agent, as expressed in
the following equation:

∇θiJ ≈
1
S
∑
j

∇θjμi(Oj
i)∇ajQ

ϵ
i · (xj, aj1,/, ai,/, ajN)∣∣∣∣ai�μi(Oi) (20)

Nevertheless, the DDPG algorithm suffers from low
robustness. The main reasons for this are as follows:

1) The algorithm lacks effective bootstrapping techniques, and so
it tends to fall into the local optimum solution, which
undermines the robustness of the strategy.

2) Overestimation of the Q-value leads to overfitting of the
algorithm’s policy, thus making it less robust.

Framework for Offline Training of IO-TD3
In order to address the low robustness of the DDPG algorithm,
the IO-TD3 algorithm incorporates the following two
innovations:

1) An imitation-oriented distributed training framework for
deep reinforcement learning; and,

2) An Integrated anti-Q overestimation policy.

The large-scale deep reinforcement learning training
framework for the IO-TD3 algorithm is illustrated.

The algorithm contains three roles, an explorer, an expert and
a leader. A total of 36 parallel systems are included in the
algorithm, each containing the same PEMFC system and
different load disturbances, so as to enhance sample diversity.

Explorer
The Explorer contains only one actor network. The explorers in
different parallel systems employ their own different exploration
principles. The explorers described in this paper use the following
exploration principles: greedy strategy, Gaussian noise, and
OU noise.

The explorer in parallel system 1–6 uses an ε-greedy strategy
with the following actions:

alε � { πl
ϕ(s) With ε probability

alrand With 1 − ε probability
(21)

The explorer in parallel system 7–12 uses an OU noise
exploration strategy with the following actions:

ajOU � πj
ϕ(s) + Nj

OU (22)

The Gaussian noise exploration strategy used in parallel system
13–18 has the following actions:

amGaussian � πm
ϕ (s) + Nm

Gaussian (23)

Expert
On the basis of imitation learning, the proposed algorithm
employs a large number of expert samples, which are used as
learning samples, so that the algorithm can be effectively guided
to learn correctly during the early stages of training. In this
proposed method, the duty cycle of the DC/DC converter is
controlled, whereby the parallel systems generate expert samples
for the Leader (described below).
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The expert itself uses a variety of controllers based on different
principles, including PSO-PID and GA-PID algorithms. The
objective function for parameter optimization is as follows:

F(t) � ∫∞

0
t(e(t))2dt (24)

Leader
The leader (termed “Leader”) entails a complete agent structure which
includes a two-actor network, two critic networks, and an experience
pool. It learns samples from the explorer and the critic in order to
obtain the optimal control strategy, and periodically sends the latest
parameters to the actor network for all the explorers.

The critic in each leader employs an integrated mitigation Q
over-estimation technique.

1) The critic in Leader uses the Clipped Double Q-learning
technique to calculate the target value:

y1t � r(st , at) + cmini�1,2Qθi′ (st+1, πϕ1(st+1)) (25)

2) The critic network inside Leader uses a policy delay update
policy. d updates to the actor network are performed after
every d update to the critic.

3) The critic inside Leader uses a goal policy smoothing
regularization strategy. The critic introduces a
regularization method for reducing the variance of the goal
values by bootstrapping the estimates of similar state
action pairs.

yt � r(st , at) + Eε[Qθ′(st+1, πϕ′(st+1) + ε)] (26)

Smooth regularization is also achieved by adding a random
noise to the target strategy and averaging over the mini-batch:

yt � r(st , at) + cmini�1,2Qθt[st+1, πϕ′(st+1) + ε] (27)

ε ∼ clip[N(0, σ),−c, c] (28)

EXPERIMENT

In order to verify the superior effectiveness of the proposed
method, the IO-TD3 algorithm control strategy was tested
against the following methods in case: Ape-x-MADDPG
control algorithm (40), MATD3 control algorithm (41),
MADDPG coordinated control algorithm (37), BP neural
network control algorithm, RBF neural network control
algorithm, PSO optimized PID control algorithm (PSO-PID),
GA optimized PID control algorithm (GA-PID), PID control
algorithm (PID), Fuzzy-FOPID control algorithm (Fuzzy-
FOPID), and the PSO-optimized FOPID control algorithm
(PSO-FOPID). The first six (including the IO-TD3 algorithm)
are referred to as advanced algorithms, and the last five are
conventional algorithms.

At 1 s, the load current magnitude appears as a load
disturbance which begins at 72.6 A and rises to 250.0 A. The
results are shown in Figure 2A,B.

1) Comparison between proposed algorithm and advanced
algorithms. As shown in Figure 2A, the IO-TD3 algorithm has
a better response time, smoother output voltage profile and no
overshoot. The proposed algorithm’s minimum output voltage
value is smaller than that of the other advanced algorithms.
Conversely, each of the output voltages of the other advanced
algorithms is characterized by large overshoot, and these results are
affected by varying degrees of overshoot and oscillation, which can
lead to unstable output voltages. The IO-TD3 algorithm therefore
has the best control performance.

FIGURE 2 | Results of Case 1. (A) Output voltage of advanced algorithms (B) Output voltage of conventional algorithms
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2) Possible reasons for these promising patterns are as follows:
firstly, other DRL algorithms tend to fall into local optima;
they amount to sub-optimal control strategies as they are not
effectively guided in pre-learning, resulting in large output
voltage overshoot and output voltage fluctuations, which
undermine PEMFC output performance.

The BP and RBF algorithms are too dependent on the trained
samples, resulting in limited control performance. A neural
network control algorithm which lacks self-exploration will
have lower adaptive ability, leading to poorer control
performance.

The PSO-PID and GA-PID algorithms within the
conventional control algorithm group lack the adaptive
capability for adjusting the PID parameters, and therefore
struggle to adapt to the non-linearity of the PEMFC
environment. The PSO-FOPID algorithm enables greater
robustness in the environment, but is impaired by poor
adaptive capability due to its fixed coefficients, which
ultimately leads to severe output voltage overshoot and
oscillation. The Fuzzy-FOPID algorithm, despite its better
adaptive capability, is underpinned by overly simple rules,
resulting in poor control accuracy and therefore a large
overshoot despite the fast response of the algorithm.

In summary, the IO-TD3 controller is a more suitable
candidate for practical output voltage control systems, with its
short response times, and good dynamic and static performance
indicators.

CONCLUSION

In this paper, an imitation-oriented deep reinforcement
learning output voltage control strategy for controlling the
duty cycle of a DC-DC converter has been proposed. The
proposed method is an imitation-oriented twin delay deep

deterministic (IO-TD3) policy gradient algorithm, the design
of which is structured on the concept of imitation learning. It
embodies a distributed deep reinforcement learning training
framework designed to improve the robustness of the control
policy. The effectiveness of the proposed control policy has
been experimentally demonstrated. The simulation results
show that the IO-TD3 algorithm has superior control
performance compared to other deep reinforcement
learning algorithms (e.g., Ape-x-MADDPG, MATD3,
MADDPG). Compared to other control algorithms (BP,
RBF, PSO-PID, GA-PID, PID, Fuzzy-FOPID, PSO-FOPID),
the IO-TD3 algorithm is more adaptable, and, in relation to
the output voltage of the PEMFC, has better response speed
and stability, and can more effectively track and control the
output voltage in a timely and effective manner.
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